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Abstract
The paper is concerned with the problem of gravitational wave propagation in water of variable
depth. The problem is solved numerically by applying an element-free Galerkin method. First,
the proposed model is validated by comparing its predictions with experimental data for the
plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations
performed for plane gravity waves propagating through a region with a sloping bed are pre-
sented. These results show the evolution of the free-surface elevation, displaying progressive
steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform
depth. In addition, some of the results of the present model are compared with those obtained
earlier by using the conventional finite element method.
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Notation

b – body force vector,
c – speed of sound,
D – strain-rate tensor,
g – gravity acceleration,
I – unit tensor,
K – fluid compressibility modulus,
Nk – shape function,
n – unit normal vector,
p – pressure,
p j – polynomial basis function,
p – vector of polynomial basis functions p j ,
r – distance between two points,
R – weighting function support radius,
s – unit tangential vector,
t – time,
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u(x, t) – field function,
u – velocity vector,
W – weighting function,
xi (i = 1, 2, 3) – spatial Cartesian coordinates,
x – position vector,
∇2 – Laplace operator,
µ – fluid viscosity,
ρ – density,
σ – Cauchy stress vector.

1. Introduction

The problem of propagation of free-surface gravitational waves in water of variable
depth has been extensively analysed by employing the methods of classical fluid me-
chanics. Examples of successful treatment of this problem can be found in funda-
mental works by Stoker (1957), Wehausen and Laitone (1960), and more recently in
two volumes of the book by Dingemans (1997). The application of classical analyt-
ical solutions, though, especially of those based on a small parameter expansions,
is restricted to the cases of small-amplitude waves propagating over beds of small
slopes. In situations when we deal with large-amplitude waves and beds of strongly
varying geometry, one has usually to resort to discrete methods in order to construct
approximate solutions to the problems investigated.

In general, the discrete methods can be divided into two groups. The first group
comprises conventional methods, such as the finite difference, finite element and
boundary element methods, in which a numerical grid, or mesh, is imposed on the
domain of interest, with some (usually regular) pattern of nodal points at which values
of unknown functions are calculated. Over the past five–six decades, these methods
have proved useful for solving a wide class of problems of computational fluid dy-
namics. However, the above mesh-based methods fail in many situations of practi-
cal importance. For instance, in cases in which complex non-linear phenomena oc-
cur, fluid boundaries (free surface or fluid–solid interface) move and change shape
rapidly, or fragmentation of fluid takes place. Effective solution of such problems is
only possible by means of so-called mesh-free methods, extensively developed in the
past two decades. In these new methods the discrete points (or discrete particles) can
be irregularly distributed in a domain, and there is no fixed connection among them
throughout computations, which gives this approach a great flexibility to deal with
problems in which large deformations occur. To this group of methods belong, in
particular, the Smoothed Particle Hydrodynamics (SPH) originated by Gingold and
Monaghan (1977) and Lucy (1977), and employed to solve fluid dynamics problem
by Lo and Shao (2002), Gómez-Gesteira et al (2005), Dalrymple and Rogers (2006)
and Antoci et al (2007), or the Finite Point Method (FPM) used by Oñate et al (1996a,
b), Löhner et al (2002) and Ortega et al (2007).
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In the present work another mesh-free method, namely the Element-Free Galerkin
(EFG) method, is applied to solve a gravity water wave transmission problem. The
EFG method was formulated in the mid 1990s by Belytschko and co-workers (Be-
lytschko et al 1995, 1996, 1998); some aspects of the method are also discussed in
the book by Zienkiewicz and Taylor (2000). Ever since, the EFG method has been
successfully used to solve a great number of problems in solid mechanics; however,
there have been very few applications of this approach yet in the field of computational
hydrodynamics. Therefore, an attempt is made here to fill this gap and to construct an
EFG model for fluid flows. The proposed model is employed to analyse the problem
of non-linear free-surface waves propagating in water of variable depth. For more
generality, the water is treated as a Newtonian viscous and compressible liquid, so
that the model can be also used in the future to solve problems encountered in other
branches of fluid dynamics.

