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Abstract
This paper presents an examination of approximation aspects of the Smoothed Particle Hydro-
dynamics (SPH) in modeling the water wave phenomenon. Close attention is paid on consis-
tency of the SPH formulation and its relation with a correction technique applied to improve
the method accuracy. The considerations are confined to flow fields within finite domains with
a free surface and fixed solid boundaries with free slip boundary conditions. In spite of a wide
application of the SPH method in fluid mechanics, the appropriate modeling of the boundaries
is still not clear. For solid straight line boundaries, a natural way is to use additional (virtual,
ghost) particles outside the boundary and take into account mirror reflection of associated field
variables. Such a method leads to good results, except for a vicinity of solid horizontal bottoms
where, because of the SPH approximations in the description of pressure, a stratification of the
fluid material particles may occur. In order to illustrate the last phenomenon, some numerical
tests have been made. These numerical experiments show that the solid fluid bottom attracts
the material particles and thus, to prevent these particles from penetration into the bottom,
a mutual exchange of positions of real and ghost particles has been used in a computation
procedure.
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1. Introduction

The Smooth Particle Hydrodynamics (SPH) is a relatively new method, extensively
used in solid and fluid mechanics. It is a purely Lagrangian mesh-free method in which
the motion of a fluid is simulated by the motion of a number of material particles. Field
variables of a problem, such as pressure, density, and momentum, are represented by
point variables associated with each of the particles. The field variables are obtained
from particle values, using interpolation functions known as kernels. The method
aims at computing the distribution of these particles and the associated field variables
at selected points in time. In order to describe the motion of these particles and their
mutual interactions, Euler equations for the preservation of fluid continuity and mo-
mentum are applied. With respect to these equations, the SPH may be considered as
a discrete solution for a distribution of material particles in the space domain, which is
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arbitrary in principle. In accordance with such a discrete approach, the interpolation
with a continuous kernel function is used to define derivative operators in the equa-
tions of the fluid motion. Although the fundamental equations of the SPH method
have been derived on the assumption of the fluid’s continuity, they serve equally well
for problems in which discontinuities of field variables and the fragmentation of the
fluid emerge. Examples of such cases are turbulent fluid motion and breaking water
waves, in which the assumption of continuity is broken.

The literature on the subject is considerable. In the last two decades a number of
papers have appeared in which different numerical solvers of the method have been
developed and successfully applied to various problems of hydrodynamics. The fun-
damentals of the method are discussed in the important work of Monaghan (1992).
The SPH theory and its application since its inception in 1977 may be found in Mon-
aghan (2005), where a state of the art of the method is also given. A detailed dis-
cussion on the SPH formulation method may be found in Liu and Liu’s monograph
(2009), which also contains a vast bibliography on the subject. Particularly notewor-
thy among other contributions is the one by Colagrossi and Landrini (2003). These
authors presented an implementation of the method to treat two-dimensional inter-
facial flows with different fluids separated by sharp interfaces. They also studied the
classical dam-break problem including the two-phase approach. For irregularly scat-
tered points, a re-initialization of a density field by means of a linear correction of
a kernel function was used. More recently, Staroszczyk (2010) investigated the wa-
ter flow generated by a dam break. As Colagrossi and Landrini (2003), he applied
linearly corrected kernels to derive all equations of the SPH method (equations of
the conservation of mass and momentum) at each level of the discrete time. In the
above-mentioned papers, water is considered a slightly compressible fluid with an
assumed pressure-density relation. With respect to the description of water gravity
waves, in which water is commonly assumed as an incompressible fluid, attempts have
also been made to formulate the SPH for incompressible flows. Incompressible fluid
formulations may be found in the papers of Lo and Shao (2002) and Ataie-Ashtiani
et al (2008). In these formulations, however, at each time step it is necessary to solve
the Poisson equation for the fluid pressure, which increases computational time.

Along with a growing number of applications of the SPH to various problems
in fluid mechanics, the problems of the stability and accuracy of the method have
emerged, stimulating investigations on the consistency and completeness of the par-
ticle method. A general investigation methodology of the mesh-free methods, to-
gether with several suggestions for their improvement, is presented in Belytschko et
al (1998). In particular, in order to restore the completeness of a kernel approxima-
tion, a correction transformation of such a kernel is proposed. The kernel correction
method, as discussed in Belytschko et al (1998), is followed, among others, by Cola-
grossi and Landrini (2003), Dalrymple and Rogers (2006), and Staroszczyk (2010).
In principle, such a modification of a standard kernel should improve the accuracy
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of the SPH method. However, as pointed out by Liu and Liu (2006), such a kernel
correction may lead to discrepancies in the description of field functions.

