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Abstract
The paper describes the SPH modeling of a plane problem of fluid flow around a rigid circu-
lar cylinder. In the model considered, the cylinder is placed in a rectangular fluid domain at
a certain distance from a horizontal plane boundary, and it is subjected to fluid flow forces.
The fluid motion is induced by a piston type generator. The generator – fluid system starts to
move from rest at a certain moment of time. The work aims at a discrete description of the fluid
flow around the cylinder and, at the same time, calculation of the pressure distribution along
the circumference of the cylinder and the resultant of the pressure on the cylinder. In order to
solve the initial value problem considered, a new SPH formulation of boundary conditions on
the cylinder surface is proposed which match the physical condition for the fluid velocity at
this boundary. For a viscous fluid, an approximate description of the stress tensor is formulated
which allows to reduce the differentiation of field functions to the first order in calculating the
shear forces in the SPH approach.

Key words: transient water wave, SPH modeling, boundary conditions, approximation of
shear forces

1. Introduction

Wave induced flows around a cylinder and associated hydrodynamic forces on it have
been of special interest in offshore engineering and, at the same time, in theoreti-
cal hydrodynamics. The general problem of the flows for viscous fluids seems to be
constantly in question, because of the complicated flow regimes, which depend on
the ambient velocity distribution, turbulence and the presence of a free surface. On
the other hand, in analysis of the water waves, the fluid viscosity is important only
in a very small vicinity of the fluid boundary (within boundary layers of very small
thickness) and therefore, in description of the waves, it is justified to neglect to fluid
viscosity. As concerns the waves, serious difficulties emerge in theoretical description
of finite (big) displacements of fluid particles and in cases of the fluid fragmentation.
Therefore, in analysis of such problems we usually resort to simplified models of
description of the phenomenon. In these descriptions, we frequently resort to discrete
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methods in which continuum is substituted by a number of nodal points. Field vari-
ables of a problem such as pressure, density and momentum are represented by point
variables associated with chosen points. With respect to the problem considered, the
Smooth Particle Hydrodynamics (SPH) formulation seems to be of practical inter-
est, since it serves equally well for continuous and discontinuous media. The SPH is
a purely Lagrangian mesh free method in which the motion of the fluid is simulated by
a motion of a number of material particles. The method aims at computing distribu-
tion of these particles and associated field variables at chosen moments of time. The
literature on the subject is considerable. In the last two decades a number of papers
has appeared where particular numerical solvers of the method have been developed
and successfully applied to various problems of hydrodynamics. Fundamentals of the
SPH method are presented in the important works of Monaghan (1992, 2005). A de-
tailed discussion on the SPH application to various problems of hydrodynamics may
be found in Liu and Liu monograph (2006) which also contains a vast bibliography
on the subject. The SPH formulation has been successfully applied in analysis of the
interfacial flows (Colagrossi and Landrini 2003), in simulation of near-shore solitary
mechanics (Lo and Shao 2002) and in analysis of the dam break problem (Bonet and
Lok 1999, Staroszczyk 2010, Grenier et al 2009) and in the description of multi-phase
flows (Hu and Adams 2006). As concerns the flow around a circular cylinder, Morris
et al (1997) considered a periodic flow past a cylinder for very low Reynolds numbers.
The SPH simulation was run for material particles placed on a hexagonal lattice with
a very dense spacing equal to 0.002 m. The solutions obtained were compared with
results of the finite element method. A good agreement was obtained for bulk of the
flow, although small discrepancies emerge in the SPH description of velocities near
the cylinder. A similar problem of the flow past a periodic lattice of cylinders was
investigated by Ma and Ge (2008). These authors investigated the SPH solutions for
different values of smoothing length h and isothermal sound speeds. For the length h
smaller than 1.2d, where d denotes spacing of the material particles, some deviations
of results were observed for a set of formulations considered.

With respect to the non-linear water waves, considered in this paper, the advan-
tage of the SPH approach over another discrete methods of descriptions is that this
method serves equally well for small and finite displacements of fluid particles from
their initial positions. The method suffers from its relative weakness in describing
boundary conditions, especially at the fluid – solid boundary, and problems, where
field variables depend on higher order space derivatives of the velocity field. There-
fore, in application of the method to analysis of flows around the cylinder, a special
care must be taken in formulating boundary conditions at the fluid – cylinder interface.
At the same time, in describing dissipative forces for viscous fluids, it is desirable to
construct a consistent approximation of viscous terms entering momentum equations.
In order to answer the question about usefulness of the method in description of the
fluid flows around a cylinder, some particularly simple examples, of the initial-value
problems considered, are presented in this paper. The main attention of this research
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is paid on formulations of the boundary conditions and approximations in the descrip-
tion of shear forces.