The numerical EFG model has been used to simulate the plane problems of wave
propagation for several cases of simple bed profiles, idealizing the conditions encoun-
tered in natural surf zones. First, calculations have been carried out for the flow over
the horizontal bed, in order to validate the model by comparing its predictions with
experimental data measured in a laboratory flume. Then, the model is employed to
simulate the wave transformation in water of variable depth. Two specific cases of
the bottom, consisting of horizontal and uniformly sloping segments, are examined.
The numerical results illustrate the evolution of the free-surface elevation, displaying
gradual steepening of the wave over the sloping bed, followed by its attenuation due
to dispersion in a region of constant depth. The predictions of the present (mesh-free)
EFG model are compared with the results obtained earlier by applying a conventional
(mesh-based) finite element method (Staroszczyk 2009), with the aim to investigate
how the EFG model performs against the other, better-established discrete formula-
tion.

The paper is organized as follows. In Section 2 equations describing the behaviour
of water, treated as a viscous and compressible fluid, are presented. Next, in Sec-
tion 3, a summary of the element-free Galerkin methodology is given, in which the
main concepts and ideas underlying the method are outlined, the discrete forms of the
governing equations are shown, and the numerical techniques employed to solve the
ensuing system of algebraic equations are briefly described. The following Section 4
contains the results of the model application to the wave propagation problems, in-
volving a uniform water depth case used for comparisons with experiments, and two
specific cases with a sloping bed for illustrations. Finally, some concluding remarks
are drawn in Section 5.

2. Problem Statement

A plane fluid flow problem with a free surface, sketched in Figure 1, is considered,
in which gravity waves propagate over an uneven, impermeable and rigid bottom.
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The problem is analysed in spatial (Eulerian) Cartesian coordinates, with the axis x1
directed horizontally, and the vertical axis x2 directed upwards. The bottom, fixed
in time, geometry is defined by the function x2 = f (x1), and the current position of
the free surface is described by the function x2 = h(x1, t), with t denoting time. The
symbols n and s in Fig. 1 denote unit vectors normal and tangential to the respective
boundaries.

Fig. 1. Plane free-surface fluid flow problem definition

Let the current fluid particle velocity be described by the vector u, with compo-
nents v j (xi, t), (i, j = 1, 2). Then, the mass conservation law, expressed in the coordi-
nates Oxi, is given by the continuity equation

Dρ
Dt

+ ρ div u = 0, (1)

in which ρ is the fluid density, D /Dt denotes the material time derivative, and div
denotes the spatial divergence operator. The linear momentum conservation balance,
in the presence of body forces due to gravity, yields the equation of motion in the form

ρ
Du
Dt

= div σ + ρb, (2)

where σ is the Cauchy stress tensor and b denotes the body force vector. In the prob-
lem investigated, the latter vector has the components b1 = 0 and b2 = −g, with g
being the gravity acceleration.

Water is assumed here to be an isotropic, viscous and compressible fluid, the re-
sponse of which to stress is defined by the following constitutive relation (Chadwick
1999):

σ = −

(
p +

2
3
µ tr D

)
I + 2µD. (3)
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In the above expression, p denotes pressure, µ is the fluid viscosity, I is the unit tensor,
tr denotes the trace of a tensor, and D is the strain-rate tensor, with components given
by

Di j =
1
2

(
∂vi
∂x j

+
∂v j

∂xi

)
, (i, j = 1, 2). (4)

Substitution of the stress relation (3) into the equation of motion (2) results in the
Navier-Stokes equation expressed by

ρ
Du
Dt

= −grad p + µ∇2u +
1
3
µ grad div u + ρb, (5)

where grad denotes the spatial gradient operator, and ∇2(·) = div[grad(·)T ] stands for
the vector Laplace operator, with the superscript T denoting the tensor transpose.

