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Abstract
A mathematical model for the continuous saltation of a particle near the granular bed in an
open-channel flow is developed in detail. The model is based on the Lagrangian equations
governing particle motion, and it takes into account the following forces: drag, lift, gravi-
tation, virtual mass and the force responsible for particle-particle interactions. A model of
particle-particle collisions is developed and used to determine the mean impulsive force act-
ing upon a particle flowing and rebounding from the channel bed. The model can simulate the
continuous saltation trajectories of a single particle in the near-bed region of turbulent flows, in
which particle motion is controlled by collisions. The model has been calibrated and verified
with available published data in a rather wide range of grain sizes from 0.53 mm to 15 mm.
All parameters, such as lift, drag, restitution, friction coefficients and roughness height, have
been set on the basis of a reanalysis of these published data.
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Notation

AD – cross-sectional area of the grain,
aD = ADD/V and aL = ALD/V – (for spherical particles these coefficients

are equal to 3/2),
CD – drag coefficient,
CL – lift coefficient,
Cm – virtual mass coefficient,
D – particle size (diameter),
eD, eL – unit vectors in the directions of the drag and lift forces, respectively,
F – inertia force,
Fa – added force,
FD – drag force,
Fg – gravitational force,
FL – lift force,
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g – gravitational acceleration,
H – water depth,
HS – saltation height,
I – second order identity tensor,
J – impulsive force exerted on particle 1,
ke – effective size of roughness interfering with the flow,
n – unit vector normal to the surface of the grain,
p – pressure,
po – pressures along the stagnation streamline at the upstream-infinity,
Re – Reynolds number,
Rr – roughness Reynolds number,
T – time,
Ts – travel time of a single step during the saltating particle,
U – mean velocity,
U∗ – friction velocity,
U∗c – critical friction velocity,
ur = u f − us – particle slip velocity,
V – volume of the grain,
V0 and V – relative velocities between particles before and after collision,
α – collision angle,
Θ – angle between the vector normal to the surface of the grain, n, and

ex,
θin – incidence (impact) angles (see Fig. 2),
ν – kinematic viscosity,
ρ – density of the fluid (water),
ρs – density of the sediment,
τb or τo– bed shear stress,
τc – critical shear stress,
τup and τdw – mean free time when the particle moves upward and down-

ward, respectively,
Φ – channel-bed angle.

Subscripts

f – fluid phase,
s – sediment phase,
1 and 2 – refer to the velocity of two particles,

Superscript

0 – means values before collision.
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1. Introduction

Bed load sediment can be transported in several ways. A grain begins to move by
rolling over the surface of the bed, but with a small increase in boundary shear stress
this grain hops up from the bed and follows ballistic-like trajectories. This motion
is called saltation, and it is considered as the dominant mode of bed-load transport
(Sekine and Kikkawa 1992). Bagnold (1956) describes saltation as the unsuspended
transport of particles over a granular bed by a fluid flow, in the form of consecutive
hops within the near-bed region. It is governed mainly by the action of hydrodynamic
forces that carry particles through the flow.

Using a computational hydrodynamic/sediment transport model involves a nu-
merical solution of one or more of the governing differential equations of continuity,
momentum and energy of the fluid, along with the differential equation for sediment
continuity. There is one objection to using this kind of models. The transport of sedi-
ment takes place in a thin layer of mutual interaction between the erode-mobility bed
and the fluid. The movement of the fluid and particles of sediment in this layer is very
complicated, and therefore it is useless to apply typical governing equations. Nowa-
days, it is believed that one good approach to describing the movement of a single
particle in the fluid is based on the analysis of [lub “to analyse”] all forces acting on
the particle.

A number of researchers have worked on the modeling of grain saltation in flowing
water, e.g. van Rijn (1987), Wiberg and Smith (1985), Sekine and Kikkawa (1992),
Nino and Garcia (1996). Some of their studies concern the saltation of gravel and
some others the saltation of sand. The behavior of discrete particles (sand grains) in
the near-bed region of turbulent flows is considered under equilibrium conditions, i.e.
particles of sand grains are carried by the flow without net erosion and deposition.
All these models are based on the Lagrangian equation governing particle motion
and on deterministic or stochastic approaches for estimating the initial conditions.
This equation is written according to Newton’s second law, i.e. the rate of change of
the momentum of the particle is balanced against the surface and body forces acting
on it.