2. Governing Equations of Hydrodynamics

In order to keep the further discussion clear, we attach here some fundamental equa-
tions of theoretical hydrodynamics. The principle of mass conservation of moving
fluid leads to the equation of continuity

dρ
dt

+ ρ div u =
∂ρ

∂t
+ div(ρ u) = 0. (1)

For the viscous compressible fluid, the equations of motion are

ρ
dui

dt
= ρbi +

∂T i j

∂x j
, (2)

where bi denotes the body force, and T i j is the stress tensor, dependent on the rate of
the deformation tensor

Di j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (3)

For isotropic incompressible fluids, the stress tensor may be written in the following
form

T i j = −pδi j + 2µDi j , (4)

where p denotes the fluid pressure, δi j is the Kronecker delta and µ is the dynamic
viscosity coefficient.

For the incompressible fluids, the momentum equations read

ρ
dui

dt
= −

∂p
∂xi

+ ρbi + µ∇2ui. (5)

With respect to the SPH formulation, the pressure – density relation for the fluid is
usually adopted in the following form (Monaghan 1992)

p(ρ) = P0

[(
ρ

ρ0

)γ
− 1

]
. (6)

In this equation, P0 and ρ0 denote the reference pressure and density, and the
parameter γ is usually taken as 7 for water and 1.4 for air (Colagrossi and Landrini
2003). The corresponding sound speed cs is given by

cs =

√
γP0

ρ0
. (7)

The employment of the equation of state (6) simplifies calculation of the pressure for
a problem considered, which is usually reduced to the unknown velocity components
and the fluid density.
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3. The SPH Formulation

The SPH is an interpolation method based on the concept of integral representation
of a function, say f (r), by the following integral

< f (r) >=

∫
S

f (r′)W
(∣∣∣r − r′, h

∣∣∣) dS′, (8)

where S is the domain of integration, and W (|r − r′| , h) is the so called smoothing
function, or smoothing kernel function, or interpolating kernel, or simply kernel in the
SPH literature. The parameter h in this equation is the smoothing length responsible
for a shape of the kernel. The left hand side of equation (8) is called the interpolant
of f (r) (Monaghan 1992), since it is only a certain approximation of the original
function. With respect to this approximation, in what follows, we omit the brackets
on the left hand side of the integral formula. In the case the kernel is the Dirac delta
function δ(r − r′), the equation defines the well known identity f (r) =

∫
S f (r′)δ(r −

r′)dS′. The kernel W (r − r′, h) in equation (8) is usually chosen to be an even function,
which should satisfy a number of conditions. The first of them is the unity condition∫

S

W (r − r′, h)dS′ = 1. (9)

The second one is the delta function property

lim
h→0

W (r − r′, h) = δ(r − r′). (10)

For practical reasons, the kernel should also satisfy the compact condition

W (r − r′, h) = 0 when
∣∣∣r − r′

∣∣∣ > R, (11)

where R is the radius of a circular support domain centred at r for a two dimensional
case, or a spherical support domain in a three dimensional case.

In addition to the above conditions, the kernel is assumed to be the non-negative
function within the support domain. It is also desired this function should mono-
tonically decrease with the increasing distance away from the field point r. Finally,
the kernel function should be continuous and sufficiently smooth to ensure accurate
approximation of a function and its space derivatives.

In literature on the subject there exist various forms of the kernel functions with
certain restrictions imposed on them to ensure desired properties, listed above. Fre-
quently used are spline functions of a chosen order; for example: quadratic, cubic or
quartic spline functions. Among others, a Gaussian function is of primary importance.
For the two-dimensional case, considered in this paper, the Gaussian kernel reads

W (r, h) =
1
πh2 exp

(
−q2

)
, where q =

r
h
, r2 = x2 + y2. (12)
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According to Monaghan (1992), it is always best to assume the kernel is a Gaus-
sian, and thus, in the further part of this work we will only consider the Gaussian
kernels. In general, at points of the boundary of a finite support domain, the Gaussian
kernel function is different from zero and, at the same time, the integral of the kernel
over the support domain does not equal to unity. Therefore, in order to overcome this
inconsistency, it is reasonable to take into account the normalized kernel (Colagrossi,
Landrini 2003)

WN =

1
πh2

[
exp

(
−q2

)
− exp

(
−R2

)]
1
πh2

∫
S

[
exp

(
−q2

)
− exp

(
−R2

)]
dS′

=

=

[
exp

(
−q2

)
− exp

(
−R2

)]∫
S

[
exp

(
−q2) − exp

(
−R2)] dS′

, R =
δ

h
.