The present paper investigates the correction of standard kernels in the SPH ap-
proach in order to evaluate the usefulness of this modification. The main attention of
this research is paid to the so-called reproducing conditions of the SPH formulation.
The kernel correction, as described in the above-mentioned papers, is obtained from
exact reproducing conditions, derived in this paper for an integral interpolation of
a given function. The discrete particle formulation of these conditions does not lead
to unique conclusions, and therefore great care must be taken in applying the kernel
correction technique to describe the water wave phenomenon. The paper concludes
with remarks on the formulation of boundary conditions at the solid boundaries of
a fluid domain.

2. Fundamentals of the SPH Method

The SPH is an interpolation method based on the concept of integral representation
of a function, say f (r), by the following integral

< f (r) >=

∫
S

f (r′)W
(∣∣∣r − r′, h

∣∣∣) dS′, (1)

where S is the domain of integration, and W (|r − r′| , h) is the so-called smoothing
function, or smoothing kernel function, or interpolating kernel, or simply kernel in the
SPH literature. The parameter h in this equation is the smoothing length responsible
for the shape of the kernel. The left-hand side of equation (1) is called the interpolant
of f (r) (Monaghan 1992), since it is only a certain approximation of the original
function. With respect to this approximation, in what follows, we omit the brackets
on the left-hand side of the integral formula. If the kernel is the Dirac delta function
δ(r − r′), the equation defines the well known identity f (r) =

∫
S f (r′)δ (r − r′) dS′.

The kernel W (r − r′, h) in equation (1) is usually chosen to be an even function, which
should satisfy a number of conditions. The first of them is the unity condition∫

S

W
(
r − r′, h

)
dS′ = 1, (2)

The second is the delta function property

lim
h→∞

W
(
r − r′, h

)
= δ

(
r − r′

)
. (3)

For practical reasons, the kernel should also satisfy the compact condition

W
(
r − r′, h

)
= 0 when

∣∣∣r − r′
∣∣∣ > R, (4)
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where R is the radius of a circular support domain centred at r for a two-dimensional
case, or a spherical support domain in a three-dimensional case.

In addition to the above conditions, the kernel is assumed to be a non-negative
function within the support domain. It is also desirable that this function decreases
monotonically with the increasing distance from the field point r. Finally, the kernel
function should be continuous and sufficiently smooth to ensure an accurate approx-
imation of a function and its space derivatives.

The literature on the subject suggests various forms of kernel functions with cer-
tain restrictions imposed on them to ensure desired properties, listed above. Fre-
quently used are spline functions of a chosen order – for example, quadratic, cubic
or quartic spline functions. Among others, a Gaussian function is of primary impor-
tance. For the two-dimensional case, the Gaussian kernel reads

W (r, h) =
1
πh2 exp

(
−q2

)
, where q =

r
h
, r2 = x2 + y2. (5)

According to Monaghan (1992), it is always best to assume that the kernel is
a Gaussian, and this is called the first golden rule of the SPH. With respect to this
statement, further in this work we will only consider Gaussian kernels. In general,
at points of the boundary of a finite support domain, the Gaussian kernel function is
different from zero, and at the same time, the integral of the kernel over the support
domain does not equal unity. Therefore, in order to overcome this inconsistency, it is
reasonable to take into account the normalized kernel (Colagrossi, Landrini 2003)

WN =

[
exp

(
−q2

)
− exp

(
−R2

)]∫
S

[
exp

(
−q2

)
− exp

(
−R2

)]
dS′

, R =
δ

h
.

(6)

It can be demonstrated that this equation satisfies the unity condition (2). In numer-
ical applications, the continuous integral interpolation is approximated by a discrete
summation interpolation. In the discrete approach, the infinitesimal volume (surface)
dS′ in the integrand (1) is replaced by the finite volume Vb of the particle b. Thus, the
elementary volume Vb, the density ρb and the mass of this particle mb are related by

mb = ρbVb. (7)

With respect to this formula, the continuous SPH representation for f (r) is sub-
stituted by the discrete particle approximation expressed in the following form

f (r) = f (r)|a = fa =

N∑
b=1

mb

ρb
f (rb)W (r − rb, h) (8)

where b denotes the particle label, and the summation is taken over all particles in the
finite support domain.
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For example, the interpolation formula gives the following estimate for the density
at the point r = ra

ρa =
∑

b

mb

ρb
ρb Wab =

∑
b

mb Wab. (9)

