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Abstract
The paper deals with the probabilistic analysis of the settlement of a non-cohesive soil layer
subjected to cyclic loading. Originally, the settlement assessment is based on a deterministic
compaction model, which requires integration of a set of differential equations. However, with
the use of the Bessel functions, the settlement of a soil stratum can be calculated by a sim-
plified algorithm. The compaction model parameters were determined for soil samples taken
from subsoil near the Izmit Bay, Turkey. The computations were performed for various sets of
random variables. The point estimate method was applied, and the results were verified by the
Monte Carlo method. The outcome leads to a conclusion that can be useful in the prediction
of soil settlement under seismic loading.

Key words: soil settlement, seismic loading, random material parameters, point estimate
method

1. Introduction

There are several studies on non-cohesive soil subjected to cyclic loading under
drained conditions. Most of them concern experimental results. Some focus attention
on empirical or semi-empirical models, but only a few analyze the problem theoreti-
cally. It seems that the theory of compaction proposed by Sawicki and Morland (1986)
is one of the most advanced. It reproduces the response of cyclically loaded soil quite
accurately. A modified engineering version of this theory, the so-called compaction
model for amplitudes, was proposed by Sawicki (1987). A good agreement between
the calculated results and the measured values proves the usefulness of this model in
estimating the settlement of cyclically loaded non-cohesive soils.

In order to develop a rational framework including material, load and model un-
certainties, a probabilistic analysis should be introduced. The serviceability limit state
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in the probabilistic approach is usually related to settlements of foundations. Brząkała
and Puła (1996) analyzed the settlement of shallow foundations resting on a layered
subsoil, using the finite element method (FEM) coupled with probabilistic versions
of the perturbation and the Neumann expansion methods. Gordon, Fenton and Grif-
fiths (2002) considered soils as spatially random media and analyzed settlement under
spread footings by the FEM combined with the Monte Carlo method (MCM). Bauer
and Puła (2000) applied the response surface and second-order reliability methods
(SORM) to estimate the reliability index associated with exceeding a certain allow-
able settlement of a shallow foundation. The settlement of loose granular materials
subjected to surface loads can also be investigated from the viewpoint of probabilistic
mechanics of particular media (Bourdeau and Harr 1989). Strip foundations for both
2-D and 3-D states of stresses and strains were analyzed by a probabilistic FEM in
(Przewłócki 1999, Przewłócki and Górski 1999). No publication has been found con-
cerning the random approach to the problem of the settlement of subsoil without an
embankment or foundation loading. However, these cases may be significant, too.

The point estimate method (PEM), proposed by Rosenblueth (1975), has been
widely adopted in geotechnical reliability analyses. Several researchers, including
Harr (1989), Lind (1983), Li (1992) and Hong (1998), have modified the Rosenblueth
procedure to optimize computational accuracy and effort. The case of a large num-
ber of variables is widely discussed by Christian and Baecher (1999). Suchomel and
Mašı́n (2011) used various probabilistic methods to analyze a strip footing on a hor-
izontally stratified sandy deposit. They found the basic PEM to be the most accurate
method. Sayed et al (2008) carried out a reliability analysis, using different proba-
bilistic methods to study the stability aspects of reinforced soil retaining walls under
static and seismic conditions. Baecher and Christian (2003), and Przewłócki (2006)
used the PEM to assess the load-bearing capacity of a footing. Fattah (2010) used this
method to estimate the bearing capacity of axially loaded piles. Gibson (2011), Wang
and Huang (2012) applied the PEM for the design of slopes.

This paper presents a use of the PEM for the analysis of the settlement of a soil
layer subjected to cyclic loading. Soil parameters, including compaction model con-
stants and cyclic load parameters, were assumed random. The parameters were de-
termined for soil samples taken from subsoil near the Izmit Bay, Turkey. This region
was hit by a severe earthquake in 1999, causing both soil liquefaction and significant
subsoil settlements (Sawicki and Świdziński 2006). The mean value and the standard
deviation of the settlement were estimated. The results were verified by means of the
MCM. Although the problem regards the soil layer only, it is also important for any
soil-structure interaction issues, e.g. foundation settlement.