(13)

One can check that this equation satisfies the unity condition (9).
In the SPH formulation, the continuum is replaced by a set of material particles

and the continuous integral interpolation is approximated by a discrete summation
interpolation. In the discrete approach, the infinitesimal volume (surface) dS′ in the
integrand (8) is replaced by the finite volume Vb of a particle b. Thus, the elementary
volume Vb, the density ρb and the mass mb of this particle are related by

mb = ρbVb. (14)

With respect to this formula, the continuous SPH representation for f (r) is substituted
by the discrete particle approximation expressed in the following form

f (r) = f (r)|a = fa =

N∑
b=1

mb

ρb
f (rb) W (r − rb, h), (15)

where b denotes the particle label and the summation is taken over all particles in the
finite support domain of a point (particle) ra.

For example, the above interpolation formula gives the following estimate for the
density at the point r = ra

ρa =
∑

b

mb

ρb
ρbWab =

∑
b

mbWab. (16)

With respect to the discrete formulation considered, the unity condition of the
kernel function is preserved by the transformation of the kernel Wab into another form,
known as the Shepard function (Shepard kernel), defined by

W S
ab =

Wab
N∑

b=1
VbWab

. (17)
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The essential feature of the discrete interpolant is that it enables us to construct
a differentiable approximation of a function from its values at particle nodal points
by means of the differentiable kernel. In the discrete approximation of fundamental
equations of fluid dynamics one needs to construct approximations of the gradient and
divergence differential operators. Following the interpolation, mentioned above, such
operators may be obtained by a direct differentiation of the kernel function. A more
detailed discussion on differential operators with desired properties may be found in
papers by Monaghan (1992, 2005). To make the further discussion clear, we attach
here interpolations of the gradient and divergence operators given in that papers. The
interpolation of the gradient of a scalar function f at particle a reads

∇ fa = ρa

∑
b

mb

 fa
ρ2

a
+

fb
ρ2

b

∇aWab (18)

and, the divergence of a vector field, say velocity field u at particle a, can be found
from

(∇ · u)a =
1
ρa

∑
b

mb(ub − ua) · ∇aWab. (19)

It should be stressed that in the SPH approach we have no unique formulation of
equations describing field variables. For instance, the divergence of the velocity field
described by equation (19) may be also written in a simple way as

div (ua) = (∇ · u)a =
1
ρa

∑
b

mbub · ∇aWab, (20)

or in the symmetrical form

div (ua) = (∇ · u)a = ρa

∑
b

mb

 ua
ρ2

a
+
ub

ρ2
b

 · ∇aWab. (21)

At the same time, for a Gauss kernel of the form

W• =
1

K2
exp

[
−

( r
h

)2]
, (22)

where K2 corresponds to the denominator in equation (13), simple manipulations give

∇aWab =
2
h2 (rb − ra) W•

ab. (23)

From substitution of this result into equation (19) it follows

ρa(∇ · u)a =
2
h2

∑
b

mb(ua − ub) · (ra − rb) W•
ab. (24)
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This equation shows, that the contribution from particle b to the divergence of the
velocity at particle a is described by the symmetric formula

2mb(ua − ub) · (ra − rb)
W•

ab

h2 . (25)

It may be seen that this contribution is positive if the particles are moving away from
each other, as it should be. The vorticity at the particle a is obtained in a similar way
by

ρa(∇ × u)a =
1
ρa

∑
b

mb(ub − ua) × ∇aWab. (26)

By virtue of the equation of continuity, the density evolution is described by the fol-
lowing interpolation formula (Monaghan 1992)

dρ
dt

∣∣∣∣∣
a

=
∑

b
mb(ua − ub)∇aWab. (27)

