Scenario results for Lake Peipsi

Per Stålnacke and Geoffrey Gooch

1990 and 2050 (predicted BAU) N Inputs to Global Watersheds

Tg N y⁻¹

Kroeze & Seitzinger, 1998

Future Projections (year 2050) of Inorganic N Export by Rivers for World Regions (BAU Scenario)

Kroeze & Seitzinger, 1998

The framework for the integration work in MANTRA-East

Scenarios, the key to integrated strategies?

In MANTRA-East we decided that 4-5 scenarios should be produced and will be the operational tool for the integration (i.e. interdisclipinarity)

Pillars for the scenarios:

- m Water quality in the lake
- m Regional socio-economic development
- **m** Transboundary cooperation
- Þ consequences for nutrient emissions/riverine loads and lake water and ecological quality

^mCan shed light on and offer insights about possible future developments

^mThe future will always be shrouded by <u>uncertainty</u> and therefore accurate prediction is not a feasible goal

Scenarios can be useful to generate potential policy options

^m Scenarios are in the interest for the <u>decision</u>-<u>makers</u>, <u>stakeholders</u> and <u>end users</u>;

^mThe scenarios should besides the environmental issue be built on a framework that also take into account the <u>social dimensions and impacts</u>.

Procedure (DPSIR framework)

Step 1	Create 2 - 4 qualitative scenarios for likely/plausible future in the case areas DRIVING FORCES	WP 1, WP 2
Step 2	Translate these qualitative scenarios into quantitative GIS layers DRIVING FORCES/ PRESSURES	WP 2, WP5, WP 8
Step 3	Model the nutrient fluxes in the Lake Basins using POLFLOW and MIKE Basin: Output N and P loads to the Lake Peipsi and Vistula Lagoon PRESSURES	WP4, WP5
Step 4	Model the transformation of nutrients in the Lake and Lagoons using AQUASIM and Delft 3D models STATE / ECOLOGICAL IMPACT	WP 3, WP 6
Step 5	Analyse the policy and socio-economic implications of the modeling re-sults SOCIETAL IMPACT/ RESPONSE	WP 1, WP 2
Step 6	Analysis of the value of scenarios fom an information perspective	WP 7, WP 1

Scenario story-lines (scripts) produced by social/policy scientists (Gooch, 2003)

I. 'Business as usual scenario (BAU)'.

Continuation of present trends: The economical situation will remain the same and pollution loads and emission in end of 1990s remain at present level.

II. 'Target/fast development scenario'.

Estonia: fast adaptation to the EU. Russia: domestic fast economic and social development

III. 'Crisis scenario'.

Conditions radically deteriorate into 'crisis' in both countries

IV. 'Isolation scenario'

Estonia: slow, unwilling adaptation to the EU.

Russia: isolation from Europe and a growth of nationalist sentiment.

V. Combination of II. and III.

Estonia: fast development. Russia: Crisis

The 4 scenarios (Gooch, 2003)

Driving force variables

- Population
- Wastewater treatment connection
 rate
- Fertiliser use
- Livestock amount
- Crop yields
- Atmospheric deposition
- Amount of agricultural land.

Scenario	Population	WWTP connection	Fertiliser use	Livestock amounts	Crop yields	Atmospheric deposition	Amount of Agricultural land
I Business as Usual	Constant in Tartu and Pskov EST/LAT: Rural: 8 % decrease RUS: 5 % decrease	No changes	EST/LAT: Increasing from 14 kg/ha/yr N and 1.1 kg/ha P to 50 kg/ha/yr N and 2 kg/ha/yr RUS: no change	EST/LAT: 10 % increase RUS: no change	EST/LAT: 25 % increase RUS: no change	No change	Tartu and Pskov counties: only 85 % left from 1980ies land Other counties: only 60 % left
II Target/Fast Development	Tartu and Pskov: growth of 10 %. Rural: growth of 5 %	EST/LAT: only in settlements, treatment will improve one step RUS: only in settlements > 10000 inhabitants	Increasing from 14 kg/ha/yr N and 1.1 kg/ha/yr P to 130 kg/ha/yr N and 15 kg/ha/yr	100 % increase	EST/LAT: 40 % growth. Industrial crops: 70 % increase RUS: no change	Changes from 7.7 kg/ha/yr to 15 kg/ha/yr (N) and from 0.05 kg/ha/yr to 0.08 kg/ha/yr (P)	Same amount as in 1980ies

Scenario I. and II.

Scenario III. and IV.

