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Abstract
The aim of this paper was to analyze theoretical aspects of calculating steady water flow
through unsubmerged circular orifices. Theoretical analysis shows that the values of discharge
obtained by using formulas intended for small orifices are greater than those calculated using
formulas for large orifices. These differences attain a maximum value when the water level
reaches the upper edge of the orifice, and decrease when water head increases. It has been
proven that the volumetric flow rate for circular unsubmerged orifices can be calculated by
formulas for small orifices when the water level above the center of gravity is at least four
times as high as the diameter of the orifice.
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1. Introduction

Steady liquid flow through an orifice is one of few hydrodynamic cases for which an
analytical formula of the flow exists (Kubrak E. & Kubrak J. 2010, Mitosek 2014).
When an orifice discharges freely into the air, as shown in Fig. 1, it is known as unsub-
merged. The local velocity of the liquid flow varies with height within the jet of liquid.
There are two methods of analyzing the discharge through an orifice. When the orifice
is small in comparison with the head above the orifice, it is known as a small orifice.
In this case, variations in velocity with height within the jet of liquid can be ignored,
and the velocity is assumed to be constant. The analysis for large orifices takes into
account the variation of velocity with height within the jet of liquid issuing from the
orifice. This classification of orifices does not include the geometric dimensions and
shape of the orifice.

When the outlet side of the orifice is beneath the surface of liquid, it is known as
a submerged orifice.

The velocity of an elementary jet of liquid increases when the liquid level above
its center of gravity increases. However, the width of the jet of liquid increases when
head increases, but starts to decrease under the center of gravity of the orifice.
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As already mentioned, it is possible to derive analytical formulas to calculate dis-
charge from large circular orifices. However, in practical calculations of flow through
a circular orifice, simplified formulas are used. A simplified formula is derived by us-
ing different lengths of series created for the integral function of the flow. Sometimes,
it is possible to use formulas for small orifices.

In engineering practice, it is allowed to calculate the volumetric rate of flow
through an unsubmerged circular orifice by formulas designed for small orifices if
the D/H ratio is smaller than 0.1 (Mitosek 2014) (D – orifice diameter, H – head;
liquid level above the center of the orifice S).

This simplifies calculations of discharge, but also has its implications for the ac-
curacy of the calculations.

Accurate calculation of the volumetric rate of flow through unsubmerged large
circular orifices is now possible with the use of mathematical software, e.g. Mathe-
matica.

The aim of this article is to analyze the extent to which the shortening of a power
series used in integrating the formula for the discharge of a large circular orifice affects
the calculated values of the volumetric flow rate and to determine what H/D ratio can
be used to calculate discharge as for small orifices.

2. Steady Liquid Flow through a Small Circular Orifice

In steady liquid flow through a small circular orifice, velocity is assumed to be con-
stant (Fig. 1).

Fig. 1. Steady liquid flow through an unsubmerged circular orifice

The theoretical velocity of liquid is calculated by applying Bernoulli’s theorem
between the surface of the liquid and the center of the orifice S. The theoretical ve-
locity of liquid passing through an orifice is given by

v = ϕ
√

2gH . (1)

Factorϕ is known as the Coefficient of Velocity (Kubrak E. & Kubrak J. 2010, Mitosek
2014).
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The discharge Q is calculated by multiplying the theoretical velocity v by the cross
sectional area at vena contracta As. Because of inertia forces, fluid streamlines cannot
abruptly change direction. That is why the diameter of the jet of liquid discharged
from the orifice is smaller than the orifice diameter (Fig. 2).