If h = const, then, from the last relation, it follows that∫
ρadτ =

∑
b

mb

∫
Wabdτ =

∑
b

mb = M (10)

which shows that the mass is conserved exactly.
The essential feature of the discrete interpolant is that it enables us to construct

a differentiable approximation of a function from its values at particle nodal points
by means of the differentiable kernel. In the discrete approximation of fundamental
equations of fluid dynamics one needs to construct approximations of the gradient and
divergence differential operators. Following the interpolation mentioned above, such
operators may be obtained by a direct differentiation of the kernel function. A more
detailed discussion on differential operators with desired properties may be found in
the papers by Monaghan (1992, 2005). To make further discussion clear, we attach
here the interpolations of the gradient and divergence operators given in these papers.
The interpolation of the gradient of a scalar function f at the particle a reads

∇ fa = ρa

∑
b

mb

 fa
ρ2

a
+

fb
ρ2

b

∇aWab (11)

and the divergence of a vector field, say the velocity field v at the particle a, can be
found from

(∇ · v)a =
1
ρa

∑
b

mb (vb − va) · ∇aWab. (12)

According to these results, one can derive the discrete interpolations of the conti-
nuity and momentum equations. For a slightly compressible fluid, one obtains

dρ
dt

∣∣∣∣∣
a

=
∑

b
mb (va − vb)∇aWab (13)

and
dv
dt

∣∣∣∣∣
a

= −
∑

b
mb

ρa

ρ2
a

+
ρb

ρ2
b

∇aWab + ba, (14)

where b denotes the gravity acceleration vector.
These equations are supplemented by an equation of state describing the pressure-

-density relation. In the SPH approach, equations (13) and (14) are integrated numer-
ically in time with an assumed time step, dependent on the equation of state. For
barotropic fluids, the use of the real bulk modulus in the equation of state would
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result in extremely small time steps (Bonet and Lok 1999). Therefore, an artificial,
smaller bulk modulus is used in such a way that a certain velocity (smaller that the
sound speed) is taken into account instead of the sound speed. Frequently, the conti-
nuity and momentum equations are supplemented by the following equation of state
(Monaghan 1992):

p(ρ) = P0

[(
ρ

ρ0

)γ
− 1

]
. (15)

In this equation, P0 and ρ0 denote the reference pressure and density, and the
parameter γ is usually taken as 7 for water and 1.4 for air (Colagrossi, Landrini 2003).

3. Reproducing Conditions

The discrete approximation presented above should represent as closely as possible
the field functions of the problem considered. In order to assess the ability of the
discrete approach to model field variables, it is reasonable to investigate reproducing
conditions for the integral interpolation of a field function. For instance, in a discrete
description of partial differential equations by means of the finite difference method
(FDM), the concept of consistency has been introduced, which indicates how well the
discrete method reproduces these differential equations. A finite difference scheme is
consistent if it exactly represents the differential equations in the limit as the spac-
ing of nodal points approaches zero (Liu, Liu 2009, Belytschko et al 1998). With
respect to the SPH method, with an irregular distribution of nodal – particle points,
it is difficult to estimate the consistency of this method, and therefore, reproducing
conditions are examined instead. In the literature on the subject, the reproducing con-
ditions emerge in the study of the stability and convergence of approximation schemes
used for descriptions of functions and differential equations. In accordance with the
SPH method, which operates on a countable set of points, the approximation consists
in describing continuous field functions with acceptable accuracy by means of a set
of approximating functions and information associated with these isolated particles.

In order to make further discussion clear, let us confine our attention to a problem
two-dimensional in space (plane), with the Cartesian system of coordinate axes (x, y).
The integral interpolation formula (1) is written in the form

f (x, y) =

∫
S

f
(
x′, y′

)
W

(∣∣∣r − r′, h
∣∣∣) dS′ =

∫
S

f
(
x′, y′

)
WdS′, (16)

where r = (x, y), r′ = (x′, y′), and dS′ = dx′dy′.
Applying the Taylor series expansion procedure, one obtains

f (x′, y′) = f (x, y) + f,x (x′ − x) + f,y (y′ − y) +

+
1
2

f,xx
(
x′ − x

)2
+ f,xy

(
x′ − x

) (
y′ − y

)
+

1
2

f,yy
(
y′ − y

)2 (17)

where terms up to the second order power have been taken into account.
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In this equation, the lower indices denote the partial derivatives of the function
with respect to the space coordinates. Substitution of this relation into equation (16)
gives

f (r) = f (r)
∫
S

WdS′ + f,x(r)
∫
S

(
x′ − x

)
WdS′ + f,y(r)