A common approximation is to treat water as a barotropic fluid, for which the
pressure is entirely determined by the fluid density. Adopting the pressure dependence
on the density to be defined by

Dρ
Dt

=
1
c2

Dp
Dt

, (6)

in which c is the speed of sound, and inserting the latter expression into (1), transforms
the continuity equation into the form

Dp
Dt

+ K div u = 0, (7)

where K = ρc2 is the fluid elastic compressibility modulus.
In order to complete the problem statement, initial and boundary conditions need

to be specified. It is supposed that the fluid motion starts at time t = 0, and the fluid is
at rest for t ≤ 0; that is, the fluid velocities are then zero, u = 0, and the stress in fluid
is that of the hydrostatic pressure, σ = −pI. The boundary conditions which must be
satisfied on the surfaces Γσ and Γv, see Fig. 1, are adopted in the following standard
forms:

n · (σn) = tn and s · (σn) = ts on Γσ,
u · n = vn and u · s = vs on Γv,

(8)

where tn and ts are prescribed traction vector components normal and tangential to the
boundary Γσ, and vn and vs are prescribed velocity components normal and tangential
to the boundary Γv. In most common situations, the boundary Γσ on which stresses
are prescribed is that of the fluid free surface, here defined by x2 = h(x1, t). Usually,
the stresses within the fluid are measured relative to the atmospheric pressure, tacitly
treated as constant. Hence, neglecting shear stresses on the free surface, the conditions
prescribed on the fluid free surface can be simplified to the form

x2 = h(x1, t) : n · (σn) = 0 and s · (σn) = 0. (9)
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On the other hand, the boundary Γv, on which kinematic constraints are imposed,
most often is identical with a fluid–solid interface. In the case of a rigid, fixed bottom,
defined by x2 = f (x1), the velocity vector component normal to the boundary is zero.
As regards the velocity vector component tangential to the boundary, it is assumed that
this component is not constrained. The latter simplification implies that the possible
effects of the boundary layer along the bed are ignored; however, it is supposed that
such viscous fluid flow effects are negligibly small in the case of water gravity waves.
Accordingly, the kinematic boundary condition at the bed is expressed by

x2 = f (x1) : u · n = 0. (10)

On the moving parts of the solid boundaries, the kinematic conditions must be speci-
fied by prescribing in relation (10) the fluid/solid velocity components vn(x1, x2, t),0.

The system of differential equations (5) and (7), complemented by relevant bound-
ary conditions, describes the flow problem in terms of the pressure p and the velocity
components vi (i = 1, 2). This set of equations is solved numerically by applying a dis-
crete method presented in the next section.

3. Element-free Galerkin Methodology and Equations

The key issue in any meshless approach is the method used to evaluate, by interpola-
tion or approximation, the values of field variables at any point of a domain by means
of the corresponding values defined at a set of discrete nodes. Since the nodes can
be distributed in an irregular, and sometimes highly disorderly, manner, the technique
required for such evaluations is far from straightforward. This explains why the first
techniques of this kind appeared only in the 1980s, and were initially devised for
the needs of smooth curve and surface fitting for arbitrarily distributed data points.
The successful data fitting algorithm was based on the moving least squares (MLS)
approach. Its potential was fully realized in the field of applied mechanics only in
the 1990s, when a group of first meshfree discrete methods, all implementing the
MLS approximations, were developed. Examples of such methods include the diffuse
element method (DEM) (Nayroles et al 1992), the EFG method (Belytschko et al
1995, 1996), and the partition of unity finite element method (PUFEM) (Melenk and
Babuška 1996).