Fig. 2. Orifice flow contraction

This phenomenon is called orifice flow contraction. The ratio of the cross sec-
tional area at vena contracta As to the cross sectional area of orifice is known as the
Coefficient of Contraction β. The product of the Coefficient of Velocity ϕ and the
Coefficient of Contraction β is called the Coefficient of Discharge µ. Discharge from
a small unsubmerged circular orifice is given by

Q = vAs = vβA = ϕβA
√

2gH = µA
√

2gH = µ
π

4
D2 √

2gH. (2)

The values of the Coefficient of Velocity ϕ and the Coefficient of Discharge ϕmay be
determined through laboratory measurements (Kubrak E. & Kubrak J. 2010, Mitosek
2014). In order to compare the values of liquid flow calculated as for small and large
orifices, in the following discussion it is assumed that for given H/D ratio the Coeffi-
cient of Discharge is constant and does not depend on the method of calculation. The
local velocity of the perfect liquid flow (ϕ = 1) varies with height within the jet of
liquid (Fig. 3)

3. Steady Liquid Flow through a Large Circular Orifice

When calculating discharge through a large orifice, it is necessary to take into account
the variation of velocity with height within the jet of liquid issuing from the orifice
(Fig. 4).
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Fig. 3. Velocity of liquid flow as a function of the liquid level above the orifice

Fig. 4. Diagram for the analysis of liquid flow through a circular orifice

The total volumetric flow rate is equal to the sum of discharge from elementary
jets of liquid with a width of y(z) and a height of dz (Fig. 4). Discharge from an
elementary jet of liquid that has a cross sectional area of dA = y(z)dz is given by

dQ = µ
√

2gzy(z)dz. (3)

The width of the jet of liquid is given by(
y(z)
2

)2

= R2 − (H − z)2 , (4)

hence

y(z) = 2
√

R2 − (H − z)2. (5)

By substituting y(z) into (3), one obtains

dQ = µ
√

2gz · 2
√

R2 − (H − z)2dz. (6)
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By integrating the above formula in the range of H − R to H + R, one obtains

Q=2µ
√

2g
H+R∫

H−R

√
(R2−(H−z)2)z dz=2µ

√
2g

H+R∫
H−R

√
(R2− vH2)z+2Hz2−z3 dz. (7)

The analytical solution of the integral is not yet known (Kubrak E. & Kubrak J.
2010, Kubrak 2014). In practice, its value is calculated by expressing the integrated
polynomial as a power series or by using a numerical integration method, e.g. Simp-
son’s rule.

4. Calculation of the Volumetric Rate of Flow through a Large Circular
Orifice by Using the Binomial Theorem

The formula for discharge from an orifice (6) can be expressed using the central angle
ψ. Then

y(z)
2
=

D
2

sinψ, (8)

z = H −
D
2

cosψ, (9)

dz =
D
2

sinψdψ, (10)

where D – orifice diameter (D = 2R).
By substituting y(z) into formula (3) and setting the range of the integration of 0 to π,
one obtains

Q =
1
2
µD2 √

2gH
π∫

0

√
1 −

D
2H

cosψ sin2 ψdψ. (11)

In order to calculate the integral in equation (11), it is possible to use a property of
a binomial. For any variable x in the interval (−1; 1) it is possible to expand a binomial
into a sum of the form (Wrona 1967):

(1 + x)m = 1 +
(

m
1

)
x +

(
m
2

)
x2 + ... +

(
m
n

)
xn + ... . (12)

For m = 1/2 it can be written as
√

1 + x = 1 + mx +
m (m − 1)

2!
x2 +

m(m − 1)(m − 2)
3!

x3+

+
m(m − 1)(m − 2)(m − 3)

4!
x4 + ... =

= 1 +
1
2

x −
1
8

x2 +
1
16

x3 −
5

128
x4 −

7
256

x5 −
21

1024
x6 + ... .