For a non-viscous, slightly compressible fluid, the interpolation of the momentum
equations gives

dua
dt

= −
∑

b
mb

Pa

ρ2
a

+
Pb

ρ2
b

 ∂

∂x
(Wab) ,

dua
dt

= −
∑

b
mb

Pa

ρ2
a

+
Pb

ρ2
b

 ∂

∂y
(Wab) − g ,

(28)

where ua = (ua, va) and g is the gravitational acceleration.
Substituting equation (19) into the last relations one obtains

ma
dua
dt

=
∑

b
2

mamb

h2

 pa

ρ2
a

+
pb

ρ2
b

 (ra − rb)Wab − mag, (29)

where g = (0, g).
From the last equation it follows that the force on the particle a from the particle b is

Fab = 2
mamb

h2

 pa

ρ2
a

+
pb

ρ2
b

 (ra − rb) Wab, (30)

which shows that the pressure gradient in the SPH formulation produces a symmetric
central force between pairs of particles.

4. Boundary Conditions

In applications of the SPH method to water wave mechanics, the problem of a particle
formulation of boundary conditions at the fluid boundary emerges. Since the method
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applies for collection of material particles moving in space, the fluid boundary is
defined as a set of conditions imposed on particles reaching points at this bound-
ary. A relatively simple, is the description of the free surface of the fluid which, in
the material description, employed in the SPH approach, is defined by positions of
the material particles forming this surface. It should be stressed however, that only
particles at, - or near the boundary, contribute to the summation of the particles inter-
actions. With respect to these particles, their finite supports are usually truncated by
this boundary, and thus, some discrepancies in calculating the pressure and the fluid
density may occur. Even more serious problems are met in formulation of the SPH
boundary conditions at solid, fixed or moving, boundaries of the fluid domain. For
a solid (rigid), free-slip boundary, the normal component of the velocity field should
be equal to zero. An example of such a boundary is the case of a straight line solid
boundary, usually met in analysis of gravitational waves propagating in water of finite
depth, as illustrated in Fig. 1.

Fig. 1. Straight line boundary and virtual particles. The support domain of particle P is defined
by a circle of radius R

In order to solve boundary condition at this boundary, additional, virtual (ghost)
particles are placed outside the fluid domain, as it is marked in this figure. Such
a model of solution of the boundary condition with additional mirror particles has
been used by Lo and Shao (2002) in simulating near-shore solitary wave mechanics
and by Staroszczyk (2010) in simulating water flow, generated by a dam break. Since
in the SPH approach we deal with finite support domains, the additional particles
are distributed within a strip of finite width δ, which equals to the assumed radius of
a typical support domain within the fluid. The additional particles have the same mass,
density and velocity as their counterparts in the fluid domain, with obvious restric-
tion that normal components of the velocity have equal values and opposite signs. For
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a viscous fluid also the tangent components of the velocity field within the fluid and
at virtual particles have opposite signs. In the case shown in Fig. 1, the use of the mir-
ror particles corresponds directly to solution of a symmetrical problem in continuum
where the bottom line is the symmetry line of a problem domain considered. A remark
is needed. The SPH equations are usually written for particles inside the fluid domain.
Therefore, for the inner particles placed near the boundary, the contribution of virtual
particles in the interpolation over the support domain is necessarily less than that of
the inner particles (the contribution is the same only for particles at the boundary).
It means that in the SPH model, a phenomenon of attraction of the fluid particles by
solid boundaries may occur. Such an attraction is induced by forces, resulting from
non-equal contributions of pressure gradients, which act on material particles near the
boundary. In the literature on the subject several attempts have been made to prevent
the inner fluid particles from accumulating in the vicinity of solid boundaries. Usu-
ally, additional boundary particles are employed to generate repulsive forces on fluid
particles (Morris et al 1997, Monaghan 2005, Ataie-Ashtiani et al 2008, Monaghan
and Kajtar 2009). These repulsive forces prevent the real particles from penetration
of the boundary. A way to specify the forces is to use a Lenard-Jones force acting be-
tween the centers of the particles (Monaghan 2005). On the other hand, such forces,
acting on particles moving parallel to the boundary may cause large disturbances to
flow near the boundary. In fact, such repulsive forces do not result from a solution
in fluid dynamics, and therefore their employment should be made with a great care.
The problem becomes more complicated in the case of a boundary formed by a set
of segments intersecting at corner points or in the case of a curved boundary. If the
segments intersect at right angles, the best solution is to use mirror reflection of ma-
terial particles within a strip along the boundary. In the case of an arbitrary angle
of intersection, or in the case of curved boundary however, it is not possible to find
a unique distribution of virtual (additional) particles to solve the boundary conditions.
As far as curved boundaries are concerned, a special boundary treatment is described
in Liu and Liu (2009), where except real particles within a circular fluid domain, vir-
tual boundary (type I) and, - exterior (type II) particles are used to solve the boundary
conditions at the domain circumference. Despite of several attempts mentioned above,
the problem of a proper formulation of boundary conditions in the SPH method is still
an open question.