Scenario	Population	WWTP connection	Fertiliser use	Livestock amounts	Crop yields	Atmospheric deposition	Amount of Agricultural land
III Crisis	Tartu and Pskov: decrease of 5 % EST/LAT: Rural: decrease of 25 % RUS: 30 %	EST/LAT: no change RUS : Collapse of current systems	EST/LAT: no change (14 kg/ha/yr N and 1.1 kg/ha/yr P) RUS: decrease with 80 % to 2.8 kg/ha/yr N and 0.22 kg/ha/yr P	EST/LAT: 50 % decrease RUS: 75 % decrease, except for milk cows: 100 % increase	50 % decrease	No change	EST/LAT: 50 % decrease RUS: 80 % decrease
IV Isolation	No change	EST/LAT: only in settlements, treatment will improve one step. RUS: no change	EST/LAT: 50 % increase (to 21 kg/ha/yr N and 1.65 kg/ha/yr P). RUS: no change	EST/LAT: 30 % increase RUS: no change	EST/LAT: 40 % increase RUS: no change	Changes from 7.7 kg/ha/yr to 15 kg/ha/yr (N) and from 0.05 kg/ha/yr to 0.08 kg/ha/yr (P)	EST/LAT: 10 % decrease RUS: 60 % decrease

Modelling nutrient fluxes (PolFlow; de Wit, 1999)

INPUT

A. Maps (e.g. land cover, DEM, soil texture, hydrogeology, rivers)

B. Statistics, aggregated for administrative units: livestock numbers, Crop yields, wastewater treatment connection percentages, population numbers

Source emissions changes 1985-1999 vs. 2015-2019

Nitrogen load 1985-1999 and 5 scenarios for 2015-2019 (Mourad et al., 2003)

Phosphorus load 1985-1999 and 5 scenarios for 2015-2019 (Mourad et al., 2003)

Summary of riverine loads scenarios

- Loads of the eighties are never reached (= No scenario predicts larger nutrient loads than in the communist period)
- Given the 5 scenarios of the future regional development, the riverine nutrient loads into the lake will generally <u>decrease</u>.
- The target/fast development scenario (II) results in a substantial larger Ntot input to the lake.
- The Crisis scenario (III) yields the largest Ptot load.

m What is the reaction of the ecosystem to changed nutrient loadings?

Nõges et al. (2003)

L. Peipsi, central and northern part

Peeter Nõges et al. (2003)

East

Present ecological quality of L. Peipsi

- Chemistry
- phytoplankton
- m Zooplankton
- m Macrophytes
- m Periphyton
- Macroinveretebrates
 Fish

'moderate'
'moderate'
'good' - 'moderate'
'good' - 'moderate'
'good' - 'moderate'
'good'

Present trends show a **deterioration of the status**

The overall score is 'moderate'

Peeter Nõges et al. (2003)

Nõges et al. (2003)

MANTRA East

Reaction of lake to different scenarios in 2015-2019

Worse water quality in case of CRISIS

Higher biomass in low-water years

Sensitivity to hydrological conditions

Nõges et al. (2003)

Concluding remarks

- Scenarios stimulates to interdisciplinarity and integration
- Change of the amount of arable land is a major factor controlling nutrient loads to Lake Peipsi.
- M Only very drastic changes in loads will improve the ecology of Lake Peipsi = Lake Peipsi will not be in 'good status' in 2015?
- m Climate influence ecology in Lake Peipsi

Website: www.mantraeast.org

ОПИСАНИЕ ПРОЕКТА УЧАСТНИКИ КОНСУЛЬТАТИВНЫЙ КОМИТЕТ ПАРТНЕРЫ КАРТЫ ССЫЛКИ

ИНТЕГРИРОВАННЫЕ СТРАТЕГИИ УПРАВЛЕНИЯ ТРАНСГРАНИЧНЫМИ ВОДАМИ НА ГРАНИЦЕ ЕВРОПЕЙСКОГО СОЮЗА - ПИЛОТНОЕ ИССЛЕДОВАНИЕ ЧУДСКОГО ОЗЕРА И ЕГО ВОДОСБОРА (MANTRA-EAST)".

Добро пожаловать в Mantra East

MANTRA East

MANTRA-East (МАНТРА-Восток) - это международный научно-исследовательский проект в области охраны окружающей среды, нацеленный на анализ и развитие методов стратегического планирования и исследовательского инструментария для интегрированного управления трансграничными водными бассейнами, расположенными на сегодняшних и будущих внешних границах Европейского Союза.

Пресс-зал Бюллетень Контакты D. Обратная связы Þ Карта сайта Интранет. Имя: Пароль:

Что нового на сайте Mantra East

ENG

EST

RUS

🔀 Координатор проекта Рег. координатор Per Stålnacke Gulnara Roll Йордфорск NO-1432 Aas. Norway Aleksandri 9 Тел. +47 64 94 81 00 Факс +47 64 94 81 10 per.stalnacke@jordforsk.no Факс +372 7 302 301

Центр трансграничного сотрудничества 51004 Tartu, Estonia Тел. +372 7 302 302 gulnara.roll@ctc.ee

Peipsi CTC