(13)
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Table 1. Solved integrals

Value of the integral

Ordinal Integral Solved integral within the range

of 0 to π

I
∫

sin2 ψdψ ψ
2 −

1
4 sin 2ψ +C π

2

II
∫

cosψ sin2 ψdψ 1
3 sin3 ψ +C 0

III
∫

cos2 ψ sin2 ψdψ ψ
8 −

1
32 sin 4ψ +C π

8

− 1
5 sinψ cos4 ψ+

IV
∫

cos3 ψ sin2 ψdψ + 1
5

(
1
3 cos2 ψ sinψ+ 0

+ 2
3 sinψ

)
+C

− 1
6 sinψ cos5 ψ+

V
∫

cos4 ψ sin2 ψdψ + 1
6

(
1
4 cos3 ψ sinψ+ π

16

+ 3
8ψ +

3
16 sin 2ψ

)
+C

− 1
7 sinψ cos6 ψ+

VI
∫

cos5 ψ sin2 ψdψ + 1
7

(
1
5 cos4 ψ sinψ+ 0

+ 4
15 cos2 ψ sinψ + 8

15 sinψ
)
+C

− 1
8 sinψ cos7 ψ+

VII
∫

cos6 ψ sin2 ψdψ + 1
8

(
1
6 cos5 ψ sinψ + 5

24 cos3 ψ sinψ+ 5π
128

+ 5
16ψ +

5
32 sin 2ψ

)
+C

For values of x close to zero, lower-order terms rapidly decrease to zero. Applying
the binomial theorem to

√
1 − D/2H cosψ, one can write it as a sum of seven terms:√

1 −
D

2H
cosψ = 1 −

1
2

D
2H

cosψ −
1
8

(
D

2H

)2

cos 2ψ −
1
16

(
D

2H

)3

cos 3ψ+

−
5

128

(
D

2H

)4

cos 4ψ + −
7

256

(
D

2H

)5

cos5 ψ −
21

1024

(
D

2H

)6

cos6 ψ,

(14)

hence:

Q =
1
2
µD2 √

2gH
π∫

0

1 − 1
2

D
2H

cosψ −
1
8

(
D

2H

)2

cos2 ψ+

−
1
16

(
D

2H

)3

cos3 ψ
5

128

(
D

2H

)4

cos4 ψ+

−
7

256

(
D

2H

)5

cos5 ψ −
21

1024

(
D

2H

)6

cos6 ψ

 sin2 ψdψ.

(15)
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After the multiplication of the terms in brackets by sin2 ψdψ , seven integrals
are obtained:

∫
sin2 ψdψ,

∫
cosψ sin2 ψdψ,

∫
cos2 ψ sin2 ψdψ,

∫
cos3 ψ sin2 ψdψ,∫

cos4 ψ sin2 ψdψ,
∫

cos5 ψ sin2 ψdψ,
∫

cos6 ψ sin2 ψdψ. They were solved using in-
tegral tables (Piłat & Wasilewski 1985). The solved integrals are summarized in Ta-
ble 1.

By substituting the solved integrals from Table 1 into formula (15), it can be writ-
ten as

Q = 1
2µD2 √

2gH


ψ

2
−

1
4

sin 2ψ︸          ︷︷          ︸
I

−
1
2

D
2H

1
3

sin3 ψ︸             ︷︷             ︸
II

−
1
8

(
D

2H

)2 (
ψ

8
−

1
32

sin 4ψ
)

︸                              ︷︷                              ︸
III

+

−
1
16

(
D
2h

)3 (
−

1
5

sinψ cos4 ψ +
1
5

(
1
3

cos2 ψ sinψ +
2
3

sinψ
))

︸                                                                           ︷︷                                                                           ︸
IV

+

−
5

128

(
D
2h

)4 (
−

1
6

sinψ cos5 ψ +
1
6

(
1
4

cos3 ψ sinψ +
3
8
ψ +

3
16

sin 2ψ
))

︸                                                                                         ︷︷                                                                                         ︸
V

+

−
7

256

(
D
2h

)5 (
−

1
7

sinψ cos6 ψ +
1
7

(
1
5

cos4 ψ sinψ +
4
15

cos2 ψ sinψ +
8
15

sinψ
))

︸                                                                                                        ︷︷                                                                                                        ︸
VI

+

−
21

1024

(
D
2h

)6 (
−

1
8

sinψ cos7 ψ +
1
8

(
1
6

cos5 ψ sinψ +
5
24

cos3 ψ sinψ +
5
16
ψ +

5
32

sin 2ψ
))