In the present work the EFG method is applied. The main ideas and important
features of this method are illustrated in Figure 2. The continuum is represented by
a set of discrete points, shown as the dots, at which the values of all field functions
are defined. In order to evaluate the value of a field function at a spatial point x,
indicated by the square, a special weighting function, denoted by W in the figure, is
used. This function is centred at the point x and vanishes at a distance R and farther
from that point, see the circle of radius R. Therefore, only the data given at discrete
points xk inside the circular domain (the solid dots) are involved in the approximation
of the field function at x, while the data at the remaining nodes (the empty dots) do
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Fig. 2. The methods of approximation and integration of field functions in the EFG method.
The approximation of a function at a point x involves parameters defined at discrete nodes
(solid dots) situated within a circular domain of radius R centred at x. The data at points outside
this domain (empty dots) do not contribute to the approximation of the field function at the
point x. The integration of functions involved is carried out over background cells which are
independent of the nodes distribution. Integration points within a cell are indicated by crosses

not contribute to the function evaluation at the point considered. In order to calcu-
late integrals of approximated field functions appearing in the Galerkin formulation,
background integration cells, with boundaries indicated by the dashed lines, are in-
troduced. These integration cells, contrary to the standard finite element method, are
completely independent of the layout of the discrete nodal points. Therefore, they
can have simple shapes — most often rectangles or squares are used. Commonly, the
integration is performed by applying the Gauss quadratures; the quadrature points are
indicated in the figure by the crosses. Details regarding the integration technique in
the EFG method can be found in the paper by Dolbow and Belytschko (1999).

In the moving least squares approach it is assumed that the approximation function
is described by the relation

u(x) ≈ û(x) =

m∑
j=1

p j(x) a j(x) = pT (x) a(x) ( j = 1, 2, . . . ,m), (11)

where p j are a set of m linearly independent functions which form a so-called basis,
and a j are unknown coefficients to be determined; the latter, as indicated above, are
functions of the spatial coordinates. The functions p j(x) are usually assumed to be
the polynomials, though other functions can be used if they model well the solution
expected (for instance, in problems with singular solutions, singular functions can be
included in the basis). In most applications, the functions p j are chosen as a set of
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monomials; these must include terms of the order which is sufficiently high to ensure
approximation of all spatial derivatives appearing in the differential equation to be
solved. For instance, in two-dimensional problems, the commonly used bases include
the linear basis defined by

pT = (1 x z) (12)

and the quadratic basis represented by

pT =
(
1 x z x2 xz z2

)
. (13)

In the above expressions, x and z denote the plane rectangular coordinates, with the
equivalence x = x1 and z = x2, see Fig. 1.

The unknown coefficients a j(x) ( j = 1, 2, . . . ,m) are determined by performing
a least squares fit which minimizes the square of the distance between n values of
the function u at the points xk (k = 1, 2, . . . , n) and the corresponding local approx-
imations û at the same points xk , as given by (11). Hence, the following weighted
quadratic form is to be minimized:

J(x) =

n∑
k=1

W (x − xk) [û(xk) − u(xk)]2 . (14)

The weighting function W (x − xk) which enters (14) is introduced in order to achieve
the best fit at a given spatial point x. This is ensured by choosing a special shape of
the function W , which attains its maximum value at x and decreases monotonically
in a smooth manner with increasing distance r = |x − xk | between the points x and
xk . The weighting function is constructed in such a way that it is non-zero only in
a small area called the compact support; most often, in the plane problems, the latter
has a circular shape, as shown in Fig. 2. In this way the number of points xk involved
in the approximation of a field function u at the point x is limited. To make sure
that the function W performs well in computations, it has to possess, apart from the
afore-mentioned compactness, some additional properties (most importantly, it must
be symmetric, i.e. W (x − xk) = W (xk − x), see Monaghan (1992), Liu and Liu (2003)
and Li and Liu (2004). A few examples of the weighting functions are presented in
Figure 3, in which R denotes the radius of the function circular support. These exam-
ples include the cubic, quartic and quintic (Wendland 1995) spline functions, and the
exponential (Gaussian) function.

