

HYDRODYNAMIC MODELS OF THE VISTULA LAGOON – CALIBRATION, VALIDATION AND COMPARISON OF RESULTS

- * Małgorzata Bielecka (*gosia_bk@ibwpan.gda.pl*)
- * Janusz Kaźmierski (*jkaz@ibwpan.gda.pl*)
- ** Antoni Staśkiewicz (geomor@sprintnet.pl

* Institute of Hydroengineering of the Polish Academy of Sciences, Gdańsk, Poland **GEOMOR - Geoscience and Marine Research & Consulting Co. Ltd, Gdansk, Poland

INTRODUCTION

- Ø Delft3D Flow and 2D Mike 21 hydrodynamic models have been elaborated for the Vistula Lagoon within the MANTRA-East project
- The hydrodynamic models are a base for water quality Delft3D WAQ and Mike 21 models
- Ø Water quality models are used to assess water quality status of the Lagoon and potential of WQ improvement in future
- Ø Calibration and validation results and salinity distributions for years 1998 - 2000 will be presented
- Ø Accuracy of simulation results with use of 3D and 2D models will be assessed

THE VISTULA LAGOON AND ITS DRAINAGE BASIN

•Area: 838 km² (Russia 56%, Poland 44%)

•Length: 90 km

- •Width: 10-19 km
- •Avr. depth: 2.7 m
- •**Total drainage area**: 23,871 km²
- **Salinity**: 0.1 4.5 PSU
- Water volume: 2.3 km³
- Avr. retention time: 6 months

Largest rivers within the drainage area: Pregola, Prokhladnaya, Elbląg, Pasłęka, Nogat, Bauda
Connection with the Gulf of Gdańsk: narrow, dredged channel near Baltiysk (Russia)

WATER BALANCE OF THE VISTULA LAGOON

	Ingoing (kn	n ³) %
Nater from the rivers	3.62	17.1
Marine inflow	17.00	80.2
Precipitation	0.50	2.4
Ground water	0.07	0.3
Total	21.19	100.0
	Outgoing (۲ ۲ ۲۳ ۲۰
Flowing to the sea	20.48	96.9
Evaporation	0.65	3.1
Total	21.13	100.0

Water balance of Vistula Lagoon 1951-1965 (Silicz, 1975)

WATER DISCHARGES TO THE VISTULA LAGOON

WATER DISCHARGES TO THE VISTULA LAGOON

Runoff volume in m³x 10⁶ in 1998

WATER DISCHARGES TO THE VISTULA LAGOON

Discharges from main Polish and Russian rivers (m³/s) in years 1998 – 2000 based on information from Institute of Meteorology and Water Management (IMWM), Regional Water Management Board - Poland and Hydromet - Russia

RIVER	Year 1998	Year 1999	Year 2000	Average from years	
				1998 - 2000	
Polish Rivers					
Pasleka	20,7	23,7	18,9	21,1	
Elblag	28,8	26,0	24,3	30,9	
Nogat	16,5	18,6	10,9	15,6	
Bauda	3,1	2,9	2,2	2,7	
Sum Rivers	69,1	71,2	56,3	70,3	
Russian Rivers					
Pregola	65,5	59,3	48,0	57,6	
Mamonovka	5,7	5,4	5,4	5,5	
Prokhladnaya [*]	11,2	12,81	10,2	11,4	
Nelma	2,3	2,2	1,7	2,1	
Sum Rivers	84,7	79,7	65,3	76,6	

•- estimated discharge due to missing data for years 1998 – 2000

YEARLY VARIATIONS OF MAIN RIVER DISCHARGES

NUMERICAL ASSUMPTIONS OF THE VISTULA LAGOON 3D AND 2D MODELS

- O Computational horizontal grid of 3D type (900 horizontal cells in curvilinear orthogonal system varying from 200 to 1300 m, and 11 layers in Sigma coordinate system)
- O Computational horizontal grid of 2D type (horizontal cells in regular orthogonal system of 200 and 1000 m)

Computational horizontal grid of the Vistula Lagoon 3D hydrodynamic model with monitoring points, and bathymetry used in models.

