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Abstract
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms
or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic
pressure distribution. The essential vertical details of such a flow field need to be accounted
for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic
flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal
slope and negligible vertical acceleration, are inappropriate to analyse these types of prob-
lems. Besides, most of the current Boussinesq-type models do not consider the effects of tur-
bulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged
Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes
terms accounting for the effective stresses arising from the turbulent characteristics of the
flow. The feasibility of the proposed model is examined by simulating flow situations that
involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational
results for free-surface and bed pressure profiles exhibit good correlations with experimen-
tal data, demonstrating that the present model is capable of simulating the salient features of
free-surface flows over sharply-curved overflow structures and rigid-bed dunes.

Key words: turbulent flow, numerical modelling, non-hydrostatic pressure, rapidly-varied
flow, hydraulic structures

1. Introduction

In practice, rapidly-varied transitions typically involve turbulent flows with sub-
stantial vertical curvatures of the streamline that lead to a non-hydrostatic pressure
and nonuniform velocity distributions. Many natural open channel flows do possess
sharply-curved streamlines as, for instance, at free overfalls; at a channel bed tran-
sition from mild to steep slopes; at bed forms; etc. For such flows, higher-order
approximations for the vertical profile of the streamline curvature parameters are
necessary in order to treat properly the complex transition between hydrostatic and
non-hydrostatic flow regimes. Apparently, the shallow-water equations that assume
a geometrically mild-slope and negligible vertical acceleration are not always valid
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for these types of flow problems (Basco 1987, Blom and Booij 1995, Shimozono
and Sato 2016). Furthermore, the validity of the common computational approach
based on the gradually-varied flow equation in conjunction with Massé’s (1938) sin-
gular point method for non-hydrostatic flow situations is questionable (see, e.g., Fen-
ton and Darvishi 2016). Consideration of the effects of nonuniform velocity and
non-hydrostatic pressure distributions, and turbulence is very important for over-
coming the inherent limitations of the hydrostatic approaches and, hence, accu-
rately predicting the detailed two-dimensional (2D) flow features of a wider class
of environmental free-surface flow problems ranging from quasi-hydrostatic to fully
non-hydrostatic. From a practical point of view, a higher-order model that incorpo-
rates all the geometrical details of a curvilinear streamline is preferred. Such a numeri-
cal model enables us to obtain a detailed description of the flow field for a wide range
of parameters without resorting to expensive and time consuming physical model
tests. It also provides vital information to better understand the rapidly-varying flow
regime.

Much effort has been recently devoted to the approximate treatment of the ef-
fects of the dynamic pressure due to the curvilinearity of the flow. Hager and Hut-
ter (1984) and Matthew (1991) applied the potential flow theory, with no resistance
to the flow, to develop steady Boussinesq-type energy equations. Matthew’s (1991)
approach was later considered by Castro-Orgaz and Hager (2014) to deal with un-
steady free-surface flow problems, which was originally proposed for these problems
by Matthew. However, the potential flow approach for the analysis of ideal fluid flow
is limited to a short channel length for the energy losses to be neglected and is un-
able to describe uniform flow. Following Boussinesq’s (1877) approach, Fenton and
Zerihun (2007), Mohapatra and Chaudhry (2004) and Zerihun (2008) developed the
Boussinesq-type momentum equations for modelling rapidly-varied gravity-driven
flows with predominant non-hydrostatic pressure distribution effects. Compared to
the Boussinesq-type energy equations, these equations are not restricted to irrota-
tionality. Nonetheless, none of the Boussinesq-type energy and momentum equations
take into account the effects of turbulence. On the other hand, Serre (1953) extended
Boussinesq’s approach and developed weakly dispersive but fully nonlinear equations
that allow for turbulent friction. The Serre method permits not only flow transition
from subcritical to supercritical states, but it also treats the asymptotic conditions at
a uniform flow depth. The asymptotic behaviour of a free-surface flow at a normal
depth was also considered by Ali and Dey (2016) for modelling open channel flows
over a wavy boundary. Recently, Carmo (2013) conducted a numerical case study us-
ing an improved Serre-type and Boussinesq-type equations. The results of the study
showed that the improved Serre-type equations showed some improvement over the
corresponding Boussinesq-type equations in terms of the dispersion characteristics of
a wave. Successful numerical applications for Serre-type model using a finite element
scheme were also carried out by Tossou (2009). The Dressler (1978) theory, which
employs an asymptotic stretching method in an orthogonal bed-fitted curvilinear co-
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ordinates, has been applied to analyse open channel flow with curved streamlines.
Such an approach was taken by Anh and Hosoda (2007), Berger and Carey (1998a,
b) and Dewals et al (2006) to develop higher-order curved-flow equations. Similar to
the Boussinesq-type energy equations, however, this approach neither allows vorticity
about an axis normal to the plane of flow nor incorporates the effects of turbulence.