Recently, Bialik (2011) has introduced a new concept of collision between flow-
ing particles based on the statistical theory of gases. He assumes the possibility of
three-way collisions between two particles. The model becomes more complicated,
but he shows that it takes into account all possible collisions.

A particle trajectory in a turbulent flow in an open-channel depends largely on the
concentration of particles. At great particle concentrations there is an interaction be-
tween particles through collisions, and the resulting force is significant in the balance
of all forces exerted on the particle. Herein, a model for gravel saltation is proposed.
The model includes all forces exerted on the moving particle in turbulent flows in the
vicinity of the bed. They are steady-state drag forces, pressure gradient and buoyancy
forces, unsteady forces (virtual mass and Basset forces), lift forces (Saffman and Mag-
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nus forces) and some body forces as well as the collision force. Particles are assumed
to be uniform in both shape and size. A series of sensitivity analyses is performed
for various flow conditions, and the influence of particular forces during the whole
course of a single hop is investigated.

2. Basic Equations

To describe the trajectory of a sediment grain (particle) in flowing water, the equation
of motion for the particle is considered:

ms
dus

dt
= −msg −

∫
S

(p n · I − n · τ) dS, (1)

where ρs is the grain density, us is the grain velocity, g is the gravitational acceleration,
p is the pressure, n is a unit vector normal to the surface of the grain, I is the second
order identity tensor,and τ is the shear stress tensor.

The expression in brackets represents the total surface forces acting on the grain
(particle). It is the sum of the pressure and shear stress. Usually, the magnitude of the
pressure is much larger than that of the viscous stress, and the latter is negligible in
problems of sediment hydraulics (see Wiberg and Smith 1985).

The pressure term can be found from the Navier-Stokes equation for water flow
in the form

du f

dt
= −

1
ρ

gradp + ν∆2u f − g, (2)

where ρ is the fluid density, u f is the fluid velocity, ν is the kinematics viscosity and
g is the gravitational acceleration.

To find the pressure, one is limited to steady and non-viscous flows, for which the
equation Eq.(2) after integration becomes

ρgz + p +
1
2
ρu2 = const. (3)

Eq. (3) is called the Bernoulli equation, and it is valid along a streamline, i.e.
each term varies from one streamline to another over the cross section. Usually, in an
open-channel flow the free surface coincides with the hydraulic grade line and is very
small. Then z is the height of the bed about datum, p/ρg can be treated as the vertical
distance from the bed to the water surface, and (const/ρg) as the total energy head.

Writing Eq. (3) for the stagnation streamline and omitting the bed slope, one can
obtain

p = po +
1
2
ρ
(
u2

f − u2
s

)
. (4)

Eq.(4) is substituted into the pressure term of (1) to give the pressure force
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Fp = −

∫
s

pn · IdS = −

∫
s

p0n · IdS −
∫
s

1
2
ρ
(
u2

f − u2
s

)
n · IdS. (5)

The first term on the right side of Eq. (5) corresponds to the pressure of the ambient
flow. Using the Gauss divergence theorem and Eq. (2), it can be presented in the form

−

∫
s

p0n · IdS = −

∫
V

∆p0dV = m f
du f

dt
+ m f G. (6)

The above equation is related to the volume of the grain, V . The second term on the
right side of (5) can be split into two orthogonal components that represent the drag
and lift forces exerted by the fluid flowing around the grain, as displayed below:

FD = −

∫
s

ρ

2
(
u2

r − u2
s

)
n · I · eDdS = −

∫
s

ρ

2
(
u2

f − u2
s

)
cos θdS, (7)

FL = −

∫
s

ρ

2
(
u2

r − u2
s

)
n · I · eLdS = −

∫
s

ρ

2
(
u2

f − u2
s

)
sin θdS, (8)

where eD and eL are the unit vectors in the directions of the drag and lift forces, and
Θ is the angle between a vector normal to the surface of the grain n, and eD. The
drag force acts in the direction of (u f − us), and thus it changes direction as the grain
moves relative to the fluid.