∫
S

(
y′ − y

)
WdS′+

+
1
2

f,xx(r)
∫
S

(
x′ − x

)2 WdS′ + f,xy(r)
∫
S

(
x′ − x

) (
y′ − y

)
WdS′+

+
1
2

f,yy(r)
∫
S

(
y′ − y

)2 WdS′

(18)

From the comparison of the left- and right-hand sides of this equation, it follows that
this relation is true if and only if the following conditions hold

M0 =

∫
S

WdS′ = 1, Mx =

∫
S

(
x′ − x

)
WdS′ = 0,

My =

∫
S

(
y′ − y

)
WdS′ = 0, Mxy =

∫
S

(
x′ − x

) (
y′ − y

)
WdS′ = 0,

Mxx =

∫
S

(
x′ − x

)2 WdS′ = 0, Myy =

∫
S

(
y′ − y

)2 WdS′ = 0.

(19)

These conditions are, by definition, weighted moments of the kernel support do-
main with respect to the Cartesian system of coordinate axes (x, y). It can be seen that
the two last conditions are not satisfied in general, i.e. Mxx , 0 and Myy , 0. This
means, that for the symmetrical support domain (circular support domain of radius
δ > 0) and the even kernel function satisfying unity condition, the interpolation (16)
is exact only for linear (in our case bilinear) functions with disappearing second order
derivatives over the support domain, i.e. for

f,xx(r) = 0, f,yy(r) = 0 for r ∈ S. (20)

A general form of a function, satisfying these conditions, may be expressed as

f (x, y) = α0 + α1x + α2y + α3xy, (21)

where αi (i = 0, 1, 2, 3) are constants.
In particular, interpolation equation (1) reproduces exactly a linear function of the

form
f (x, y) = α0 + α1x + α2y. (22)

In a similar way, one may derive interpolation conditions for the space derivatives of a
function. The integral approximation of the first derivative of the function f (x, y) can



70 K. Szmidt

be obtained by replacing the function f (x′, y′) in equation (18) by its derivative. On
the other hand, this approximation may be derived by means of a direct differentiation
of equation (18).

The conditions, presented above, have been derived for continuous fields and in-
tegral approximations of a given function. In order to transform them to a form appro-
priate for the discrete SPH method, the integration is substituted by the summation
procedure with respect to a finite set of particles in the support domain of a particle
or a space point (without a material particle) considered. Accordingly, the linear re-
producing conditions described by the first three equations (19) are substituted by the
following ones:

Ma
0 =

∑
b

VbWab = 1, Ma
x =

∑
b

Vb (xb − xa) Wab = 0,

Ma
y =

∑
b

Vb (yxb − ya) Wab = 0.
(23)

where Vb = mb/ρb.
These linear reproducing conditions are similar to those given by Belytschko et

al (1998), which are derived by investigating a polynomial completeness of the ap-
proximation of a function by a finite set of approximating functions. With the latter
approach, the approximation should reproduce the polynomial of the order k exactly
if the approximation is complete to the order k. As in the case of equations (19) and
(23), one may derive the reproducing conditions for the space derivatives of the linear
field. Simple manipulations give

Ma
x0 =

∑
b

Vb
∂Wab

∂xa
= 0, Ma

y0 =
∑

b
Vb
∂Wab

∂ya
= 0,

Ma
x1 =

∑
b

Vb (xb − xa)
∂Wab

∂xa
= 1, Ma

y1 =
∑

b
Vb (yb − ya)

∂Wab

∂ya
= 1,

Ma
x2 =

∑
b

Vb (yb − ya)
∂Wab

∂xa
= 0, Ma

y2 =
∑

b
Vb (xb − xa)

∂Wab

∂ya
= 0.

(24)