Steffler and Jin (1993) introduced an alternative approach based on depth-aver-
aging the Reynolds-averaged Navier-Stokes (RANS) equations with pre-assumed ver-
tical profiles for the pressure and velocity components. They derived the one-dimen-
sional vertically averaged and moment equations by applying both the momentum
and moment of momentum principles. Using a similar approach, Jin and Li (1996)
developed a depth-averaged moment of momentum model to solve flow problems
where the effects of vertical acceleration are significant. However, their model in-
cludes undetermined bed pressure parameter which renders the model equations not
directly applicable unless information on the bed pressure distribution is incorporated.
Using Boussinesq’s approximation, Bose and Dey (2007) formulated a higher-order
model by depth-averaging the RANS equations. In this approach, the turbulent shear
flow was modelled by a power-law velocity profile combined with a standard empir-
ical flow resistance equation. However, the application of Bose and Dey’s model is
limited to flows with weakly-sloped and curved streamlines. More recently, Zobeyer
and Steffler (2012) modelled the 2D vertical plane flows by coupling the one-dimen-
sional depth-averaged equations with the RANS equations. Similar to Steffler and
Jin’s (1993) approach, this method presents complex system of equations that requires
extra computational effort and time.

In spite of the considerable work on the numerical modelling of curvilinear-
streamlined flows, relatively little attention has been paid to the development of
a higher-order model which incorporates the effects of both the vertical curvatures
of the streamline and turbulence. This research work is motivated by the desire to de-
velop a more general form of vertically-averaged model that describes the 2D structure
of a curvilinear flow field accurately. The proposed method is based on the vertical
integration of the RANS equations with the inclusion of the power-law model for the
vertical profile of the horizontal velocity component, and yields a flow model that in-
corporates vertically-averaged turbulent stresses and a higher-order dynamic pressure
correction. In contrast to Jin and Li’s (1996) equations, the model does not include
any undetermined parameter related to the bed pressure. This study is also under-
taken to investigate the applicability of the proposed model to practical free-surface
flow problems where the ratio of the vertical to horizontal scales of motion is not
sufficiently small. These problems include free-surface flows over symmetrical and
asymmetrical humps, and nonuniform flows over dredged trenches and dunes. The
numerical solutions of such quasi-hydrostatic and non-hydrostatic flow problems can
provide useful information for examining the effects of the dynamic pressure of the
flow on the performance of the model. It is important to emphasise that the method
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presented here allows a systematic numerical investigation of the rapidly-varied flow
transitions in open channels where the vertical acceleration plays a significant role.

The paper is organised as follows. In the following sections, the derivation of the
governing equations is presented first, followed by a brief discussion of the spatial
discretisation of the equations and extension of the numerical model. The solution
procedures for the resulting nonlinear discretised equations with reference to the case
studies and the associated boundary conditions are also depicted. A brief discussion
of the model results is presented by comparing them with experimental data. The
paper is ended with conclusive remarks.

2. Numerical Methodology

2.1. Governing Equations

A curvilinear-streamlined, incompressible, free-surface flow is considered for analy-
ses. A Cartesian coordinate system such that x is horizontal along the channel, y is
horizontal in the transverse direction and z is vertically upward is chosen, as shown
schematically in Figure 1. For 2D flow, the continuity and the RANS equations can
be written as (see, e.g., French 2007, White 2011)

∂u
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+
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∂z
= 0, (1)
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where u and w denote the time-mean horizontal and vertical velocity components,
respectively; Gz is the body force per unit mass; ρ is the density of the fluid; p is the
time-mean pressure; σ and τ refer to the total normal and shear stresses, respectively
and t is the time.