Because the flow around spherical sediment particles is inviscid, integration over
the surface of the grain in the above equation equals zero (D’Alembert paradox). To
avoid this difficulty, the drag force can be written in terms of a fixed Cartesian coor-
dinate system, as the dimensional analysis is used to find the form of true drag and
lift forces in viscous flows (Wiberg and Smith 1985)

FD = CD
ρAD

2
|ur |(u f − us, v f − vs), (9)

FL = CLAL
ρ

2
[(

u2
r

)
T
−

(
u2

r

)
B

]
ee, (10)

where in Eq. (9) CD is the drag coefficient, AD is the cross-sectional area of the grain,
and in Eq. (10) CL is the lift coefficient, AL is the cross-sectional area of the grain
in the plane normal to the lift force, (u2

r )T and (u2
r )B are velocities taken at the top

and at the bottom of the particle, respectively. The drag force acts in the direction
on the relative velocity according to Eq. (9), but the lift force in Eq. (10) is directed
perpendicular to the direction of the fluid (see van Rijn 1987). Coleman (1967) shows
that this formula works well for a sphere resting on a bed consisting of other spheres.

The lift force on sediment particles near the wall in a turbulent boundary layer is
less well understood than the drag. Some authors, e.g. Willets and Naddech (1986),
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dispute even the direction of the lift on particles near the bed. Eq. (10) suggests that
the lift force ought to correlate with the velocity at the top of the particle because
the velocity at the bottom will be much smaller. Schmeeckle et al (2007) show that
the correlation is extremely weak. Hence the conclusion that the lift is impossible to
compute in the same manner as the drag coefficient, and therefore it is not adequately
predicted by Eq. (10). However, Wiberg and Smith (1985) used this equation and set
the coefficient CL = 0.5. The analysis of Auton et al (1987) for a spherical particle in
a uniform flow gives CL = 1/3.

There is an additional source for the lift force on a particle: the Magnus effect.
This effect is the lift developed as a result of the rotation of the particle. The lift is
caused by a pressure difference between both sides of the particle resulting from the
velocity differential due to rotation. For saltation in water, it seems to be very small
and will therefore be omitted in further analysis (see Wiberg and Smith 1985).

If the flow is unsteady, the force responsible for the relative acceleration of the
body with respect to the surrounding fluid appears, and in addition to the real mass of
the body it includes the virtual mass or added mass. The added mass is often called
the virtual mass force Fa and usually described with the formula

Fa = CmV ρ
∂

∂t
(
u f − us

)
, (11)

where Cm is the virtual mass coefficient. For spheres in a weakly shearing flow it
equals 0.5.

Some authors also discuss the Basset force that accounts for viscous effects due
to acceleration. The value of the Basset force depends on the acceleration history up
to the present time. This force is difficult to evaluate and usually negligible for a slow
water velocity. Employing the relations for gravitational, pressure and added mass
forces in Eq. (1), one can write

ms
dus

dt
= m f g + m f

du f

dt
+ ρ

CDAD

2
urur + m f Cm

∂ur

∂t
,

ρ
CLAL

2
[(

u2
r

)
T
−

(
u2

r

)
B

]
eL − msg,

(12)

where ur = u f − us is the particle slip velocity, such that ur = (u f − us,−vs).
Because the ambient flow is uniform, the partial derivative in the virtual mass

term can be replaced by d/dt. After dividing the equation by V and introducing two
factors aD = ADD/V and aL = ALD/V (for spherical particles these coefficients are
equal to 3/2), one obtains

(ρs)
dus

dt
=ρ

duf

dt
−(ρs−ρ) g+ρ

CDaD

2D
urur +ρCm

dur

dt
+ρ

CLaL

2D
[(
u2

r

)
T
−
(
u2

r

)
B
]
eL. (13)



Lagrangian Model for a Single Saltating Grain in the Near-Wall Region . . . 37

Velocities at the top and at the bottom of the hemisphere are given approximately
by a log-law profile.