With the approximation formula (11) for û(x), the functional J(x) in (14) becomes

J(x) =

n∑
k=1

W (x − xk)
[
pT (xk) a − u(xk)

]2
, (15)

which can be expressed in a compact matrix form (Nayroles et al 1992) as

J(x) = (P a − u)T W(∆x) (P a − u) . (16)
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Fig. 3. Examples of weighting functions W

In (16), u is the vector containing all the nodal parameters uk = u(xk) (k = 1, 2, . . . , n),
the matrix P is given by

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...
p1(xn) p2(xn) · · · pm(xn)

 , (17)

and W(∆x) is the diagonal matrix defined by

W(∆x) =


W (x − x1) 0 · · · 0

0 W (x − x2) · · · 0
...

...
. . .

...
0 0 · · · W (x − xn)

 . (18)

The functional J(x) defined by (16) is stationary (attains its minimum value) when
its all derivatives with respect to the coefficients a j ( j = 1, 2, . . . ,m) are zero. This
yields

∂J(x)
∂a

= 0 ⇒ A(x) a(x) − B(x) u = 0, (19)

where

A = PTW(∆x) P, B = PTW(∆x). (20)
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For the particular case of the plane problem and the polynomial basis p(x) reduced to
the linear form defined by (12) (m = 3), the matrix A of dimensions 3 × 3 is expressed
by the relation

A(x) =

n∑
k=1

W (x − xk) p(xk) pT (xk) =

n∑
k=1

W (x − xk)


1 xk zk

xk x2
k xkzk

zk xkzk z2
k

 , (21)

and the k-th column of the matrix B of dimensions 3 × n is given by

Bk(x) = W (x − xk) p(xk) = W (x − xk)

 1
xk
zk

 (k = 1, 2, . . . , n). (22)

The conditioning, and the invertibility, of the matrix A depends on the number k and
the relative arrangement of the nodal points xk involved in the approximation at x.
A necessary condition for non-singularity of A is that at least m points are used for
the approximation at a given spatial point x, and that the points xk are not all located
on a straight line.

Solution of the matrix equation (19) determines the required coefficients a j which
minimize the functional J(x) as

a(x) = A−1(x) B(x) u. (23)

The above solution for a depends continuously on the position x of a point selected
for the fit by the moving least squares algorithm. Returning now to equation (11) and
inserting into it the expression for a, one obtains the formula for approximation of the
function u(x) in the following form

û(x) =

n∑
k=1

Nk(x) uk , (24)

where Nk are the shape functions. The latter are given by

Nk(x) = pT (x)A−1(x) Bk(x), (25)

and define interpolation functions for each nodal value ûk; recall that the vectors Bk
are given by (22). In general, the EFG shape functions do not possess the Kronecker
delta property, that is Ni(xk) , δik , which is the case for the FE shape functions. This
is due to the fact that the functions Nk are established here by the optimization scheme,
so that, in general, the local values of the approximating function ûk do not exactly fit
the nodal unknown values uk .

In order to solve differential equations of mechanics by a discrete method, one also
needs spatial derivatives of the MLS shape functions, necessary to approximate the
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gradient of û(x) given by equation (24). To construct the derivatives of the functions
Nk , let rewrite relation (25) in the form

Nk(x) = pT (x)Ck(x) (k = 1, 2, . . . , n), (26)

with the vector Ck of length m defined by

Ck(x) = A−1(x) Bk(x). (27)

Then, the derivative of the shape function Nk with respect to the spatial coordinate xi
(i = 1, 2) is given by

∂Nk

∂xi
=
∂pT

∂xi
Ck + pT A−1

(
∂Bk

∂xi
−
∂A
∂xi

Ck

)
, (28)

where
∂A
∂xi

=

n∑
k=1

∂W (x − xk)
∂xi

p(xk) pT (xk) (29)

and
∂Bk

∂xi
=
∂W (x − xk)

∂xi
p(xk). (30)

In a similar way, higher-order derivatives of the MLS shape functions can be calcu-
lated, but these are not necessary in the present work.