Fig. 1. Definition sketch of turbulent free-surface flow over a curved bed
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The distribution of the time-mean horizontal velocity across the flow depth is
approximated by the power-law velocity profile for a turbulent flow as

u =
ω0q
H

(
η1/N

)
, (4)

η =
z − Z
ξ − Z

, (5)

where q is the unit discharge; ξ is the free-surface elevation; η is a dimensionless ver-
tical coordinate; z is the vertical elevation of a point in the flow field; Z is the channel
bed elevation; H is the local flow depth measured vertically; N is the reciprocal of
exponent and ω0 = (N + 1) /N . The value of the reciprocal of exponent varies from
4 to 12 depending upon the boundary friction and cross-sectional shape (see, e.g.,
Chen 1991), and it can be determined from the measured time-mean velocity data.
By applying Leibnitz’s rule, the vertical integration of Equation (1) becomes

ξ∫
z
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z
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dz =

∂

∂x

ξ∫
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∂x
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Inserting Equation (4) into Equation (6) and applying the free-surface kinematic
boundary condition, ws = ∂H/∂t + (∂ξ/∂x) us results for the vertical velocity distribu-
tion in
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)
+
ω0q
H

∂H
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)
+
ω0qZx

H
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)
, (7)

where us (= ω0q/H) and ws are the horizontal and vertical components of the velocity
at the free-surface, respectively.

In order to describe the local flow characteristics in terms of depth and discharge,
the continuity equation and the RANS equation for the streamwise x-direction mo-
tion are vertically integrated from the bed to the free-surface by applying Leibnitz’s
rule and making use of Equations (4) and (7). The following kinematic and dynamic
boundary conditions are used to eliminate parameters evaluated at the free-surface
and bed:

w (Z) = u (Z) Zx, (8a)

σ (ξ) = τ (ξ) = 0, (8b)

τ (Z) = τb. (8c)

The resulting vertically-averaged equations then become

∂H
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+
∂q
∂x

= 0, (9a)
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where ω1 = (N + 2) /N ; τb is the bed shear stress and σx is the vertically-averaged
normal stress.

In most practical open-channel flow problems, the rates of change of quantities
with time are much slower than the apparent acceleration of a fluid particle follow-
ing a curvilinear path (Fenton and Zerihun 2007). Furthermore, for fully developed
turbulent flows, the variation of the shear stress in the streamwise x-direction may
be considered to be small when compared to that in the vertical direction. Using the
former approximation in Equation (3), the vertical acceleration of the flow becomes

u
∂w

∂x
+ w

∂w

∂z
= κ

u2

cos3 θ
= u2 λ, (10)

where κ (= 1/R) is the curvature of the streamline; R is the radius of curvature and θ
is the angle of inclination of the streamline with the horizontal axis. To proceed, the
vertical distribution of the streamline geometry parameter, λ, must be specified. For
simplicity, a linear profile

λ = λb + (λs − λb) η, (11)

is assumed. The subscripts b and s refer to magnitudes of a parameter at the chan-
nel bed and free-surface, respectively. Inserting Equations (4) and (10) into Equation
(3) and then vertically integrating the resulting expression from z to ξ leads to the
time-mean pressure distribution equation for flow in a rectangular channel
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. (12)

The first term on the right-hand side (RHS) of Equation (12) is the hydrostatic
pressure and the other three terms account for the effects of the vertical curvatures
of the streamline and turbulence. The contribution of the last term on the RHS of
this equation is significant only for open channel flows with strong turbulent eddies.
For the case of gradually-varying free-surface flow with negligible vertical acceler-
ation and weak turbulent characteristics, the free-surface and bed curvatures terms
vanish (d2ξ/dx2 = Zxx = 0). Under this flow condition, Equation (12) reduces to the
well-known hydrostatic pressure equation.
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For 2D flow in the vertical plane, the free-surface is nearly horizontal in the
cross-channel direction so that the pressure is not a function of y. By applying Leib-
nitz’s rule, the integral of the pressure gradient term in Equation (9b) may be written
as