3. Log-Law Profile

The vertical velocity profile for a given roughness geometry and zero pressure gradi-
ent boundary-layer flows is Prandtl’s log-law, usually presented in the following form:

U(y)
U∗

=
1
κ

ln
y

ke
+ B =

1
κ

ln
y

y0
, (14)

where U(y) is the time averaged velocity, U∗ is the friction velocity, von Karman’s
constant κ is 0.41, ke is the effective size of roughness interfering with the flow, y is
the distance from the bed, and y0 is the velocity origin.

The above equation is universal for zero pressure gradient boundary-layer flows.
It is easy to see that the velocity origin is located over the theoretical (virtual) bed at
y0 = ke exp (−κB). The location of an origin vertical coordinate system is defined by
the effective size of roughness elements. This location was determined by the Clauser
method suggested by Perry at el. (1969). The coefficient B depends on the regime of
turbulent flow, which is defined by a non-dimensional number (U∗k/ν), but for the
rough turbulent regime it can be taken as 5.3, Czernuszenko (2007).

4. Model of Particle-Particle Interaction

The movement of a sand grain in the bed vicinity is controlled by collisions with other
moving grains or with grain comprises the bed. It will be assumed, that particles of
sand have a spherical shape and constitute the dispersed phase, i.e. particles are not
connected. Then it is possible to consider only simple binary collisions, not multiple
collisions. Collisions take place in a very short time; hence all external forces can be
neglected, and the impulse equations are considered in the following forms:

m1(v1 − v0
1) = J; m2(v2 − v0

2) = −J, (15)

where J is the impulsive force exerted on particle 1, the force −J acts on particle 2 as
the reaction force, and n is the unit normal vector directed from particle 1 to particle 2
at the moment of contact (see Fig. 1). The subscripts 1 and 2 refer to the two particles,
and the superscript 0 means values before collision.

The relative velocity vectors between particles before and after collision are

V0 = v0
1 − v0

2; V = v1 − v2. (16)

The relationship between the pre-collision and post-collision velocities is obtained by
using the coefficient of restitution. For spherical elements the restitution coefficient e
is defined as the ratio of the pre- and post-collision velocities, that is
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Fig. 1. Particle-particle collision. Spherical particles 1 and 2 with the same masses and sizes
at the moment of collision; n and t are unit orthogonal vectors located at the point of contact;

v0
1 and v0

2 are the initial velocities before collision

n • V = −e(n • V 0), (17)

n • V = dot product of vectors, n = unit normal vector from particle 1 to particle 2 at
the point of contact, V0 and V = the relative velocities between particles before and
after collision.

It is easy to obtain the relationship for post-collision velocities from Eqs. (15)–(17).

V = V0 +

[
(m1 + m2)

m1m2

]
J. (18)

The normal component of the impulsive force Jn exerted on particle 1 is given as

Jn = −

[
m1m2

(m1 + m2)

]
(1 + e)(n •V0), (19)

Assuming that the particles slide during collision, the tangential component of the
impulsive force from Coulomb’s law for friction (Crowe et al 1998) is

Jt = f Jn or in vector form Jt = f Jnet . (20)

The absolute value of the impulse force in the t − n plane J = (Jt , Jn) is

J =

√
(J2

n + J2
t ) = Jn

√
(1 + f 2). (21)

The components of the impulse force, in the x − y plane are J = (Jx, Jy), where

Jx = (Jt,x + Jn,x) and Jy = (Jt,y + Jn,y), for f = 0, Jx = Jn,x and Jy = Jn,y. (22)

Please, note that all the above equations are developed on the basis of two impulsive
force equations without impulsive torque equations. It means that the rotations of
colliding particles are not taken into account.
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The role of the tangential component of the impulsive force in the process of
collision is shown by comparison of the total impulsive force with and without friction
during the collision of two particles (Fig. 2). The forces acting on spherical particles
during their collision depend on the angle of collision. The components of these forces
for collision without the friction force (Jn x, Jn y), and with friction (J x, J y) are
shown in Figure 2 as a function of the collision angle. The maximum of the impulsive
forces Jn between particles appears at α = 94.5◦ (this is the case in which the vectors
V◦ and n are parallel to each other). It is easy to notice that for α = 90◦ the horizontal
component of the impulsive force Jn,x changes its sign from negative to positive, but
for collision with friction it happens at α = 50.6◦.