NUMERICAL ASSUMPTIONS AND BOUNDARY CONDITIONS OF THE VISTULA LAGOON MODELS

Numerical parameters applied in the hydrodynamic models

G Model din	Crid coll	Crid call Bottom friction Variab		n Manning coefficient – ble in the lagoon		Horizontal eddy	Time
	dimensions [m]	Lagoon area	Baltiysk Strait and navigation channel	Along shore line	viscosity – constant in the lagoon [m ² /s]	diffusivity - constant in the lagoon [m ² /s]	step [s]
3D	200 - 1300	0.018	0.015	0.025	0.1	0.8	60
2D	200	0.016	0.016	0.016	0.1	5.0	18
2D	1000	0.015 *	0.015	0.015	0.1	0.8	120

ØInflowing rivers assumed as sources of water (discharges)

ØInitial conditions – constant water level (from measurements) and variable salinity (1.8 – 4.5 psu)

Ø Boundary condition – water level in Baltiysk Strait every 6 hours, salinity - once a day

Open boundary condition - water level (m) records in Baltiysk

NUMERICAL ASSUMPTIONS AND BOUNDARY CONDITIONS OF THE VISTULA LAGOON MODELS

Ø Wind velocity – from Baltiysk weather station every 6 hours

RESULTS OF THE 2D MODEL CALIBRATION FOR THE 200 M GRID AND POSSIBILITY OF DATA FROM OPERATIONAL MODELS USAGE

ØThe Vistula Lagoon is a transboundary basin shared by two countries: Poland and Russia.

ØTo calibrate and run the models data are needed from both countries.

...but

There is no common data base. Data exchange is difficult and not always possible.

How to deal with these problems?

OPTION B

- Ø 2D Mike21 modelling system applied to VL: HD + WQ modules
- Ø Required data from both sides for boundary and initial conditions:
- **§** water levels, especially from **Baltiysk**,
- § meteo PL/RU,
- § discharges PL/RU + WQ parameters in Lagoon and discharges.
- Ø Available data from Poland:
- **§** water levels from PL only, no data from **Baltiysk**,
- § meteo PL,
- § discharges PL (RU from historical data and estimates) + WQ parameters in Lagoon and discharges.
- Ø 2 operational models may be used to fill in the gaps: HIROMB for HD conditions and HIRLAM for meteo

Boundary conditions of the Vistula Lagoon model for year 1998 – operational models

Wind velocity from the atmosphere model UMPL (UK Unified Model for Poland area, covering all Central Europe and the Baltic Sea) run operationally in the University of Warsaw; the wind analysis data from UMPL were available every 3 hr with the horizontal resolution of 17 km

Wind forcing in the model: a) wind velocity, b) wind direction

CALIBRATION RESULTS FOR YEAR 1998

Salinity

Monitoring station R6

Monitoring station P1

with measured wind data

with synoptic wind data

Salinity distribution, 19-08-1998

ØThe Vistula Lagoon is a transboundary basin and it is a very frequent problem that the data necessary for running the models are not always freely available. To avoid this problem it is recommended to build an operational modelling system, that will predict driving forces and boundary conditions for the models.

ØTo simplify the task, only prediction of wind data was considered with use of an operational atmosphere model UMPL which is run in the University of Warsaw.

ØResults of calibration of the hydrodynamic model, ran with the measured and UMPL data, proved that in both cases water levels and salinity are predicted with very similar accuracy.

ØTherefore usage of operational model, instead of actually measured data may be recommended in this situation.

ØBoth countries have access to HIROMB and HIRLAM operational models, therefore they are proposed to be used in case data from one country is not available to the other country.