1
ρ
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dz =
1
ρ

 ∂∂x
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 . (13)

Using Equation (12) in Equation (13) and then substituting the resulting expres-
sion in Equation (9b) yields the following equation for flow in a rectangular channel
after employing the dynamic boundary condition, p (ξ) = 0, at the free-surface:
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(14)

where Zx, Zxx and Zxxx are the first, second and third derivatives of the bed profile,
respectively. Neglecting the effect of turbulence and assuming a constant vertical pro-
file for the horizontal velocity component (ω0 = ω1 = 1), Equation (14) degenerates
to a flow equation structurally similar to those given by Fenton and Zerihun (2007)
and Zerihun (2008).

For steady flow, the discharge is constant, so that ∂H/∂t = ∂q/∂x = ∂q/∂t = 0. Us-
ing these relationships in Equation (14), the following equation is obtained:
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Equation (15) incorporates terms that account for the effects of both the vertical
curvatures of the streamline and turbulence, and their associated consequences on the
velocity and pressure distributions. The bed shear stress can be modelled by using the
Darcy-Weisbach equation as (Fenton and Zerihun 2007)
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f q2

8H2
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1 + Z2

x

)
, (16)
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where f is the Darcy-Weisbach friction factor which can be computed using the for-
mula given by Haaland (1983). The preceding method demonstrates that a weakly-
curved flow assumption is not really required to develop such types of governing
equations. In this study, Equations (4), (7), (12) and (15) will be applied to simulate
the salient characteristics of curvilinear turbulent flows in rectangular channels. The
solutions of the additional turbulent stress terms in Equation (15) require a turbulence
closure model, which will be discussed in the following section. It is worth noting that
modelling the free-surface as a freely deformable air-water interface of a two-phase
flow is beyond the scope of the present work.

2.1.1. Turbulence Modelling
The eddy-viscosity turbulence model has been incorporated in the current numerical
model. This turbulence model is easy to implement and, with careful application, can
provide practically good results for turbulent open channel flows (Ferziger and Peric
2002). The vertically-averaged normal stresses appearing in Equations (14) and (15)
are approximated according to the Boussinesq eddy-viscosity hypothesis as follows
(Boussinesq 1877, van Rijn 2011):

σx =
1
H

ξ∫
Z

σxdz = 2ρ (νm + νx)
(

1
H

dq
dx
−
ω0q
H2

dξ
dx

)
, (17)

σz =
1
H

ξ∫
Z

σzdz = 2ρ (νm + νz)
(
ws − wb

H

)
, (18)

where νx and νz are the vertically-averaged kinematic eddy viscosities or turbulent
exchange coefficients in the horizontal and vertical directions, respectively; νm is the
molecular kinematic viscosity and wb is the time-mean vertical velocity at the bed.
The kinematic eddy viscosities are the only turbulent parameters directly affecting
the solutions of the governing equations and need to be predicted accurately by the
turbulence model. In this work, the turbulent exchange coefficients are calculated by
using the parabolic eddy-viscosity model (Elder 1959, Fischer et al 1979, Rodi 1993)

νx = αtCsKU∗H, (19a)

νz = CsKU∗H, (19b)

U∗ =

√
τb

ρ
, (19c)

where Cs = 1/6; K is von Kármán’s constant (0.41); U∗ is the boundary shear velocity
and αt is an empirical coefficient which varies between 1 and 10. Equations (17)–(19)
are numerically coupled with Equations (12) and (15) for the complete solutions of
the turbulent free-surface flow problems with curvilinear streamlines.
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2.1.2. Boundary Conditions

The numerical solutions of the turbulent flow problems using the model equation
require three external boundary conditions to be specified at the two extreme sections
of the solution domain. At the upstream boundary, a constant flow depth is specified
and then the slope of the free-surface, SH , is computed from the gradually-varied flow
equation,

SH =
dH
dx

=
S0 − S f

1 − βF2 , (20)

where F is the Froude number; β refers to the Boussinesq coefficient; S f denotes the
friction slope and S0 is the bed slope. At the downstream boundary, the flow depth is
specified and remained unchanged during the computations.