As it has been mentioned above, for linear (bilinear) functions and integral in-
terpolation with the kernel W , the relevant reproducing conditions in equations (18)
are fulfilled identically. For the SPH particle approximations of linear functions, how-
ever, the associated conditions (23) are not satisfied in general. The last feature results
from the approximation of integrals by the finite summation formulae, and, what is
important, the summation over a support domain is usually carried out for irregularly
distributed particles in this domain. Nevertheless, one can expect that for a sufficiently
dense spacing of the particles in the support domain, the discrepancy in the fulfilment
of these conditions will be negligibly small. On the other hand, the question arises as
to the possibility of improving the SPH method for irregularly distributed material
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particles. Several attempts, at improving the accuracy of this method have been re-
ported in the literature. The simplest way may be to correct the density and velocity
fields by means of an averaging procedure applied in numerical computations. By
such a procedure, the distribution of these variables is smoothed over the problem
domain. Other attempts can be found in Belytschko et al (1998), where a set of for-
mulations is given which correct the SPH kernel functions, as well as their gradients.
The latter correction technique is employed by Colagrossi and Landrini (2003) in
the analysis of free surface and interface flow, and by Staroszczyk (2010) in his de-
scription of the free surface evolution, generated by a dam break. By means of such
a procedure, in the first of these two papers a more regular pressure distribution is
obtained with restored consistency of mass and density. The correction of the kernel
function presented in the above-mentioned papers is based on the linear modification
of the original kernel. Thus, the new kernel is written as

Ŵab = [α0 + α1 (xb − xa) + α1 (yb − ya)] Wab, (25)

where α j ( j = 0, 1, 2) are constants for the considered point (xa, ya).
In a similar way, the corrected components of the new kernel derivatives with re-

spect to x and y coordinate axes are expressed in terms of the standard kernel function
Wab as follows:

∂Ŵab

∂x
=

[
β0 + β1 (xb − xa) + β2 (yb − ya)

]
Wab,

∂Ŵab

∂y
=

[
γ0 + γ1 (xb − xa) + γ2 (yb − ya)

]
Wab,

(26)

where β j γ j ( j = 0, 1, 2) are constants.
From substitution of equation (25) into the linear reproducing conditions (23), the

following system of equations is obtained:

[A](α) = (PA), (27)

where

[A] =

∑b
VbWab

 1 (xb − xa) (yb − ya)
(xb − xa) (xb − xa)2 (xb − xa)(yb − ya)
(yb − ya) (yb − ya)(xb − xa) (yb − ya)2


 (28)

and
(α)T = (α0 α1 α2) and (PA) = (1 0 0). (29)

Substitution of (26) into the reproducing conditions (24) gives a system of equa-
tions, similar to (27), with the same matrix [A] and the associated vectors

(β)T = (β0 β1 β2) and (PB) = (0 1 0),
(γ)T = (γ0 γ1 γ2) and (PC) = (0 0 1).

(30)
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The solution of equations (27) is written in the form

(α) = [A]−1(PA) = [C](PA). (31)

The solution of the remainder equations for (β) and (γ) is defined by the same ma-
trix [C] and the associated vectors (PB) and (PC), respectively. Thus, for the deriva-
tion of the corrected kernel and its derivatives at a given point, it is sufficient to cal-
culate the inverse of the matrix [A] and then products of the inverse with the relevant
vectors, forming the unit diagonal matrix. From the comparison of equations (27) and
(32) with the reproducing integral conditions, given in (19), some conclusions may
be drawn. First, for an isotropic case and symmetrical kernels, all components of the
matrix [A], except for those on the main diagonal, should be equal (or close) to zero.
For such a case, α0 � 1, α1 � α2 � 0, and the corrected kernel is equal to the original
one. Second, for the case of an irregular distribution of particles, one may expect
another, in general non-zero, solution of equation (27). It should be noted that in the
latter case, the desired properties of the kernel function, described in Section 2 of this
paper, are lost. With such a transformation, it may happen that the matrix [A] becomes
a singular matrix, which can lead to the breakdown of computations. Moreover, the
new kernel may lead to an unphysical representations of the field variables, such as
negative density or negative energy (see Liu, Liu 2009). In particular, it is not possible
to control the main features of the correction and its accuracy during the computation
process. Summing up, special care must be taken in applying the method to hydrody-
namic problems, and therefore, the kernel correction method is not recommended for
the analysis of the water wave phenomenon.