In the following, an approximate solution of boundary conditions at curved bound-
ary is presented, which may be also used for boundaries formed by intersecting
straight segments. For a curved fluid – solid boundary, shown schematically in Fig. 2,
it is not possible to employ the above mentioned approach directly, and therefore an-
other method of solution is proposed. Like in the above mentioned case, the normal
components of the velocity field should be equal to zero at this boundary. In order
to solve this boundary condition in the SPH approach, let us consider the case of
non-viscous fluid and a set of artificial particles placed at this boundary or near the
boundary on the solid side. The spacing of these particles is assumed to be equal to
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Fig. 2. Curved boundary and additional particles. The support domain of particle P is defined
by a circle of radius R

the spacing of the fluid particles at the initial moment of time. The positions of the
boundary particles are fixed in space and time. For a given instant of time, the normal
velocity components at the boundary points, following the fluid particles in the SPH
method, are in a general case different from zeros. These additional artificial boundary
particles are assumed to have such normal velocities, unknown at this moment, that
the final velocity, dependent both on the fluid particles and the additional particles,
are equal to zeros at these boundary points. Since the interpolation in the SPH method
is a linear operation, one can divide the particle contribution to the velocity field into
two parts, each of which corresponds either to the fluid or – to the boundary particles.
With respect to the description in Fig. 2, it is sufficient to assume that all velocities of
these artificial particles are normal to the boundary. A normal velocity component at
the space point r of the boundary is expressed in the following form

vr =

fluid∑
b

mb

ρb
v

f
b cos βrbWrb +

virtual∑
k

Vkv
n
k cosαrkWrk , (31)

where v f
b is the velocity of a fluid particle placed in support domain, βrb is the angle

between the fluid velocity and the normal direction to the boundary at the space point
r, Vk = V = const. is an elementary volume associated with the virtual particles vn

k
is the unknown, normal velocity of virtual particle and αrk is the angle between the
normal directions to the boundary at the space points r and k, respectively.

The second part of the right hand side of this equation denotes the contribution of
the unknown normal components of the virtual particles. Equations (31) are written
for all points of the boundary. The system of equations obtained in this way enables us
to calculate the normal components of the velocity of the virtual particles. In the case
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of a viscous fluid, both the normal and tangent components of the velocity field at
the boundary points should be equal to zero. In this case, two sets of equations of the
form (31) are written for the boundary points, each of which corresponds to chosen
components of the velocity vectors at these points. It should be stressed however, that
the accuracy of the formulation depends on the number of particles within the sup-
port domain for each point of the boundary and therefore, one must expect a relative
discrepancy in the solution accuracy in the vicinity of corner points. The solution to
the boundary conditions presented above leads to a certain extension of computation
time and thus it may be cumbersome to apply it, especially for complicated geometry
of the boundary. Meanwhile, the proposal described by equation (31) has been used
in solution to the boundary conditions at the cylinder surface in illustration examples
presented in the further section of this paper.

5. Viscous Fluids – SPH Treatment of Shear Forces

In equation (2), describing the viscous fluid motion, the term with the stress tensor is
substituted with the following one

1
ρ

∂T i j

∂x j =
∂

∂x j

(
T i j

ρ

)
+

T i j

ρ2
∂ρ

∂x j . (32)

From substitution of this relation into equation (2) one obtains

dvi

dt
= bi +

∑
b

mb

T i j
a

ρ2
a

+
T i j

b

ρ2
b

 ∂

∂x j (Wab). (33)

The formula is similar to equations (28), written for non-viscous fluids.
The stress tensor components, entering equations (33), depend on the rate of defor-

mation tensor as it is described by equation (4). With respect to the SPH formulation,
the components of the momentum equations are

dua

dt
= −

∑
b

mb

Pa

ρ2
a

+
Pb

ρ2
b

 ∂

∂x
(Wab) +

+
∑

b
mb

µaDa
1 j

ρ2
a

+
µbDb

1 j

ρ2
b

 ∂

∂x j
a

(Wab) ,

dva
dt

= −
∑

b
mb

Pa

ρ2
a

+
Pb

ρ2
b

 ∂

∂y
(Wab) +

+
∑

b
mb

µaDa
2 j

ρ2
a

+
µbDb

2 j

ρ2
b

 ∂

∂x j
a

(Wab) − g.