Having determined the functions Nk and their derivatives, needed to approximate
field functions and their derivatives in terms of the nodal parameters uk , one can now
proceed to discretization of the problem that is described by the Navier-Stokes and
continuity equations. It turns out that for the EFG method this step is quite similar
to the standard finite element method. Accordingly, the differential equations (5) and
(7) are multiplied by a set of weighting functions and then integrated over the whole
domain occupied by the fluid, leading to the weak formulation of the problem. As is
characteristic of the Galerkin method, the latter weighting functions are identical to
the shape functions Nk; that is, they are different from the weighting functions W used
for the MLS approximations of the field variables. Next, the formula (24) is employed
in the equations to express continuous field function derivatives in terms of the shape
functions derivatives and the discrete nodal parameters uk . Then, Green’s theorem
is applied to lower by one the order of differentiation of the functions involved. The
above procedure transforms the problem to the solution of a set of differential equa-
tions which, in a matrix notation, takes the form:

Gu̇(t) + Ku(t) = f (t), u(0) = u0. (31)

In the latter expression, u is the vector of unknown discrete values comprising the
velocities and pressures in all discrete nodes of the system, f is the loading vector,
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and u0 represents the initial solution vector (nodal values of the velocity and pressure
fields at time t = 0).

The matrices G and K and the vector f result from the calculation of integrals of
respective terms involving the shape functions and their first derivatives. These ma-
trices must be aggregated at each time step, as the spatial distribution of the discrete
nodes continually changes during the fluid flow. In order to integrate the equations
(31), a single-step scheme, known as the weighted average θ-method, has been em-
ployed (Zienkiewicz and Taylor 2000). Application of this method to (31) gives the
following system of algebraic equations:

(G + ∆t θK) ui+1 = [G − ∆t (1 − θ)K] ui + ∆t f̄ i (i = 0, 1, 2, . . .), (32)

which connects the solution vectors ui and ui+1 at two successive time levels, ti and
ti+1 = ti + ∆t, where ∆t denotes the time step length. The vector f̄ i appearing in (32)
is the time-averaged loading vector which, assuming its linear variation during the
current time step i, is expressed by

f̄ i = (1 − θ) f i + θ f i+1. (33)

The value of the weighting parameter θ can vary between zero (fully explicit Euler
scheme) and unity (fully implicit backward scheme). The most accurate results are
obtained for θ = 0.5, but the best numerical stability is usually achieved for θ ∼ 1.

4. Numerical Simulations

The discrete method, presented in the preceding section, has been applied to simulate
the propagation of free-surface gravity waves in water over beds of simple geometry.
The following parameters have been used to describe the physical properties of water:
the reference density (at the atmospheric pressure) ρ0 = 103 kg m−3, the fluid shear
viscosity µ = 1.01 × 10−3 Ns m−2, and the compressibility modulus K = 2.04 × 109

Pa; both µ and K have been treated as constants.
First, in order to validate the numerical model, the wave propagation in water of

uniform depth has been considered. Hence, the geometry typical of a wave flume has
been adopted, see Figure 4, and the predictions of the EFG model have been compared
with results of a laboratory experiment carried out by Szmidt and Hedzielski (2007).
In that experiment, the movement of water, of an initial depth of H = 0.6 m, was
induced by oscillatory translations of a vertical wall AB, carried out with an angular
frequency of 2.90 s−1 (equivalent to a period of 2.17 s, generating a surface wave of
a length of 4.80 m = 8 H, travelling with a phase velocity of 2.22 m s−1. The walls
AD and CD are treated as fixed and rigid. For the purpose of comparisons, a set of
measurements of the variation of the free-surface elevation at a distance of 3 m from
the wave-maker wall has been used.