2. Compaction Model

Based on the results of cyclic simple shear tests for non-cohesive soils, the following
constitutive equation was proposed by Sawicki (1987):
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dΦ
dN
= C1J exp (−C2Φ) , (1)

where Φ = (n0 − n)/n0 or Φ = εv(1 − n0)/n0 is a relative change in porosity corre-
sponding to irreversible volumetric changes εv (compaction), n and n0 are the ac-
tual and initial porosities, C1, and C2 are material constants determined for a given
soil from cyclic simple shear tests, J is the second invariant of the deviator of cyclic
strain amplitudes, and N is the number of loading cycles (Sawicki and Świdziński
2006, 2007). Equation (1) is valid for a general type of non-cohesive soil and history
of cyclic loading. In order to compute the densification Φ, the distribution of strain
amplitudes in the soil mass should be known.

The second constitutive equation describes the relation between the deviators of
cyclic stress S and strain Y amplitude tensors:

S = GY , (2)

where G is a generalized shear modulus, which depends mainly on the mean effective
stress and the amplitude of shear strains. For strains smaller than 10−4, a sufficiently
good approximation for G may be given in the form proposed by Martin et al (1975):

G = G0

√
p′
p0
, (3)

where G0 is a soil constant, p′ is the mean effective stress, and p0 is the stress unit
equal to 105 N/m2.

The mean effective stress for the homogeneous layer considered in this paper takes
the form:

p′ =
1

3(1 + 2K0)γH(1 − Z)
, (4)

where γ is the unit weight of the soil, K0 is the coefficient of earth pressure at rest,
and the parameters H and Z are shown in Fig. 3.

The relationships (1–3) lead to the description of volumetric changes in dry
non-cohesive soil (or saturated soil under free drainage conditions) caused by cyclic
shearing for a given loading history. The simplicity of the proposed model is due to
the fact that there are only four model parameters, C1, C2, G0 and n0 to be determined
experimentally in the laboratory.

3. Specification of Soil Properties

The settlement analysis was carried out for a 10 m thick sandy layer of subsoil near
the seacoast of the Izmit Bay, Turkey (Sawicki and Świdziński 2006). The grain size
distribution of that soil classifies it as gravelly sand of a density ρ = 1720 kg/m3. The
values of compaction coefficients in Eq. 1 were determined from cyclic simple shear
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test results. The tests were performed on reconstituted specimens of dry soil deposited
by the air pluviation method in an originally designed and manufactured apparatus
(Sawicki and Świdziński 2006). The reconstituted specimens were next subjected to
cyclic loading with various shear strain amplitudes γ0 and constant mean stress (in
the case of dry soil, effective stress is equivalent to total stress, p′ = p). In total, four
series corresponding to four different cyclic shear strain amplitudes were carried out.
In each experiment, the settlement of the sample caused by cyclic loading versus the
number of loading cycles N was recorded.

The basic hypothesis of a compaction model assumes that, for a given non-cohesive
soil subjected to cyclic loading, there exists a unique common compaction curve de-
scribing its capacity to densify (Sawicki 1987). According to this hypothesis, various
compaction curves obtained for various shear strain amplitudes can be represented by
the so-called common compaction curve with a new representation of the results. In
this approach, the number of loading cycles N is replaced by a new model variable
ξ = JN . Reinterpreted results of 14 tests of cyclic simple shear at different shear strain
amplitudes are presented in Fig. 1.

Fig. 1. Common compaction curve for the soil tested

In the case of simple cyclic shear with a constant strain amplitude γ0, the second
invariant of the deviator of the cyclic strain amplitude J takes a simple form:

J =
1
4
γ2

0 . (5)

Assuming that during a given load step the material behaves elastically and its pa-
rameters are constant while the number of cycles is a continuous variable, a common
compaction curve can be approximated by the following relation:
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Φ = D1 ln (1 + D2ξ) , (6)

where D1 and D2 are coefficients that can be determined by the least square method.
Such a common compaction curve for the soil tested is shown in Fig. 1.

The relationships between the parameters D1, D2 and the parameters C1, C2 in
Eq. (1) are given by the following formulae (Sawicki 1987):

C1 =
1

D2
, C2 = D1D2. (7)

If the strain amplitude applied at the boundary is constant, expression (6) stands
for compaction caused by a specified number of cycles. If the boundary strain ampli-
tudes vary, the compaction is calculated separately for each section of loading history
with a constant amplitude and is accumulated.