Fig. 2. The components of the total impulsive force (in Ns × 10−3) for collisions between
two identical particles (D = 1.36 mm with masses of 0.00348 g) for the restitution friction
coefficient e = 1 and the friction coefficient f = 0.4 [J x, J y] and without the friction force
( f = 0) [Jn x, Jn y] as a function of different collision angles; pre-collision velocities are v0

1
= (1.25 m/s, 0.485 m/s), v0

2 = (1.30 m/s, –0.20 m/s)

5. Force Responsible for Collision

If the location of collision contact between particles is known, it is easy to define
the force responsible for collision on the basis of the above equations. Usually, the
location of the contact point is unknown, and even impossible to predict. Therefore, it
is assumed that the location is a random function with a uniform probability distribu-
tion in the angle range from 0 to π. Then the mean impulsive force can be calculated
without difficulty as

J =
1
π

π∫
0

J da. (23)

If there are more collisions, i.e., n collisions during the movement of the particle
upward (force is directed downward) and the same in the opposite direction (force is
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directed upward), then the mean force acting on a given particle during the whole hop
of the particle n(tup + tdw) takes the following form:

Fpc =

{
−nJ/tup for time of particle movement upward
nJ/tdw for time of particle movement downward,

(24)

where tup and tdw are the mean free times when the particle moves upward and down-
ward, respectively – it is assumed that they are equal to each other. [w opisie (16)
proponuję: “for the time of the upward/downward movement”]

Table 1. The average components of the impulsive force ( J x, J y) in g m/s – Eq. (15) –
for collisions between two identical particles (D = 1.36 mm with masses of 0.00348 g) as a
function of the restitution coefficient and the friction coefficient; pre-collision velocities are
v10 = (1.25 m/s, 0.485 m/s), v20 = (1.30 m/s, –0.20 m/s). Note: All forces acting on particle 1
(flowing upward) are negative, i.e., acting against the movement of particle 1. All forces acting

on particle 2 (flowing downward) are positive (see Eq. 16)

f = 0.2 f = 0.2 f = 0.4 f = 0.4 f = 0.6 f = 0.6
e J x J y J x J y J x J y

1.0 0.373 0.402 0.28 0.469 0.187 0.536
0.2 0.224 0.241 0.168 0.282 0.112 0.322

Fig. 3. The average impulsive force Eq. (15) for collisions between two identical particles
(D = 1.36 mm with masses of 0.00348 g) as a function of the restitution coefficient and the
friction coefficient; pre-collision velocities are v0

1 = (1.25 m/s, 0.485 m/s), v0
2 = (1.30 m/s, –0.20

m/s)

Figure 3 shows that for any value of the restitution coefficient, the impulsive force
J x increases when the friction coefficient decreases, and J y increases when the fric-
tion coefficient increases (see Table 1).
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Now, the equation describing the movement of a single sediment particle, i.e. Eq.
(12), can be completed with the force responsible for particle-particle interaction, i.e.
Eq. (16). It is worth mentioning that the direction of this force depends on the phase
of the flowing particle [może “the flow direction”]. When the particle flows upward,
the force is negative, and when it flows downward, the force is positive.

6. Equations for a Particle Saltating in Water

The slow motion of a spherical particle in a fluid may be described by Newton’s
equation (12) completed with the force Fpc exerted on the saltating particle by another
particle during collision when the particle moves downward

ms
dus

dt
= m f g + m f

duf

dt
+ ρ

CDAD

2
urur + m f Cm

∂ur

∂t
,

ρ
CLAL

2
[(

u2
r

)
T
−

(
u2

r

)
B

]
eL − msg + J/τ,

(25)

Finally, Eq. (17) can be re-write for the horizontal drag force in the following
non-vector forms:

dus

dt
=

3CDρ

4D (ρs + Cmρ)
∣∣∣u f − us

∣∣∣ (
u f − us

)
−

ρs − ρ

ρs + ρCm
gx +

1
ρs + Cmρ

Jx

τV
, (26)

dvs
dt

=
ρ

ρs + ρCm

3CD

4D
(
u f − us

)
(−vs)+

+
ρ

ρs + ρCm

3CL

4D
[(

(ur)2
)
T
−

(
(ur)2

)
B

] (
u f − us

|ur|

)
−

ρs − ρ

ρs+ρCm
gy+

1
ρs+ρCm

Jy
τV

.