︸                                                                                                                     ︷︷                                                                                                                     ︸
VII


∣∣∣∣∣∣∣∣∣∣∣∣
π

0

(16)

After solving the integrals in the range of integration, it turns out that integrals II,
IV, and VI are equal to zero. By substituting non-zero integrals into formula (16), one
obtains

Q =
π

2
µD2 √

2gH


1
2︸︷︷︸
I

−

(
D

2H

)2 1
64︸        ︷︷        ︸

III

−

(
D

2H

)4 5
2048︸            ︷︷            ︸

V

−

(
D

2H

)6 105
131072︸               ︷︷               ︸

VII

 . (17)

As is apparent from equation (17), the integrated value of the first term in formula
(16) is constant, and it does not depend on the diameter of the orifice and total head.
If one uses only the first term of the theorem in formula (17), the formula is converted
into the one describing discharge from a small orifice (2). The values of terms III, V,
and VII in the function of H/D are shown in Fig. 5.
Fig. 5 indicates that the inclusion of the subsequent terms of the theorem will decrease
the calculated value of the volumetric flow rate. This is because all odd terms of the
theorem are negative.
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Fig. 5. Values of terms III, V, and VII in equation (17) in the function of H/D

An accurate value of integral (11) was also calculated by Mathematica. Thus ob-
tained values at different H/D ratios were compared with values of discharge cal-
culated by means of binomial theorem (13). Values of the volumetric flow rate for
perfect liquid calculated as for a large orifice by Mathematica were labeled as Ql
(large orifice). Values of discharge calculated as for a small orifice were labeled as Qs
(small orifice).

In order to compare the values of discharge calculated as for a small orifice with
those calculated as for a large orifice, percentage deviation in the function of the H/D
ratio was calculated:

Qs − Ql

Qs
· 100%. (18)

The results of calculations are shown in Fig. 6.

Fig. 6. alues of percentage deviation in the function of H/D
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Fig. 6 shows, that the biggest difference between the values of discharge calculated
by the formulas for small and large orifices amounts to 4% and occurs when H/D =
0.5. This occurs when the liquid level reaches the top edge of the orifice. When the
liquid level above its center of gravity increases, percentage deviation (18) decreases
to 0. For an H/D ratio equal to 4, the values of discharge calculated by the formulas
for small and large orifices are practically the same.

In order to analyze the extent to which the shortening of a power series affects the
calculated values of discharge, the following percentage deviation in the function of
H/D was calculated:

Qs

Ql (I + III)
· 100%, (19)

Qs

Ql (I + III + V )
· 100%, (20)

Qs

Ql (I + III + V + VII)
· 100%, (21)

where: Ql (I + III) – discharge calculated as for a large orifice by formula (17),
using terms I and III of the theorem; Ql (I + III + V ) – discharge calculated as
for a large orifice by formula (17), using terms I, III, and V of the theorem;
Ql (I + III + V + VII) – discharge calculated as for a large orifice by formula (17),
using terms I, III, V, and VII of the theorem.

The values of (19), (20), and (21) in the function of H/D are shown in Fig. 7.

Fig. 7. Percentage deviation calculated by formulas (19), (20), and (21)

As is apparent from Fig. 7, the inclusion of the subsequent terms of the theorem
when calculating discharge, reduces the value of the volumetric flow rate. Differences
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between discharge calculated as for large and small orifices decrease with increasing
H/D.

5. Conclusion

The inclusion of only the first term of the theorem in formula (17) converts it into the
formula describing discharge from a small orifice (2). The even terms of the theorem
integrated within the range of 0 to π are equal to zero. The use of the subsequent terms
of the theorem when calculating discharge, reduces the value of the volumetric flow
rate. The analyses show that when H ≥ 4 D, the values of discharge calculated as for
large and small orifices are practically the same. The biggest difference between the
values of discharge calculated by formulas for small and large orifices amounts to 4%
and occurs when H/D = 0.5.
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