The impact of the shear modulus on the mean effective stress given by Eq. (3) was
determined from the results of cyclic triaxial compression tests. In a single experi-
ment, the specimen was first anisotropically pre-consolidated to the assumed stress
deviator and the mean effective stress, and then cyclically subjected to shear stress of
a given amplitude while the cell pressure was kept constant. The shear modulus G
was determined from the loading-unloading-reloading hysteresis loop as a secant of
a given shear stress amplitude. In order to find the relationship given by Eq. 3, the tests
were repeated at different levels of the mean effective stress (Sawicki and Świdziński
2006). The mean values of the shear modulus for the mean effective stress applied are
shown in Fig. 2.

Fig. 2. Shear modulus as a function of the mean effective stress determined by cyclic triaxial
compression tests
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Approximation of the test results presented in Fig. 2 by relationship (3) made it
possible to determine the coefficient G0 = 0.518. The coefficient is expressed by the
same unit as the G modulus, i.e. 108 N/m2. It should be pointed out that the value is
very close to the commonly accepted magnitude in geotechnics.

The parameters of compaction curves D1 and D2 (Eq. 6) are approximated values
of laboratory test results. Thus, they are random parameters. Regression analysis per-
formed by means of the Statistica package with the data presented in Fig. 1 resulted
in the following estimators of mean values mD and standard deviation: mD1 = 9.568,
σD1 = 1.164, mD2 = 0.348, σD2 = 0.129. Correlation between the parameters was
also assessed: rD1D2 = −0.968. A similar procedure was applied to the statistical pa-
rameters of the coefficient G0: mG0 = 0.518 × 108 N/m2, σG0 = 0.036 × 108 N/m2.
Next, the mean value and standard deviation of porosity were obtained directly from
laboratory tests: mn0 = 0.409, σn0 = 0.01. The small value of the standard deviation
of porosity results from the fact that all specimens in the cycle simple shear test were
reconstituted to have similar density (medium dense sand), since the model proposed
does not take into account the initial state of the non-cohesive soil. The same regards
the small value of standard deviation for the coefficient G0.

The influence of correlation between compaction parameters should also be inves-
tigated. For physical reasons, the correlation between n0 and G0 is negative, whereas
the correlation between n0 and D1 is positive. Unfortunately, the available experi-
mental data are insufficient for a thorough quantitative analysis. Thus, the following
coefficients were proposed: rD1G0 = −0.5, rD1n0 = 0.5, rn0G0 = −0.5, rD2G0 = 0.5, and
rD2n0 = −0.5.

4. Boundary Problem – Deterministic Solution

A non-cohesive elastic soil layer of thickness H and specific density ρ0 (kg/m3) resting
on a rough rigid base (Fig. 3) is considered.

Fig. 3. Initial coordinate system and the coordinate system for the analysis

The soil stratum is subjected to a horizontal acceleration A = A0 sinωt applied
at the rigid base in order to reflect seismic loading due to an earthquake. Here A0
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is the maximum amplitude of the horizontal sinusoidal acceleration at the ground
surface, andω is the frequency. It is reasonable to analyze a one-dimensional problem
corresponding to a two-dimensional state of strain.

The final equation of motion for a layer subjected to harmonic stress in the coor-
dinate system shown in Fig. 3 was derived by Sawicki (1987):

d2S
DZ2 = a

S
√

1 − Z2
(8)

where

a =
ρω2H2

G0

√
1
3

(1 + 2K0)ρgH
, (9)

and ρ is the bulk density,ω is the frequency of cyclic loading for harmonic oscillations,
and g is the gravitational acceleration.

The boundary conditions are as follows:

S(Z = 1) = 0,
S′(Z = 0) = −HρA0 = b. (10)

Solution of Eq. (8) with boundary condition (10) makes it possible to compute the
distribution of the amplitude of the shear stress S and subsequently, using formulae (2)
and (5), the amplitude of the shear strain γ0 within the soil stratum analyzed. Finally,
applying formula (6), the relative change in porosity Φ and the settlement of the soil
layer may be determined. The exact solution of this problem was given by Przewłócki
and Knabe (1995), who used the Bessel functions. The final expressions for stress and
strain amplitudes are:

S(Z) =
b(1 − Z)J2/3

[(
4
√

a
3

)
(1 − Z)3/4

]
√

aJ5/3

(
4
√

a
3

)
− J2/3

(
4
√

a
3

) , (11)