2.2. Numerical Method and Simulation Procedure

A numerical method is applied since closed-form solutions are not available for the
above nonlinear differential equations. Zerihun’s (2004) numerical model, which was
developed for simulating transcritical free-surface flows, is extended here to solve
the rapidly-varied turbulent flow problems. Equation (15) may be rewritten in a form
suitable for discretisation as(

d3H
dx3

)
j
+ ς0, j

(
d2H
dx2

)
j
+ ς1, j

(
dH
dx

)
j
+ ς2, j + ς3, j = 0, (21)

where ς0, j , ς1, j , ς2, j and ς3, j are the associated nonlinear coefficients at node j and
are given by:
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[
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+

(
dσz
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)
H

]
j
. (22d)

An efficient numerical scheme, whose solutions are not significantly affected by
the truncation errors, can be developed by discretising Equation (21) with higher-order
accurate finite difference formulae (see, e.g., Ferziger and Peric 2002). Hence,
a consistent discretisation of the spatial derivative terms of this equation using the
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four-point finite difference approximations (Abramowitz and Stegun 1972) gives the
following equation:

6ς3, j (∆x)3 + 6ς2, j (∆x)3 + H j−2
(
−6 + ς1, j (∆x)2

)
+H j−1

(
18 + 6ς0, j∆x − 6ς1, j (∆x)2

)
+H j

(
−18 − 12ς0, j∆x + 3ς1, j (∆x)2

)
+H j+1

(
6 + 6ς0, j∆x + 2ς1, j (∆x)2

)
= 0,

(23)

where ∆x is the step size. Since the flow depth at the inflow section ( j = 0) is
known, the depth at the imaginary node ( j = −1) can be determined from the known
free-surface slope, SH , at j = 0. Using the discretised and expanded forms of Equa-
tions (20) and (23) at the inflow section, the following implicit finite difference equa-
tion is obtained for predicting the depth at j = −1:

H−1
(
−18 + 6ς0,0∆x

)
− H0

(
12ς0,0∆x

)
+ H1

(
18 + 6ς0,0∆x

)
+6SH

(
−6∆x + ς1,0 (∆x)3

)
+6ς2,0 (∆x)3 + 6ς3,0 (∆x)3 = 0. (24)

The above nonlinear algebraic equations are solved numerically by treating the
flow problem using both the upstream and downstream boundary conditions. An it-
erative method is utilised for solving the problem, which starts from an initial pre-
diction for the free-surface position using the Bernoulli and continuity equations.
Then, to simulate the free-surface profile, Equations (17)–(19) and (23) are applied
at different nodal points within the solution domain and results in a system of nonlin-
ear algebraic equations. These equations, together with Equation (24) and the known
boundary values at the inflow and outflow sections, are solved simultaneously by the
Newton-Raphson method with a numerical Jacobian matrix. A test for convergence
is made using the following criterion:

m∑
j=1

∣∣∣δH j
∣∣∣

m∑
j=1

∣∣∣H j
∣∣∣ ≤ Γ0, (25)

where δH j is the correction depth in any stage of the iteration process at nodal point
j; m is the total number of nodes in the solution domain excluding boundary nodes at
the inflow and outflow sections and Γ0 = 10−6 is the specified convergence tolerance.

For discretising the derivative term in the pressure equation, a similar finite dif-
ference approximation is inserted into Equation (12) after setting η equal to zero for
the pressure on the bed. The discretised equation is then applied to compute the bed
pressure profiles at different nodal points using the known flow depths. Applications
of the preceding system of equations, including step size independence assessment,
for non-hydrostatic open channel flow problems are given in the succeeding section.
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3. Comparison and Analysis of Results