(34)

Equations (34) suggest, that in order to calculate the velocity of material points
in the problem domain, it is necessary to perform the two steps calculations: – in the
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first step the components of the rate of the deformation tensor should be obtained and
then – in the second step, the shear tensor components should be defined. With such
a procedure however it is not possible to obtain proper results in the areas of fluid
close to the fluid boundary.

On the other hand, a direct calculation of the second order space derivatives of
the velocity field, entering equation (5), leads to interpolation with the second order
derivative of the kernel function. The letter approach however does not fulfil the so
called reproducing conditions, and thus, such a method of solution is not admissible.

Therefore, with respect to these difficulties for viscous fluids, it is reasonable to
resort to approximate description of the stress tensor by a direct calculation of its
components by means of mechanics of individual material particles carrying the mass
and momentum and interacting with each other. Thus, let us consider two material
particles shown schematically in Fig. 3.

Fig. 3. Shear forces between two material particles

Interaction forces between these particles are reduced to the central force with
direction defined by positions of the particles in space and the second force normal to
the first one. The central force is associated with the average pressure and the trans-
verse force – with the shear force between these particles. To simplify the discussion,
let us consider the case of incompressible fluid and the corresponding, viscous term
of the stress tensor

T i j = µ

(
∂vi

∂x j +
∂v j

∂xi

)
. (35)

For the two particles (a, b) in the figure, it is convenient to introduce the unit vector

e =
rab

|rab|
=

rb − ra

r
=

1
r
[
(xb − xa) i + (yb − ya) j + (zb − za) k

]
. (36)
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At the same time,

∂vi

∂x j =
∂vi

∂r
∂r
∂x j =

∂vi

∂r
(xb − xa) j

r
�

∆vi

∆r
(xb − xa) j

r
�

1
r2 (vb − va) j (xb − xa) j . (37)

From substitution of (37) into equation (35) one obtains

T i j �
µ

r
[
eiV j

ab + e jV i
ab

]
, (38)

where
V j

ab = (vb − va) j . (39)

The stress tensor is assumed to vary continuously between the points a and b, and
therefore, in the midpoint m, the following condition should be satisfied

µk
[
ei (Vam) j + e j (Vam)i

]
= µl

[
ei (Vmb) j + e j (Vmb)i

]
, (40)

where µk and µl denote the viscosity coefficients at points a and b, and

Vam = Vm − Va, Vmb = Vb − Vm,
Vam + Vmb = Vb − Va = Vab.

(41)

With respect to the midpoint m, the components of the stress tensor becomes

T i j
am =

µk

ram

[
ei(Vam) j + e j(Vam)i

]
,

T i j
mb =

µl

rmb

[
ei(Vmb) j + e j(Vmb)i

]
.

(42)

These components are equal to each other and therefore, from substitution of (41)
into the last formulae, the following relations are obtained

(Vam) j =
µl

µk + µl
(Vab) j , (Vam)i =

µl

µk + µl
(Vab)i. (43)

Knowing that T i j
am = T i j

mb = T i j
ab we arrive at the following result

T i j
ab =

2
r

µkµl

µk + µl

[
ei(Vab) j + e j(Vab)i

]
. (44)

For the case µk = µl = µ the equation simplifies to the form

T i j
ab =

µ

r
[
ei(Vab) j + e j(Vab)i

]
. (45)

The last formulae are similar to descriptions of the inter-particle averaged shear ten-
sors Tν

i j presented in Hu and Adams (2006), and in Grenier et al (2009).
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In accordance with equation (44), for the two-dimensional problem considered,
the momentum equations for the incompressible viscous fluid are written in the fol-
lowing form

du
dt

= −
∑

b
mb

 pa

ρ2
a

+
pb

ρ2
b

 ∂Wab

∂xa
+

+
∑

b
mb

T 11
a

ρ2
a

+
T 11

b

ρ2
b

 ∂Wab

∂xa
+

T 12
a

ρ2
a

+
T 12

b

ρ2
b

 ∂Wab

∂ya

 ,
dv
dt

= −
∑

b
mb

 pa

ρ2
a

+
pb

ρ2
b

 ∂Wab

∂ya
− g+

+
∑

b
mb

T 21
a

ρ2
a

+
T 21

b

ρ2
b

 ∂Wab

∂xa
+

T 22
a

ρ2
a

+
T 22

b

ρ2
b

 ∂Wab

∂ya

 .