4. Boundary Conditions

In applying the SPH method to water wave mechanics, the problem of a particle for-
mulation of boundary conditions at the fluid boundary emerges. Since the method
applies to a collection of material particles moving in space, the fluid boundary is
defined as a set of conditions imposed on particles reaching points at this boundary.
It is relatively simple to describe the free surface of the fluid, which, in the material
description employed in the SPH approach, is defined by the positions of material
particles forming this surface. It should be stressed, however, that only particles at or
near the boundary contribute to the summation of particle interactions. With respect
to these particles, their finite supports are usually truncated by this boundary, and thus
some discrepancies in calculating the pressure and the fluid density may occur. Even
more serious problems arise in the formulation of the SPH boundary conditions at
solid, fixed or moving, boundaries of the fluid domain. For a solid (rigid), free-slip
boundary, the normal component of the velocity field should be equal to zero. An ex-
ample of such a boundary is the case of a straight line solid boundary, usually found in
the analysis of gravitational waves propagating in water of finite depth, as illustrated
in Fig. 1. In order to solve this boundary condition, virtual particles are placed outside
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the fluid domain, as marked in this figure. Such a model of a solving the boundary
condition with additional mirror particles is used by Lo and Shao (2002) in simulating
near-shore solitary wave mechanics and by Staroszczyk (2010) in simulating water
flow generated by a dam break. The additional particles in the figure have the same
density and pressure as the particles on the other side of the boundary, but the perpen-
dicular component of their velocity has the opposite sign. In the case shown in Fig. 1,
the use of the mirror particles corresponds directly to the solution of a symmetrical
problem in a continuum in which the bottom line is the symmetry line of the prob-
lem domain considered. With respect to this problem, however, in the SPH approach,
these virtual, additional particles are distributed within a strip of finite width δ, which
equals the assumed radius of a typical support domain. The problem becomes more
complicated in the case of a boundary formed by a set of segments intersecting at
corner points, or in the case of a curved boundary. If the segments intersect at right
angles, the best solution is to use the mirror reflection of material particles within
a strip along the boundary. In the case of an arbitrary angle of intersection, or in the
case of a curved boundary, however, it is not possible to find a unique distribution of
virtual (additional) particles to solve boundary conditions.

Fig. 1. Straight line solid boundary with fluid and virtual particles

The SPH equations are usually written for particles inside the fluid domain. There-
fore, for the inner particles placed near the boundary, the contribution of virtual par-
ticles in the interpolation over the support domain is necessarily less than that of the
inner particles (the contribution is the same only for particles at the boundary). This
means that, in the SPH model, the phenomenon of attraction of fluid particles by solid
boundaries may occur. Such attraction is induced by forces resulting from non-equal
contributions of pressure gradients, which act on material particles near the boundary.
In the literature on the subject, several attempts have been made to prevent the inner
fluid particles from accumulating in the vicinity of solid boundaries. Usually, addi-
tional boundary particles are employed to generate repulsive forces on fluid particles
(Morris et al 1997, Monaghan 2005, Ataie-Ashtiani et al 2008, Monaghan and Kajtar
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2009). These repulsive forces prevent the real particles from penetrating the boundary.
A way to specify the forces is to use a Lenard-Jones force acting between the centers
of the particles (Monaghan 2005). On the other hand, such forces, acting on particles
moving parallel to the boundary may cause large disturbances to flow near the bound-
ary. In fact, such repulsive forces do not result from a solution in fluid dynamics, and
therefore they should be employed with great care. As far as curved boundaries are
concerned, a special boundary treatment is described by Liu and Liu (2009), who, in
addition to real particles within a circular fluid domain, use virtual boundary (type I)
particles and exterior (type II) particles to solve the boundary conditions at the domain
circumference. Despite the several attempts mentioned above, the problem of a proper
formulation of boundary conditions in the SPH method is still open. In the following,
an approximate solution of boundary conditions at a curved boundary is presented,
which may also be used for boundaries formed by intersecting straight segments. The
normal components of the fluid velocity at boundary points should be equal to zero.
In our approach, this boundary is represented by a number of segments of constant
length. Outside the fluid, along this boundary, a set of virtual particles is added with
mass, density and velocity components tangent to the boundary, which are equal to
their counterparts in the fluid domain. The normal components of the velocity of these
virtual particles are not known at this moment. The problem is linear, and therefore
these velocity components can be chosen in such a way that the normal components of
the velocity at selected boundary points disappear. Thus, for a typical boundary point,
say r (r = 1, 2, ..., n), where n denotes the number of segments forming the boundary,
the normal velocity is described by the formula

Vr =

K∑
b=1

mb

ρb
V b

NWrb +

k=r+p∑
k=r−p

mk

ρk
XNWrk = 0, (32)

where V b
N denote the projection of fluid particle velocities and the tangent velocity

components of the virtual particles on the normal direction to the boundary at the
boundary point r, XN are the unknown normal velocities of the virtual particles, and
2p is the number of virtual particles within the support of the point r. The second
part of the right-hand side of this equation denotes the contribution of the unknown
normal components of the virtual particles. Equations (32) are written for all points
of the boundary. The system of equations obtained in this way enables us to calculate
the normal components of the velocity of the virtual particles. It should be stressed,
however, that the accuracy of the formulation depends on the number of particles
within the support domain for each point of the boundary, and therefore one must
expect a relative discrepancy in the solution accuracy in the vicinity of corner points.
The solution to the boundary conditions presented above requires additional computa-
tions, and thus it may be cumbersome to apply, especially for a complicated geometry
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of the boundary. In order to estimate the efficiency of the formulation, some numerical
tests are presented in the next section.