3.1. Velocity Distribution Parameter

As stated, the determination of the reciprocal of exponent in the power-law velocity
profile is an essential requirement to model the selected test problems. Lyn’s (1993)
experimental results for free-surface flow over triangular profile dunes are selected
for this purpose. A train of sand-plastered wooden dunes, of wavelength L = 150
mm and height HD =12 mm, was used to conduct the experiments (for details, see
Figure 2a). The slopes of the stoss-side and lee-side of this profile were 5◦ and 45◦,
respectively. Measurements of mean and turbulence characteristics were obtained us-
ing two-component Laser Doppler Velocimetry. Figure 2b shows the variation of the
normalised horizontal velocity, Ω (Ω = u/U; U = q/H is the depth-averaged stream-
wise horizontal velocity), with the normalised vertical distance above the bed, η, at
four measurement stations. As shown in this figure, a value of N = 7 for the power-law
profile provides a fairly good agreement with experimental data, with a mean relative
error of 8.4%. The computed standard deviation and coefficient of determination for
the fitted profile curve are 0.08 and 0.88, respectively. The overall analysis results
indicate that the predicted velocity profile slightly deviates from the measured data
near the bed of the dune (η < 0.20). This is a consequence of flow reversal near the
bed which modifies the velocity distribution in the deceleration zone. For turbulent
flows over rough bed-forms with small amplitude to wavelength ratios, the effect of
flow separation or recirculation is insignificant. Also, the result of a numerical study
conducted by Ghamry and Steffler (2002) suggests that applying different types of
approximations for the shape of the velocity distribution does not affect the overall ac-
curacy of the model results significantly, especially for global flow characteristics. All
these facts substantiate that the proposed one-seventh power-law adequately describes
the velocity distribution, allowing the non-hydrostatic model to simulate satisfactorily
the 2D features of the rapidly-varied turbulent flows.

Fig. 2. (a) schematic of a dune bed form; (b) longitudinal velocity distributions
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3.2. Effect of Step Size Refinement

Measurements for free-surface and bed pressure profiles for model validations are
obtained from the experiments performed by Sivakumaran (1981). The experiments
were conducted in a rectangular, horizontal flume, 9.15 m long, 650 mm high and 300
mm wide. The flume was made of a steel frame with glass windows on both vertical
sides and its bed was constructed using a 15 mm thick plywood. A symmetrical and
asymmetrical humps made of polyvinyl chloride (PVC) were tested. A point gauge of
reading accuracy 0.10 mm was used to measure the flow depth along the centreline of
the flume. Similarly, the bed pressure was observed at different tapping points along
the centreline of the curved beds using vertical piezometers of accuracy 1 mm. Full
details of the description of the experimental system can be found in Sivakumaran
(1981). For this test problem, a smooth boundary resistance method was applied to
compute the friction factors.

In order to assess the effect of spatial step size refinement on the accuracy of the
model results, free-surface flows with curvilinear streamlines were simulated using
various step sizes. Due to similarity of results, only the simulation results for flow
over a symmetrical hump are presented here. Figure 3 shows the free-surface and bed
pressure profiles simulated by the proposed model for step sizes 20 mm, 40 mm, 60
mm, 80 mm and 100 mm. The overall simulation result for free-surface profile was
not significantly affected until the step size exceeded the depth at the outflow section.
When the spatial step size exceeded this threshold value, the model results showed
appreciable deviation from measurements in the subcritical flow region. As shown
in the figure, the finest discretisation (∆x ≤ 40 mm) yielded better numerical results
without any surface undulation upstream of the axis of symmetry of the hump. At the
coarsest discretisation, the result for the bed pressure profile (pb is the bed pressure)
was significantly affected in the region upstream of the critical section. Hence, only
model results obtained for a finer step size are presented hereinafter.

Fig. 3. Numerical simulation results for various spatial step sizes: (a) free-surface profile;
(b) bed pressure profile
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3.3. Predictions of a Non-hydrostatic Free-surface Flow

3.3.1. Sivakumaran’s (1981) experiment

The performance of the model is further assessed by simulating strongly-curved flows
over symmetrical and asymmetrical humps and the results are compared with Sivaku-
maran’s (1981) experimental data in Figures 4 and 5. For both cases, the model results
for the upstream free-surface profile show close agreement with experimental data,
revealing that the discharge capacity of such an overflow structure can be estimated ac-
curately by this model (see Figures 4a and 5a). At the crest of the humps (dZ/dx � 0),
the model accurately predicts the location and magnitude of the critical flow depth.
Immediately downstream of the critical section where the curvature of the free-surface
is substantial, the free-surface slope and elevations are correctly simulated. Similar
performance results can be seen in the quasi-uniform supercritical flow region as well
as in the vicinity of the toe of the humps. The computational results demonstrate that
the proposed model accurately reproduces the non-hydrostatic flow features regard-
less of the degree of the vertical curvatures of the streamline.