(27)

Note that the force J is defined by Eqs. (19) and (20), i.e., Jn = −m
2 (1 + e)

(
n · V 0

)
and

Jt = f Jn. Then the last term in above equation takes the following form:

1
ρs + ρCm

Jy
τV

=
1

ρs + ρCm

Jn,y + Jt,y

τV
=

1
ρs + ρCm

m(1 + e)(n · V 0)y
2τV

, (28)

where g = (gx, gy) = (g sin γ , g cos γ), and γ is the channel bed slope.
To find a trajectory of the saltating particle, the above set of equations is supple-

mented with the following Lagrangian equations:

dx
dt

= us and
dy
dt

= vs. (29)

It is easy to get the balance all forces acting in the vertical direction
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(ρsV ) dvs
dt

= ρV
3CD

4D
(
u f − us

)
(−vs)+

+ρV
3CL

4D

[((
u f − us

)2)
T
−

((
u f − us

)2)
B

] (u f − us

ur

)
−ρVCm

dvs
dt
− V (ρs − ρ)g.

(30)

7. Initial Conditions and Collisions with the Bed

7.1. Initial Conditions

There are a few approaches to formulating the initial conditions. Nino and Garcia
(1994) estimated the initial conditions from the measurements of the trajectories of
individual saltating particles obtained in special measurements [występuje tu chyba
niepotrzebne powtórzenie “from the measurements . . . obtained in special measure-
ments”]. These conditions consist of the values of normal and streamwise components
of the particle velocity at the beginning of saltation.

Wilberg and Smith (1985) developed special equations from a theoretical point
of view. They analyzed the critical balance between the drag force (acting parallel to
the bed), the lift force (acting normal to the bed) and the gravitational force (acting
in the vertical [“vertical plane” lub “vertical direction”]). Their analysis of the initial
conditions is based on a bed configuration. They considered nonspherical sediment
particles, but the critical shear stress and drag coefficients were calculated for spheres
of equivalent volume. Eventually, after introducing some simplifying assumptions,
they developed equations for the vertical and horizontal components of the particle
velocity vector.

Van Rijn (1984) assumed that the initial position of the particle is 0.6 D over
the bed surface, the initial horizontal and vertical velocities are equal to 2U∗c, and
the flow velocity distribution over the depth is described by the logarithmic law. He
assumed that the drag force acts in the direction of the relative velocity, and the lift
force in the perpendicular direction. In this paper Van Rijn’s approach is used with
some modifications.

8. Collisions at the Bed (Splash Function)

8.1. Post-Collision Velocities

Post-collision velocities in the case of particles sliding during collision are easy to
calcula te by substituting the components of the impulse force Eqs. (19) and (20) into
impulse equations (15). The two post-collision velocities are thus obtained as

v1 = v0
1 − (n − f t)

(
n V0

)
(1 + e)

m2

(m1 + m2)
, (31)

v2 = v0
2 + (n − − f t)

(
n V0

)
(1 + e)

m1

(m1 + m2)
, (32)
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where v1 and v2 are the post-collision velocities of particles 1 and 2, respectively.
Post-collision velocities in the case of particle-wall interaction are easy to obtain from
Eqs. (23) and (24) by assuming that the bed is formed of uniformly packed spheres of
the same size as transported particles. If the bed is not eroded, it is assumed that the
mass of spheres forming the bed is much greater, say 500 times the mass of flowing
particles. If the bed is much stronger, it is possible to assume that the particles forming
the bed are much heavier.