5. Numerical Experiments

In order to illustrate the discussion presented in the preceding sections, in what follows
we will consider some numerical experiments for a fluid flow in a plane, rectangular
basin of water, as shown schematically in Fig. 2. A non-viscous incompressible fluid
is assumed to be a seiche water flow, i.e. a periodic motion with the angular frequency
ω, corresponding to a standing water wave of the length λ = 2L, where L is the length
of the fluid domain. In the SPH formulation, a finite number of material particles is
substituted for the fluid domain. The discrete solution of the problem is reduced to the
integration in time of the continuity and momentum equations written for all particles.
For each particle, we have the following system of differential equations:

Fig. 2. Plane rectangular basin of water with vertical and horizontal solid boundaries

dρa

dt
= Ma,

dva

dt
= Fa,

dxa

dt
= Ga (33)

where

Ma =
∑

b
mb(va − vb)∇aWab (34)

and

Fa = −
∑

b
mb

 pa

ρ2
a

+
pb

ρ2
b

∇aWab + ba. (35)
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In this equation, ba = (0, −g) denotes the gravity acceleration vector. The term
Ga in the third equation in (33) denotes a corrected velocity of the particle a. The
velocity correction is assumed in the form proposed by Monaghan (1992)

Ga = va +
∑

b

ma

ρa + ρb
(vb − va)Wab, (36)

which aims at smoothing the velocity of a given particle.
For consistency, the corrected velocities are also used in equation (34). A similar

correction is performed for the density field at selected points in time by means of the
formula

ρa =
∑

b
mbWab (37)

The evolution equations (33) are integrated numerically in a discrete time domain by
applying an explicit two-step predictor-corrector scheme. Thus, in the first step, the
mid-step values of the particle’s density, velocity and position are calculated

ρk+1/2
a = ρk

a +
∆t
2

Mk
a , vk+1/2

a = vk
a +

∆t
2

Fk
a, xk+1/2

a = xk
a +

∆t
2

Gk
a (38)

where ∆t = tk+1 − tk is the time step length.
Then, in the second, final step, the values of the dependent variables are calculated

according to the formulae

ρk+1
a = ρk

a + ∆t Mk+1/2
a , vk+1

a = vk
a + ∆t Fk+1/2

a , xk+1
a = xk

a + ∆t Gk+1/2
a . (39)

In order to ensure the stability of the numerical integration, the time step ∆t should
satisfy the so-called CFL condition that the speed of the initial particle spacing be
greater than the reference speed (in our case the reference speed is smaller than the
sound speed) (Toro 1997).

To complete the integration procedure, it is necessary to formulate initial condi-
tions. For the present problem of a periodic fluid motion in a rectangular fluid domain,
an analytical solution for a potential motion of a non-viscous incompressible fluid is
employed. For the case shown in Fig. 2, the velocity potential is written in the form

φ(x, z, t) =
Ag
ω

cosh(kz)
cosh(kH)

cos(kx) cos(ωt) (40)

where A is a constant, and k = π/L is the wave number with the following dispersion
relation:

ω2 = gk tanh(kH). (41)

Following the potential function, one may calculate the free surface elevation

η(x, t) = A cos(kx) sin(ωt), (42)
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the velocity components

u =
∂φ

∂x
= −

Agk
ω

cosh(kz)
cosh(kH)

sin(kx) cos(ωt),

v =
∂φ

∂z
=

Agk
ω

sinh(kz)
cosh(kH)

cos(kx) cos(ωt),
(43)

and the relevant fluid pressure

p = ρg(H − z) + Aρg
(

cosh(kz)
cosh(kH)

− 1
)
cos(kx) sin(ωt). (44)