As illustrated in Figures 4b and 5b, the computed bed pressure compares well
with measured data in the flow region upstream of the critical section. A minor dif-
ference between the measured and predicted results can be seen from these figures
farther downstream of the crest of the humps. As described by Sivakumaran (1981),
the observed bed pressure in this flow region might have some systematic errors due
to small local turbulence and curvature error introduced by the flat end piezometer
tappings. It is clear from Figures 4 and 5 that the pressure distribution is definitely
non-hydrostatic in the flow regions around the crest and toe of the humps due to the
substantial vertical curvatures of the free-surface and bed.

Fig. 4. Curvilinear transcritical flow over a symmetrical hump: (a) free-surface profile;
(b) bed pressure profile
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Fig. 5. Curvilinear transcritical flow over an asymmetrical hump: (a) free-surface profile;
(b) bed pressure profile

3.3.2. The Experiment of Delft Hydraulics Laboratory (1980)

The experimental data of Delft Hydraulics Laboratory (1980) for turbulent flows over
dredged trenches were employed here. The experiments were performed in trenches
which were installed in a rectangular flume, 17 m long, 500 mm wide and 700 mm
deep. The bottom slopes of the trench were varied from 7.1◦ to 26.6◦ and the equiva-
lent roughness heights of the bed were between 4 mm and 25 mm. A Laser Doppler
Velocimetry and a point gauge were used to measure the velocity and free-surface
profiles, respectively. The data of runs T4 and T14 were used to validate the model
results.

For this test problem, the free-surface profiles were simulated by specifying ex-
perimentally determined free-surface slopes at the inflow section of the computa-
tional domain. Also, the friction factors for the trench bed were estimated using
the suggested equivalent roughness heights of 6.5 mm and 4.5 mm for the T4 and
T14 runs, respectively. Figure 6 depicts the comparison of the model results for
free-surface profile in the streamwise direction with experimental data. For the con-
sidered quasi-hydrostatic flow condition, the numerical results correspond well to the
experimental data of Delft Hydraulics Laboratory (1980). As expected, the effect of
the vertical acceleration plays an important role only in the flow region near the up-
stream and downstream inclined faces of the trench.

3.3.3. Cottino’s (1993) Experiment

The experimental results of Cottino (1993) are invoked to test the capability of the
proposed model to simulate flows over rigid-bed dunes. The experiments were con-
ducted in a 380 mm wide flume with a 9 m long test section, set at a longitudinal slope
of 0.2%, at the Lower Laboratory of the University of the Witwatersrand. A series
of six identical, sand-plastered triangular dunes, of constant lee-side slope 30◦ and
height HD = 45 mm, was fixed to the floor of the flume. The dunes were constructed
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Fig. 6. Free-surface profiles for flow over dredged trenches for two different values of
discharge, Q and maximum bottom slope: (a) slope = 26.6◦; (b) slope = 14◦

of galvanised steel sheeting attached to wooden supports and were roughened by plas-
tering nearly uniform size of different grades of sand over the surface. Four different
triangular-shaped dunes with different surface roughnesses were tested for a range
of flow conditions. The slope of the stoss-side of these dunes was varied by using
different wavelengths, as indicated in Table 1. The bed pressure and free-surface pro-
files measurements were taken along the centreline of the third dune in a train of
six dunes using a piezometer tube connected to a vertical manometer and a point
gauge, respectively. Full details of the description of the experimental system can be
found in Cottino (1993) and James and Cottino (1995). The experimental results for
bed-geometry shapes G2 and G4 (for details, see Table 1) were selected to validate
the model results.