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. WATER LEVELS

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY 8 **EI Poland** 7 IO RAS, 10 Stations of seasonal monitoring of water properties

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Russia - 1998

EI Poland
 7 IO RAS,

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Russia - 1998

EI Poland IO RAS,

7

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Poland - 1998

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Poland - 1998

1998

07 - 24

1998-

06-04

Time

1998-

09-12

1998

11 - 01

1999

02-09

1998

12-21

1998-

01-05

1998-

02-24

1998

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Russia and Poland - 1999

EI Poland
 7 IO RAS,

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Russia - 2000

2001-

01-09

2001

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Russia - 2000

2000 -

01-25

 $2000 \cdot$

03-15

2000 -

05-04

2000

06-23

Time

 $2000 \cdot$

08-12

2000-

10-01

 $2000 \cdot$

11-20

2001 -

01-09

2001-

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Poland - 2000

Time

2000-

08-12

2000-

10-01

2000-

11-20

2001-

01-09

2001

02-28

2000-

06-23

3

2

0

1999

12-06

2000

01 - 25

2000-

03-15

2000-

CALIBRATION AND VALIDATION OF 3D AND 2D HYDRODYNAMIC MODELS. SALINITY – Poland - 2000

Time

1999.

12-06

2000-

01 - 25

2000-

03-15

2000-

05-04

2000

06-23

Time

2000-

08-12

2000-

10-01

2000-

11-20

2001-

01-09

2001

MEASURED AND CALCULATED WITH THE 3D MODEL SALINITY DISTRIBUTIONS IN UPPER AND BOTTOM LAYERS, IN RUSSIAN MONITORING POINTS IN 2000.

CALCULATED SALINITY DISTRIBUTIONS ON 19-08-1998 IN SURFACE (LEFT PLOT) AND BOTTOM LAYERS (RIGHT PLOT) WITH 3D MODEL AND 2D MODEL (BOTTOM PLOT) – SITUATION WITH NO STRATIFICATION.

CALCULATED SALINITY DISTRIBUTIONS ON 15-09-2000 IN SURFACE (LEFT PLOT) AND BOTTOM LAYERS (RIGHT PLOT) WITH 3D MODEL AND 2D MODEL (BOTTOM PLOT) – SITUATION WITH STRATIFICATION.

CONCLUDING

ØComparison of calculation results with use of 2D and 3D models against monitoring data indicates that both models reproduce water levels and salinity distributions in the lagoon quite accurately.

ØThere is no distinctive indication that there are areas where usage of 3D model would be more justified.

ØFor solving large scale problems in the lagoon 2D model is absolutely satisfactory.

ØHowever, for analysis of small scale hydrodynamic and transport processes in Baltiysk Strait and navigation channel areas, the application of the 3D model would be more justified.

Basing on existing monitoring data and calculation results, errors of salinity calculation using 2D and 3D models were determined

ØThe average errors in all monitoring points where determined according to the following formula:

$$E_{A} = \frac{1}{N} \sum_{i+1}^{N} \left| \left(1 - \frac{S_{c}(M)}{S_{m}(M)} \right) \right| * 100\%$$

where:

- E_A is an average error in all monitoring points,
- N is a number of monitoring points,
- M is a monitoring point identificator (M = 1, 10),
- S_c is a calculated value of salinity,
- S_m is a measured value of salinity.

Average error for the 3D model varied from 20.7 to 27 % and for the 2D model – from 12.9 to 16.8 %

Average errors (E_A) of calculated salinity in the Vistula Lagoon monitoring points

Error of calculated salinity in the monitoring points [%]			
Year	1998	1999	2000
3D model – Polish points	17,9	39,4	30,7
3D model – Russian points	23,4	14,7	18,2
3D model – average for PL and	20,7	27,05	24,45
RU points			
2D model – Polish points	11,8	18	21,2
2D model – Russian points	14,0	15,6	10,9
2D model – average for PL and	12,9	16,8	16,05
RU points			

ØThe 2D model showed better accuracy. Both models were most accurate in 1998 and least - in 1999, however these were not significant differences.