γ0(Z) =
S(Z)

G0

√
1
3

(1 + 2K0)ρ0gH(1 − Z)
, (12)

where Jv is a Bessel function that may be presented in the form of a series:

Jv(y) =
(
y

2

)v ∞∑
k=0

(−1)k

k!Γ(v + k + 1)

(
y

2

)2k
. (13)



128 J. Przewłócki, J. Górski, W. Świdziński

The settlement of a sublayer of thickness t2 − t1 (see Fig. 3) can be easily obtained
by integrating the porosity changes:

s =
n0

1 − n0
H

Z2∫
Z1

ΦdZ. (14)

For computing the settlement of a whole layer of thickness H , the limits of inte-
gration are assumed as Z1 = 0 and Z2 = 1. The solution is obtained numerically. If
the layer of thickness H is divided into k strips of thickness hi and Φi is calculated in
the middle of each strip, the total settlement is simply the sum of the settlements of
individual strips:

s = n0

k∑
i=1

Φihi. (15)

5. Probabilistic Analysis of Soil Settlement

The probabilistic analysis of the Izmit Bay soil settlement was performed basically
by the PEM. According to this method, a continuous probability density function is
replaced by a discrete function having the same first three central moments i.e. mean
value, variance and skewness. The method applies appropriate weights to all evalua-
tion points. It can also be implemented in response functions that are not explicit.

Rosenblueth (1975) proposed a PEM which concentrates the probability density
function of a continuous random variable into two estimate points. He considered
only correlated random variables whose skewness coefficients are zero. In the case of
a function of k random variables:

y = g(x1, x2, . . . , xk) (16)

for each random variable xi there are two evaluation points denoted by xi+ = mxi + σxi

and xi− = mxi + σxi , where mx is the mean value, and σx is the standard deviation.
Function (16) should be applied to all possible combinations of evaluation points,

i.e. 2k . The expected value and the variance of this function are expressed by the
following formulae:

my ≈

2k∑
j=1

P jy j , σ2
y ≈

2k∑
j=1

P jy2
j − m2

y, (17)

where:

P(s1s2...xn) =
1
2n

1 + k−1∑
i=1

k∑
j=i+1

(si)(s j)rxi x j

 , (18)

si =

{
−1 for xi− = mxi − σxi

+1 for xi+ = mxi + σxi ,
(19)
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rxi ,x j – cross-correlation coefficient between the random variables Xi and X j .
The above group of equations forms a basis for probabilistic analysis of settlement.
For the layer under consideration (Fig. 3), the following loading parameters re-

quired for calculations were specified: H = 10 m, g = 9.81 m/s2, T = 0.5 s, K0 =

0.344, A0 = 0.2 g, N = 100. The soil model parameters D1 and D2, as well as G0 and
n0, their mean values, standard deviations and all assumed correlation coefficients are
given in section 3.

The variation of the acceleration amplitude A0 was assumed to be νA0 = 0.1.
The corresponding mean values and the standard deviations are mA0 = 1.962 m/s2

and σA0 = 0.1962 m/s2. Using the expressions presented in section 4 and the data
described above, the deterministic value of the soil settlement was calculated: s =
0.038 m.

Two sets of probabilistic computations were performed.
First of all, due to a strong, almost full negative correlation between the random

variables D1 and D2, one of them, the material coefficient D2, was considered a func-
tion of D1. The other variables of the problem were assumed uncorrelated. Thus the
initial number of five random variables is reduced to four, i.e. D1, G0, n0, A0. Using
PEM calculations, only 16 samples were considered. The mean value and the standard
deviation obtained were ms = 0.04327 m and σs = 0.00888 m.
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Fig. 4. Convergence analysis of the mean value and standard deviation of the soil settlement

The MCM was applied to verify the results. A total number of 100 sets of four
random variables D1, G0, n0, and A0, were generated. In all cases, normal probability
distributions were applied. The variable D2 was assumed fully correlated with D1.
Soil settlements were calculated for 100 random sets. The result of convergence is
presented in Figure 4. Based on the MCS, the mean value and standard deviation of
the settlement were estimated as 0.04304 m and 0.00997 m, respectively. The mean
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values obtained by the MCM and PEM are almost identical, but the standard de-
viations are diverse. It should be pointed out that the discrepancies result from the
different definitions of correlation between the random variables D1 and D2.