Table 1. Details of the rigid-bed dune geometry and surface roughness

Geometry L (mm) D50(mm) Stoss-side angle
G2 900 3.05 3.13◦
G4 1500 1.6 1.80◦

For this test problem, the computational domain was carefully chosen in order to
set the inflow and outflow sections at a fully developed quasi-uniform flow region.
This was achieved by extending the computational length upstream of the first and
downstream of the sixth dunes to 1.5 m. The friction factors for the bed shear stress
were estimated by taking the median size diameter (D50) as an equivalent roughness
height for the uniform sand-grain bed (see, e.g., Meyer-Peter and Müller 1948). The
normalised free-surface profiles for different flow conditions for dune types G2 and
G4 are illustrated in Figures 7a and 8a. The computational results show a satisfactory
agreement with experimental data. In all cases, the free-surface profiles are invariably
out of phase with the bed-form profile, which is a typical characteristic of subcritical
flow over dunes. As can be seen from these figures, free-surface undulations persist
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at higher discharges due to the effects of the geometric shape of the bed forms and
turbulent eddies in the deceleration zone (x/L ≤ 0.2).

Fig. 7. Flow over a rigid-bed dune with a dune height to wavelength ratio of 0.05:
(a) free-surface profile; (b) bed pressure profile

Fig. 8. Flow over a rigid-bed dune with a dune height to wavelength ratio of 0.03:
(a) free-surface profile; (b) bed pressure profile

The variation of the normalised bed pressure with the non-dimensional horizon-
tal distance is shown in Figure 7b and 8b. As in the test case of curvilinear flow over
curved beds, the computational results are in good agreement with experimental data.
It is evident from these figures that the bed pressure is nearly constant within the de-
celeration zone (0.06 ≤ x/L < 0.2) and attains its minimum value at the crest of the
dune (x/L = 1). This flow feature is accurately mimicked by the proposed model. For
this numerical experiment, the effect of the streamline vertical curvature might not be
significant in the region of accelerated flow. The overall simulation results indicate
that the global flow characteristics of free-surface flows over dunes cannot be accu-
rately modelled by using a traditional approach which treats the dunes as a roughness
element without accounting for the effects of form resistance. Such a classical mod-
elling approach provides a quasi-uniform flow solution to the problem due to the loss
of information on the vertical structure of the bed-form geometry.
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4. Concluding Remarks

A novel approach, stemming from the vertical integration of the Reynolds-averaged
Navier-Stokes equations with the assumption of a power-law of velocity distribution,
was applied to develop a non-hydrostatic model for 2D turbulent free-surface flows.
The proposed model includes vertically-averaged turbulent stresses which make it
completely different from the Boussinesq-type models and utilises the first-order ac-
curate turbulence closure model. The governing differential equations were discre-
tised by means of a finite difference scheme. Solutions to the resulting nonlinear
algebraic equations were obtained using the Newton-Raphson iterative solver with
a numerical Jacobian matrix. The feasibility of the model was examined by simulat-
ing flow situations that involve non-hydrostatic pressure and/or nonuniform velocity
distributions.

For the case of curvilinear flows over symmetrical and asymmetrical humps, the
model reproduced flow transition from subcritical to supercritical states accurately
regardless of the degree of the vertical curvatures of the streamline. The results of the
simulation suggested that the discharge capacity of these types of overflow structures
can be estimated reasonably well by the proposed model. For the quasi-hydrostatic
flows over rigid-bed dunes, the free-surface profile results showed good correlations
with experimental data and were invariably out of phase with the bed-form profile,
which is a typical characteristic of subcritical flow over dunes. Furthermore, the bed
pressure profile, which was at a constant maximum within the deceleration zone and
at a minimum at the dune crest, was correctly simulated by the model. The overall
comparison results demonstrate that such salient global flow characteristics cannot
be modelled by using a traditional approach which treats the dunes as a roughness
element rather than a part of large bed-geometry features. In general, the proposed
non-hydrostatic model was found to be accurate, and gave reasonably good results
for all cases studied. It is concluded that this model can be applied to solve other
rapidly-varied turbulent flow problems in which a clear picture of the 2D character-
istics of the flow field is sought.
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