DISTRIBUTION OF SIMULATION ERRORS FOR EACH OF THE MONITORING POINTS IN YEARS 1998 – 2000

ØCalculated according to the following formula:

$$E_{M} = \left(1 - \frac{S_{c}(M)}{S_{m}(M)}\right) * 100 \%$$

where:

 E_M – is an average error in each of the monitoring points

DISTRIBUTION OF SIMULATION ERRORS (E_M) FOR ALL MONITORING POINTS IN THE VISTULA LAGOON IN YEARS 1998 – 2000

DISTRIBUTION OF SIMULATION ERRORS (E_M) FOR ALL MONITORING POINTS IN THE VISTULA LAGOON IN YEARS 1998 – 2000

ØThe highest errors were observed in vicinity of river mouths, both on Russian (Pregola River – points v1, v2, v3) and Polish side (Elblag and Nogat rivers – points EI9 and EI8).

ØGenerally in those points the 3D model was less accurate than the 2D model, especially with regard to Polish monitoring points.

ØBoth models produced much more accurate results in the central parts of the Lagoon – monitoring points EI1, EI2, EI3, EI6 and v6 – v10.

- The Mike 21 and Delft 3D modelling systems are intended to be used to evaluate a potential to improve the environmental situation of the Vistula Lagoon by reducing nutrient discharges from the major Polish and Russian rivers. The impact of planned abatement actions in both countries, in respect to the environmental situation, will be evaluated. In order to perform water quality calculations it is necessary to determine flow fields in the Lagoon with the use of hydrodynamic model. Next the water quality calculations may be conducted. Therefore first it is necessary to calibrate hydrodynamic then water quality models before they are used for forecast purposes.
- Ø The Vistula Lagoon is a transboundary basin and it is a very frequent problem that the data necessary for running the models are not always freely available. To avoid this problem it is recommended to build an operational modelling system that will predict driving forces and boundary conditions for the models. Such situation was tested with use of Mike 21 on basis of the year 1998. To simplify the task, only prediction of wind data was considered with use of an operational atmosphere model UMPL, which is run in the University of Warsaw.

- Ø Results of calibration of the hydrodynamic model ran with the measured and UMPL data, proved that in both cases water levels and salinity are predicted with very similar accuracy. Therefore usage of operational model, instead of actually measured data may be recommended in this situation. Since both Poland and Russia have access to HIROMB and HIRLAM operational models, therefore they are proposed to be used in case data from one country are not available to the other country.
- The Delft3D FLOW and Mike 21 models were calibrated using water level and salinity data from year 1998. Next they were validated with use of 1999 and 2000 data.
- **Ø** Results of calibration and verification show that the models reproduce water level variations very accurately.
- **Ø** On average the 2D model showed better agreement with the monitoring data than the 3D model.
- In general calculation results obtained from 2D and 3D models are comparable. This indicates that in case of a shallow lagoon it is enough to use 2D model in order to produce relatively accurate salinity distributions in the lagoon.

- Ø Better results can be achieved by better description of conditions at open boundaries. The most important are the conditions in the Baltiysk Strait, where more frequent observations of water levels and salinity are necessary. This would improve the description of salinity balance in the Lagoon. The Delft3D FLOW and Mike 21 models were calibrated using water level and salinity data from year 1998. Next they were validated with use of 1999 and 2000 data.
- Ø Equally important is accurate information on river discharges, which in this case based on very scarce measurements. Analysis of the present and historical data indicated that possible errors in discharges assumed for calculations.
- **Ø** There are also indications of significant measurement inaccuracies of salinity concentrations in the Polish part of the Lagoon in year 2000.
- Results of measurements as well as calculations with Delft3D FLOW model indicate that vertical salinity stratification appears most frequently in Russian part of the Lagoon, close to the Baltiysk Strait. In the Polish part of the Lagoon such stratification nearly does not exist at all. It should also be indicated that even though some stratification occurs in the Russian part, it does not last long and waters are quickly mixed.

It is STRONGLY RECOMMENDED to set up a COMMON POLISH/RUSSIAN MONITORING PROGRAM of the Vistula Lagoon and discharging rivers, as well as conduct frequent intercalibrations of measurements !!!

ACKNOWLEDGMENTS

Funding for this research was provided by the European Union project MANTRA-East (contract EVK1-CT-2000-00076).