(46)

where the components of the shear forces are

T 11
ab =

2
r2

µaµb

µa + µb
[2(xb − xa)(ub − ua)] ,

T 12
ab =

2
r2

µaµb

µa + µb
[(xb − xa)(vb − va) + (yb − ya)(ub − ua)] ,

T 22
ab =

2
r2

µaµb

µa + µb
[2(yb − ya)(vb − va)] ,

(47)

where Tab = Ta = Tb for each pair of individual material particles.
In the discussion on shear forces in viscous fluids presented so far, the shear stress

tensor was obtained by means of substitution of exact differentiation of the velocity
components, entering the formulae for the rate of the deformation tensor, by quotients
of differences of the velocity components at material particles contributed in the inter-
polation procedure applied. Such a procedure seems to be justified, provided that the
distance between a pair of particles is not too big, and, at the same time, the velocity
distribution over a support domain of a given particle is sufficiently smooth.

6. Numerical Experiments

In order to illustrate the discussion presented in the preceding sections, in what follows
we will consider some numerical experiments for a fluid flow in a plane, rectangular
basin of water as it is shown schematically in Fig. 4.

The motion of the incompressible fluid is induced by a piston-type generator
placed at the left hand side of the fluid domain. The generator – fluid system starts to
move at a certain moment of time. The generator velocity is assumed in the following
form (Wilde and Wilde 2001)

vg(t) =
dxg
dt

= Am

{
1 −

[
1 + τ +

τ2

2!
+ · · · +

τn

n!

]
exp(−τ)

}
, τ = ηt, (48)
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Fig. 4. Rectangular fluid domain with circular cylinder

where Am is the velocity amplitude, η is a positive parameter responsible for a growth
in time of the generator velocity, and τ is the dimensionless time.

One can check that at t = 0, the generator velocity, together with its acceleration
and time derivatives up to thenorder are all equal to zeros. With growing value of time
the velocity (48) goes to the velocity amplitude (the expression within the brackets
goes to unit value). With the assumed velocity, two cases of flow generation are con-
sidered. The first one, shown schematically in Fig. 5a, describes a half pulse of the
generator plate and the second one, shown in Fig. 5b, denotes a finite pulse with zeros
velocity and displacement at the end point of time.

In the numerical solution, the distribution of material particles in the problem do-
main together with their velocities and pressure distribution over the circular cylinder
are calculated at chosen moments of time. The calculations have been performed for
the non-viscous and viscous fluid as well. The discrete solution of the problem is re-
duced to integration in time of the continuity and momentum equations written for all
the material particles. For each particle, we have the following system of differential
equations

dρa

dt
= Ma,

dua
dt

= Fa,
dxa

dt
= Ga, (49)

where:
Ma =

∑
b

mb(ua − ub)∇aWab (50)

and

Fa = −
∑

b
mb

 pa

ρ2
a

+
pb

ρ2
b

∇aWab + ba + Ta. (51)

In this equation ba = (0,−g) denotes the gravity acceleration vector, and Ta describes
the shear forces for the viscous fluid. The term Ga in the third equation in (49) denotes
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Fig. 5. Velocity and displacement of the generator plate

a corrected velocity of particle a. The velocity correction is assumed in the form as
proposed by Monaghan (1992)

Ga = ua +
∑

b

ma

ρa + ρb
(ub − ua)Wab, (52)

which aims at smoothing velocity of a given particle.
For consistency, the corrected velocities are also used in equation (50). Similar

correction is performed for the density field at chosen moments of time by means of
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the formula
ρa =

∑
b

mbWab. (53)

The evolution equations (49) are integrated numerically in the discrete time do-
main by applying an explicit two steps predictor – corrector scheme. Thus, in the first
step, the mid-step value of the particle density, velocity and position are calculated