The formulae written above were used to describe the initial conditions at t = 0.
With respect to the rectangular fluid domain at t = 0, the uniform spacing ax = az of
material particles with the same initial density ρ0 was chosen to represent the fluid
domain in the SPH formulation. In order to calculate the evolution in time of the field
functions of the problem considered, equations (38) and (39) were applied for the
discrete integration in the time domain with the constant time step ∆t = 2 × 10−4 s.
To save computation time, a relatively small rectangular fluid domain with the initial
height H = 0.20 m and the length L = H was considered. Three grid resolutions were
applied: the first with the initial inter-particle spacing d = ax = 0.02 m, the second in
which d = 0.01 m, and the third with the d = 0.005 m. The numbers of particles were
N = 100 for the first spacing, N = 400 for the second, and N = 1600 for the third.
Numerical experiments, conducted for the three radii of the support domain, i.e. for
δ = 3d, 4d and 5d, show that sufficiently good results were obtained for δ = 4d, and
therefore only that radius was selected for our computations. The smoothing length
h, used in the kernel function (6), was chosen to be equal to 4d/3 , and the physical
parameters appearing in the pressure equation (17) were P0 = 105 Pa and ρ0 = 103

kg/m3. At the fluid-solid boundaries (two vertical walls and the horizontal bottom,
shown in Fig. 2) free-slip conditions were applied. In the discrete model considered,
these conditions were implemented by means of additional (virtual) particles placed
outside the boundaries, as illustrated in Fig. 2. The parameters of these virtual par-
ticles were chosen from the mirror reflection of the parameters associated with their
counterparts within the fluid domain. The width of the virtual particle strip was equal
to the radius of a typical support domain of a fluid particle. For comparison, the so-
lution to boundary conditions was also constructed with the help of a single strip of
virtual particles placed along the boundaries and with the application of conditions
expressed by equations (32).

In the first step, the standard Gaussian and corrected kernel functions were used
in the numerical procedure to assess the usefulness of the kernel correction, as dis-
cussed in the preceding sections. In numerical calculations, the constant number of
N = 400 particles was chosen to represent the fluid domain. Some computation re-
sults are presented in Fig. 3, in which the graphs show the distribution of the material
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Fig. 3. Distributions of fluid particles at selected points in time: (a) calculated with standard
kernels and (b) corresponding to corrected kernels
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Fig. 4. Distributions of fluid particles at selected points in time, obtained for the three radii of
the support domain
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Fig. 4. Continued
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Fig. 4. Continued
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Fig. 5. Distributions of fluid particles at selected points in time, calculated for different for-
mulations of boundary conditions
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Fig. 5. Continued
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Fig. 5. Continued
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particles at selected points in time. The results presented in the figure show that the
correction leads to unphysical changes in the fluid density, which confirms our earlier
conclusion that the kernel correction is not a proper way to improve the accuracy
of calculations. Therefore, in our further calculations, the standard kernel functions,
without any correction, were employed.

In order to illustrate the influence of the assumed grid resolution on the SPH
results, the three cases of initial inter-particle spacing were considered, which cor-
responded to the total number of material particles representing the fluid domain
N = 100 (400, 1600). The plots in Fig. 4 show the distribution of these particles
at selected points in time. Finally, numerical solutions were performed for two for-
mulations of boundary conditions at the solid boundaries of the fluid domain. As
mentioned above, the first formulation is based on the mirror reflection of particles
within an assumed strip along the boundary, and the second formulation is based on
condition equation (32). The numerical results obtained are shown in Fig. 5, in which
the plots describe the distribution of particles obtained for the two formulations of
boundary conditions. From the graphs, it may be seen that the approximate solution
given by equations (32) leads to a distribution with disturbances in the area of the solid
boundary that grow in time, especially in the vicinity of the corner points. The over-
all feature of the solution is preserved, but its accuracy suffers from smaller support
domains for particles within areas close to the solid boundary.

6. Concluding Remarks

The paper presents a discussion on the approximation aspects of the SPH approach
to describing the water wave phenomenon. The main attention has been focused on
the reproducing conditions of the SPH formulation. From the continuous integral in-
terpolation, developed in this paper, it follows that an exact reproduction of a given
function by means of an integral representation with a positive symmetric kernel is
possible only for a linear function (a bilinear function in the two-dimensional case
discussed here), for which the second and higher order space derivatives disappear
within a solution domain. At the same time, a correction of the kernel functions by
means of a linear combination of standard kernels is not unique, and therefore not
recommended for describing the water wave phenomenon. From the discussion pre-
sented above, it follows that in cases of a relatively regular distribution of fluid parti-
cles in space, the correction gives satisfactory results due to the regular distribution.
In a general case, however, such a correction may lead to improper solutions from the
physical point of view. The example given above illustrates such a case, in which the
kernel correction changes the fluid density significantly. The numerical experiments
show that the formulation of the boundary conditions, proposed in section (4) of this
paper, leads to satisfactory results in the fluid domain, except for the solid boundary
areas, in which a certain deterioration of numerical results occurs.
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