Next, a set of calculations for different numbers of random variables were carried
out. In all cases, the correlations between those parameters, described in section 3,
were applied. The results presented in Table 1 prove that the standard deviation of
the settlement grows with the increasing number of random parameters. As might be
expected, the mean value of the settlement is higher than its deterministic equivalent.

Table 1. Results of the Rosenblueth PEM analysis for different numbers of random variables

No. Random n Average value of Standard deviation
variables settlement ms [m] of settlement σs [m]

1 D1, D2 2 0.0439 0.0059
2 D1, D2, G0 3 0.0443 0.0067
3 D1, D2, G0 , n0 4 0.0444 0.0073
4 D1, D2, G0 , n0, A0 5 0.0443 0.0092

In order to assess the correlation impact on the statistical parameters of the set-
tlement, some additional computations were made, and their results are presented in
Figs. 5 and 6. The highest impact on both random settlement parameters is noted
for the correlation between D1 and G0. Both values become weaker as the correlation
between D1 and G0 and between D1 and n0 increases. These values grow up for higher
correlation between G0 and n0.
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Fig. 5. Impact of correlation between coefficients D1 and G0, and between coefficient D1 and
porosity n0 on a) mean value b) standard deviation

Further analysis was made to verify the influence of coefficient variations νA0 on
both the mean value and the standard deviation of the settlement. The soil was de-
scribed using four random variables. Calculations were performed for the correlations
assumed in chapter 3. The results are presented in Fig. 7. It can be seen that, while
the mean value of the settlement decreases, its standard deviation increases.
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Fig. 7. Impact of the coefficient of variation of acceleration amplitude νA0 on the mean value
and the standard deviation

Based on the results, a simplified version of the calculation procedure can be pro-
posed. It is easy to notice that the variables with significant influence on the statis-
tical characteristics of the settlement are the parameters related to the compaction
model and the seismic load. Thus, only these two parameters, i.e. the material con-
stant D1 and the acceleration amplitude A0, may be the ones considered as random.
In such a case, there are only four samples analyzed. This causes a substantial re-
duction in computational effort. The mean value and standard deviation obtained are
ms = 0.04299 m and σs = 0.00711 m, respectively. These results can be compared
with those presented in Table 1. Thus it can be stated that the simplified calculation
results in the estimation of the settlement.

6. Conclusions

The PEM has proved to be an efficient tool for probabilistic geotechnical engineering
applications. In contrast to the MCM and other standard simulation methods, only
a small number of deterministic realizations are required here. The PEM is also an
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essential tool for implementing correlation between random variables. In this spe-
cific case, settlement calculations require tedious work, so the number of samples
determines the efficiency of the method applied. Moreover, as the settlement is not
given explicitly by closed-form analytical formulae, the problem cannot be solved by
first-order second-moment techniques or similar methods. The PEM seems to be an
appropriate tool for the analysis considered.

The statistical analysis proved a strong negative correlation between the mate-
rial parameters D1 and D2. Their computed correlation coefficient rD1D2 = −0.962
denotes a practically full correlation – a deterministic relation between these two pa-
rameters. Random analysis may therefore be reduced to four parameters from the
initial five.

Computations show a slight impact of subsoil parameters on the mean value of
settlement. The mean value decreases while the coefficient of variation of accelera-
tion amplitude increases. A slight influence of both porosity and the coefficient G0
on the standard deviation of the settlement of the layer is also detected. This stan-
dard deviation is sensitive to random variation of the model parameters D1 and D2
and acceleration amplitude A0. The latter relation is the most notable: the standard
deviation of settlement increases proportionally to the coefficient of variation of A0.
The above conclusions and the direct relation between material parameters lead to
a two-variable problem, without losing the accuracy of estimation. The statistical pa-
rameters of settlement are affected by correlation between distinct random variables.
A vast parametric analysis presented in this paper shows that the standard deviation
of settlement is significantly affected by the correlation between material parameters
and the acceleration amplitude.
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Suchomel R., Mašı́n (2011) Probabilistic analyses of a strip footing on horizontally stratified sandy
deposit using advanced constitutive model, Computers and Geotechnics, 38 (3), 363–374.

Wang J. P., Huang D. (2012) RosenPoint: A Microsoft Excel-based program for the Rosenblueth point
estimate method and an application in slope stability analysis, Computers and Geosciences, 48,
239–243.