The EFG model was driven by the horizontal velocities calculated from the cor-
responding displacements measured at the wave-maker wall during the experiment.
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Fig. 4. Initial water domain geometry for a flow in a wave flume

The length of the computational domain was L = 15 m. A uniform grid of discrete
nodes used in these test simulations consisted of 11 ‘rows’ of nodes along the vertical
and 101 ‘columns’ of nodes along the horizontal axis, so that the initial vertical and
horizontal spacings were equal to 6 cm and 15 cm, respectively. In total, the discrete
system consisted of 1111 nodes. The spacial integration by the Gaussian quadratures
was carried out on background rectangular cells, the vertices of which coincided with
the initial positions of the discrete nodes; hence, their dimensions were 6 cm × 15 cm.
In each cell four quadrature points were used. The time integration was performed
with the time step ∆t = 5 × 10−3 s, which corresponds, for the initial, undistorted
grid of nodes, to the Courant number of about 0.07. The numerical and experimental
results are compared in Figure 5. The plot in Fig. 5a displays the time history of the
horizontal displacements of the wave-maker, and the plots in Fig. 5b illustrate the evo-
lution of the free-surface elevation at the chosen point at 3 m from the generator, with
the solid line representing the EFG model predictions, and the dashed line with the
circles showing the experimental data. The plots demonstrate a good agreement be-
tween the numerical and experimental results. The numerically predicted wave length
compares well with that measured in the flume. There are some differences between
the calculated and actually measured free-surface elevations, but these are small —
the maximum relative differences for the crest elevations are about 2%, and those for
the troughs are about 3%. Therefore, on the basis of these results, it can be concluded
that the EFG model is constructed properly and gives results of satisfactory accuracy.

Next, the numerical model has been used to simulate a transient problem of wave
propagation in water of variable depth. For this purpose, two cases of beds with slop-
ing sections have been considered, to mimic idealized beach profiles. The first case,
sketched in Fig. 6a, represents a uniformly inclined beach, with a slope 1/m, ending
at a vertical wall, and the second case, depicted in Fig. 6b, represents a uniformly
inclined beach followed by a flat, constant-depth region. In both cases, a free-surface
wave is supposed to be generated by a movement of a rigid vertical wall situated at the
left-hand end of the flow domain (that is, at x = 0). The geometric dimensions of the
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Fig. 5. Comparison of the EFG model predictions with experimental data: (a) time variation
of the wave-maker horizontal displacements, (b) time variation of the free-surface elevation at

the distance of 3 m from the wave-maker

problem have been adopted as those of a wave flume. Hence, the region adjacent to
the moving wall, of a length L1, has a constant depth H = 0.6 m, and the total length
of the water domain, in both cases, is L = 15 m.

It has been assumed that water is at rest at times t < 0, and is set in motion by
the vertical wall which, starting at t = 0, makes a single translational movement in
the horizontal direction by a distance of D0, and then stops. The following smooth
function, with continuous first and second-order time derivatives at t = 0, has been
adopted to describe the horizontal displacement d0(t) of the wave-maker:

d0(t) = D0
[
1 − exp

(
−τ3

)]
, τ =

t
T0

, (34)

where T0 is a characteristic time of the wave-maker movement.
The discrete grid imposed on the water domain consisted of 11 ‘rows’ of nodes

along the vertical, and 251 ‘columns’ of nodes along the horizontal direction. The
spacing of nodal points was constant along the length of the flume and was equal
to 6 cm, while in the vertical direction the spacing of nodes, at each x uniformly
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Fig. 6. Profiles of two beds with sloping sections

distributed along z, depended on the local depth of water (the largest vertical spacing,
in the region of constant depth equal to H , was 6 cm). The time integration of the
problem equations was performed by using a constant-length time increment ∆t =

10−3 s. Such a relatively short time step was necessary to maintain stability of the
numerical scheme.

The plots in Figure 7 illustrate the transformation of a wave travelling over (a) the
horizontal bed, and (b) over the sloping bed displayed in Fig. 6a. In the latter case,
the geometric dimensions are L1 = 3 m, L2 = 12 m and H1 = 40 cm, so that the slope
of the uniformly inclined section of the bed is 1/30, and the minimum depth of still
water is equal to 20 cm at x = 15 m. The wave motion has been induced by moving the
rigid wall at x = 0 by a distance of D0 = 20 cm, with the characteristic time T0 = 1.0
s. The plots in Fig 7a, presenting the evolution of a transient wave over the horizontal
bottom, show a steady decrease in the leading wave crest height with an increasing
propagation distance. Contrary to that, the wave propagating over the shoaling bed,
see Fig 7b, retains approximately the same height over the inclined section of the bed
(i.e., for x ≥ 3 m). This means, in the particular case considered here, that the shoaling
and dispersive effects are roughly counter-balanced. Also, an effect of the sloping bed
on the wave length is apparent in Fig 7b, as the shortening and steepening of the wave
profile are clearly visible in the plots.