Consider the case in which particle 1 falls with velocity v0
1 and collides with par-

ticle 2 located on the bed, i.e. v0
2 = (0, 0). The possible range of the collision angle

depends of the impact velocity vector and the geometry of the particle. For a spher-
ical particle it equals (60◦, 120◦) (see Fig. 4). When the impact velocity vector is
inclined to the horizontal axis at any angle from the range of (0◦, 30◦), it is easy to
show that the minimum collision angle varies linearly with the impact angle, and the
maximum collision angle can be calculated from the following formula (Rowiński
and Czernuszenko 1999):

tan (αmax − 90◦) =
a
√

1 + a2 +

√
a(−a − 2

√
1 + a2) + a2

a − a
√

a(−a − 2
√

1 + a2) +
√

1 + a2
, (33)

where a = − tan(θin) and 0 < θin < 30.

Fig. 4. The largest range of collision angles for collisions between the falling particle (the
white spheres represent two extreme locations) and the bed particle (the light grey sphere) is
(60◦, 120◦) for the incidence angle θin from the range of (30◦, 90◦). If θin is from the range of
(0◦, 30◦), the range of possible collision angles is much smaller because of the two neighboring

dark grey spheres

All possible ranges of collision and incidence angles are displayed in Figure 5.
Since the collision angle is impossible to predict, a stochastic model proposed by
Nino and Garcia (1994) is used to determine the probability distribution of alpha (the
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Fig. 5. Maximum and minimum collision angles (in degrees) as a function of impact angles.
All angles are in degrees. [ta informacja jest już chyba w poprzednim zdaniu]

so-called the splash function). The conditional probability density function p(α|θin) is
assumed to be uniform, which is equivalent to assuming that the particle has a uniform
probability of being located anywhere in the bed. For a given incidental (impact)
angle, the range of collision angles is determined from Figure 5, and the collision
angle is determined with the use of a random number generator. Having determined
the collision angle, one calculates the rebound velocity from Eq. (23) (or from Fig. 6)
and defines the initial condition for the next saltation, i.e. the initial velocity.

Post-collision velocities can be calculated from Eqs. (23) and (24). The results
of the calculations of the post-collision velocities of particle 1 falling with velocity
v0

1 = (0.707, −0.707) cm/s and striking the bed particle at f = 0 and e = 0 (perfect
collision) and with coefficients f = 0.4 and e = 0.6 are presented in Figure 6. One
can observe the role of restitution and friction coefficients for different collision angles
between the flowing sediment particle and the particle on the bed.

Figure 6 shows the case in which the bed comprises uniformly packed spherical
particles, and the flowing particle cannot strike the bed particle at a collision angle
smaller than 60◦ or greater than 120◦ because of the adjoining (neighboring) par-
ticles (see the dark grey spheres in Fig. 4). The maximum of post-collision veloci-
ties for both components [a może “The maximum values for both components of the
post-collision velocity”] of the bed particle are less than 0.002 cm/s, and they are not
shown in the figure.

The horizontal as well as vertical components of the post-collision velocity should
be positive to be certain continuous saltating process then the range of collision angle
is shrunk [Nie rozumiem tego fragmentu.Może “to ensure continuous saltation. Then
the range of collision shrinks”] to (65◦, 112◦) for a perfect collision and to (70◦, 100◦)
for a collision with ( f = 0.4, e = 0.6) (to read more about the continuous saltation
process, see Lee, H.-Y. et al (2006), also Lee H-Y. et al (2000)). This shrinking depends
on the friction and restitution coefficients (see Fig. 6).
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Fig. 6. Rebound velocity (after one hop) for the impact velocity (1/
√

2, −1/
√

2) as a function of
the collision angle (the location of the bed grain) for the ideal collision (e = 1, f = 0) and the
collision (e = 0.6, f = 0.4) assuming a very large m2/m1 ratio. Note the units: post-collision
velocities have the same units as the given initial velocities (usually they are mm/s or cm/s)

9. Numerical Simulation Results

9.1. Model Verification

Data for the verification of our model was taken data of Lee & Hsu (1994), who
conducted comprehensive measurements in a 12 m long, 0.3 m wide slope-adjustable
recirculating flume. Several combinations of water depth, channel slope and particle
size were tested. The range of water depth was from 3.71cm to 12.08 cm, and the rage
of slope was from 0.0002 to 0.023. The effective roughness of the bed surface was
about 1.36 mm. Two particle sizes were used, with the mean diameters of 1.36 mm
and 2.47 mm. Specific gravity was 2.64. The flow was turbulent with the Reynolds
number between 21000 and 73000, and the roughness Reynolds number varied from
50 to 146.