ρk+1/2
a = ρk

a +
∆t
2

Mk
a , uk+1/2

a = uka +
∆t
2

Fk
a , xk+1/2

a = xk
a +

∆t
2

Gk
a, (54)

where ∆t = tk+1 − tk is the time step length.
Then, in the second, final step, the values of the dependent variables are calculated

according to the formulae

ρk+1
a = ρk

a + ∆t Mk+1/2
a , uk+1

a = uka + ∆t Fk+1/2
a , xk+1

a = xk
a + ∆t Gk+1/2

a . (55)

In order to ensure the stability of the numerical integration, the time step ∆t should
satisfy the so called CFL condition that the speed of the initial particle spacing be
greater than the reference speed (in our case the sound speed) (Toro 1997). With re-
spect to a barotropic fluid with the bulk modulus κ and the sound speed c =

√
γκ/ρ0,

the use of the real bulk modulus for water in the equation of state would result in
extremely small time steps (Bonet and Lok 1999). Therefore, an artificial smaller
bulk modulus has been used in such a way, that, instead of the sound speed, a certain
maximum velocity given by equation (7) with ρ0 = 103 Pa and ρ0 = 103 kg/m3 was
taken into account. The evolution equations (49) were integrated with the time step
of length ∆t = 2 × 10−4 s. The initial conditions at t = 0 were those for the generator
– fluid system at rest. Numerical solutions have been conducted for the non-viscous
(Ta = 0 in equation (51)), and viscous (Ta , 0) fluids, as well. As it has been ex-
pected, the differences between solutions for the viscous and non-viscous fluids were
so small (the differences were of second order small quantities) that in analysis of the
aforementioned problem, the laminar viscosity of the fluid may be ignored. In fact,
the spacing of the material particles was to big to describe changes within boundary
layers of very mall thickness, where theinfluence of fluid viscosityon finial results may
be significant.important. Some of the results obtained in computations are presented
in the subsequent figures. The plots in figures 6 and 7 show the evolution in time
of positions of the material particles and their dimensionless velocities, calculated
according to the formula

ue =
u

|umax|
, |umax| =

√(
u2 + v2)

max, (56)

velocities for the generation presented in these plots correspond to the flow generation
as presented in Fig. 5, respectively 5a. The next figure (8) shows the distribution of
pressure over the cylinder for the flow generation presented in Fig. 5a. And finally,
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Fig. 6. The evolution in time of the material particles a), and their velocities b) for the
generation presented in Fig. 5a
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Fig. 7. The evolution in time of the material particles a), and their velocities b) for the
generation presented in Fig. 5b
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Fig. 8. The distribution of pressure over the cylinder for the generation presented in Fig. 5a

Fig. 9. The distribution of pressure over the cylinder for the generation presented in Fig. 5b

the plots in Fig. 9 illustrate the evolution of pressure for the flow generation as illus-
trated in Fig. 5b. From the plots it may be seen, that the SPH formulation seem to be
sufficiently accurate to describe main features of behaviour of the fluid body, even for
the case of big displacements of the fluid particles. It is difficult however to access
the method accuracy, since it may be different in different areas of the fluid domain.
For instance, it is reasonable to expect a lower accuracy in description of the flow
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within areas close to the fluid boundaries. Nevertheless, the SPH formulation seems
to be advantageous over mesh methods, especially in describing big displacements
and possible discontinuities of fluid flows. The weak side of the method is that it
needs a relatively large number of fluid particles to simulate a fluid flow and thus it
needs a large time of computer work.

7. Concluding Remarks

The paper presents a discussion on boundary conditions and approximations in the de-
scription of shear forces for viscous fluids in the SPH description of water flows in the
rectangular fluid domain with a circular cylinder in it. Close attention has been paid
on boundary conditions at curved solid – fluid boundaries of the problem domain.
In order to calculate the shear forces for viscous fluids, approximate description of
interaction forces for a pair of particles was formulated in which differentiation of the
stress components has been substituted by difference quotients of associated shear
forces. Such a formulation reduces the order of the space differentiation of the ve-
locity field by one. In this way, the solution to the viscous fluids is similar in nature
to solution for non-viscous fluids. The numerical examples illustrate the ability of
the SPH method to describe flows around a circular cylinder for the non-viscous and
viscous fluids, as well. The SPH formulation is capable to describe the main features
of the flow around the cylinder. It leads to accurate results in the fluid domain , except
for the solid boundary areas where a certain deterioration of the numerical results
may occur. It should be stressed that this solution to the boundary conditions at the
fluid – cylinder interface is only a certain approximation, consistent with the discrete
method employed.
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