Finally, Figure 8 shows the transformation of a wave propagating over the bed
defined in Fig. 6b. Two different slopes, 1/15 and 1/10, of the inclined bottom section
have been considered, in order to examine how the bed sloping affects the wave be-
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Fig. 7. Evolution of the free-surface elevation for a transient wave propagating: (a) over the
horizontal bed, (b) over the uneven bed defined in Fig. 6a (D0 = 20 cm, T0 = 1.0 s)

haviour. Again, L1 = 3 m and H1 = 40 cm, so that the inclined bed extends between
the points x = 3 and x = 9 m in the case of the smaller slope, and between x = 3 and
x = 7 m in the case of the larger slope. Once again some increase in the wave front
height, as the wave passes through the shoaling zone, can be observed, and the wave
length shortening occurring over the sloping bed is clearly seen in the plots.

Exactly the same bed configuration as defined in Fig. 6b and its effect on the
gravity wave transformation was analysed earlier in the paper by Staroszczyk (2009),
in which the standard finite element method was employed to construct the numerical
model. The FE results, obtained for the same wave excitation parameters (D0 and T0 in
equation (34)) as adopted here for the EFG calculations, are presented for comparison
in Fig. 8b, see the solid circles. For the sake of clarity of the plots, the FE results are
displayed only for the time instants 2, 5 and 8 s. About the same initial distribution of
the discrete nodal points in both, EFG and FE, models was used. It is seen that both
methods, EFG and FE, give similar results, with relative discrepancies between the
model predictions not exceeding 3% for the leading wave crest heights. This proves
that the EFG model delivers reliable results.
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Fig. 8. Evolution of the free-surface elevation for a transient wave propagating over the bed
defined in Fig. 6b, for the slopes 1/15 and 1/10 of the inclined section of the bed (D0 = 10 cm,

T0 = 1.0 s). For comparison, shown are also results from the FE model (solid circles)

5. Conclusions

An element-free Galerkin model has been constructed to investigate the plane problem
of free-surface wave propagation in water of variable depth. The discrete model has
been used to simulate the transformation of transient gravity waves travelling over the
bottom of simple shape, with the focus on the wave profile evolution over a sloping
bed. The numerical model reproduces the free-surface elevations measured in a wave
flume with a satisfactory level of accuracy. The results obtained for uneven beds, with
gentle and moderate slopes, have demonstrated the method’s capability of dealing
with problems involving moving boundaries and non-linear effects associated with
the free-surface wave propagation in water of non-uniform depth.

The comparison of the predictions of the EFG model with those obtained by ap-
plying the conventional finite element approach has shown that, for approximately
the same resolution of discrete nodes, the numerical performance of the two meth-
ods, EFG and FE, is similar, with a small gain in accuracy achieved in the case of the
EFG approach. However, the EFG method is more difficult to implement in a com-
puter code due to its increased complexity compared to the classical FEM (for which
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many effective algorithms have been developed over the decades). For this reason, it
seems that for conventional water wave propagation problems, in which no surfaces
of discontinuity develop in the fluid (there is no fluid fragmentation), it is more effec-
tive to use the typical finite element approach. On the contrary, when discontinuity
surfaces develop and evolve within the fluid body (for instance, in such phenomena
as wave breaking or wave impact at a wall), then the application of the element-free
Galerkin method may be preferred, despite its increased computational cost, as this
method is particularly well suited to coping with problems in which fragmentation of
the medium takes place.
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