A real time flow visualization technique was applied in the study to investigate
particle saltation near the channel bed. By this technique, particle trajectories and
velocities were measured without disturbing the flow field (for more details see Lee
& Hsu 1994).

Figures 7 and 8 show the result of a comparison of our results with the data of
Lee & Hsu (1994).

It is easy to see from Figures 9 a-b that for large particles the length and the height
of hops are smaller than for small particles.

10. Influences of Different Forces on the Particle Trajectory

The analysis is related only to the vertical components of all forces without Fpc be-
cause of the lack of specific data related to this force. The equation (22) can be rewrit-
ten in the following symbolic form:
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Fig. 7. Relation between simulated and experimental saltation length for Lee & Hsu (1994)
data (taken from Bialik, 2010)

Fig. 8. Relation between simulated and experimental saltation length for Lee & Hsu (1994)
data (taken from Bialik, 2010)

Fig. 9. A typical series of hops generated by the model for two particle diameters and two
different flow conditions (taken from R. Bialik (2010))
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Fig. 10. Forces (in N × 10−3) exerted on a single particle during one hop (Run 4: D = 2.47
mm, H = 4.64 cm, U = 1.125 m/s, specific weight ρs = 2.64 g/cm3, U∗ = 0.075 m/s, ke =
1.235 mm). The location of the moving particle is (x; y/D), where x is a (longitudinal) coordi-
nate. The initial position of the particle is x = 1, and x = 2, 3, . . . are its successive positions
in sequence. To re-calculate it in distance −x′(x, y/D) = u(y/D) ∗(x − 1)∗ ∆t(10−2), where y/D
is a non-dimensional vertical coordinate. Points 1-5 represent the upward movement of the
particle, points 6–8 represent its downward movement. Cm = virtual mass coefficient (assumed

to be 0.50)

IF = Fa + FD + FL + Fg. (34)

The time course of these forces during one hop is presented in Figure 10. The lon-
gitudinal coordinate it is easy to get if he knows the increment of time and veloc-
ities at selected distances from the bed. In this case these are ∆T = 0.01 sec, and
y = 0.6D, 1D, 2D, 3D, and 3.9D.

Fig. 11. Trajectories of the first hop for different roughness heights hs and, in consequence,
for different initial particle positions z0 for the relative velocity u(0) = v(0) = 2 U∗

The velocities can be calculated from Eq. (14). Figure 10 shows that at x = 3 (i.e.,
2 × ∆t) the particle begins to move slowly (with negative acceleration), but it still rises
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until x = 5 (i.e. 4 × ∆t), where the added mass force reaches its maximum. It is easy
to calculate that at x = 8 the distance from the beginning of the movement is almost
33D. The lift force is significantly greater than the drag force. Similar results were
also obtained by Lee & Hsu (1994).

11. Influence of Roughness Height

The influence of the roughness height ks on the first particle trajectory, i.e. on the lon-
gitudinal velocity of the particle for the initial velocity u(0) = v(0) = 2 U∗ is displayed
in Figure 11. The size of the particle is the same for all cases. It is easy to see that
for the smallest ks the trajectory is the highest and longest. In this case the particle is
initially located in the largest velocity gradient, i.e. the lift force is the largest for the
smallest roughness.

Fig. 12. Trajectories of the first hop for different roughness heights hs and, in consequence,
for different initial particle positions z0 for the relative velocity u(0) = v(0) = 2 U∗

12. Conclusions

1. The Lagrange model presented here produces trajectories of a single particle that
are quite correct according to measurements. The model was calibrated and ver-
ified with experimental data. However, the model needs some calibration related
to friction and restitution coefficients.

2. The boundary conditions assume that the initial distance of the particle center
from the channel bed is 0.5 the diameter of the grain. The initial vertical and
longitudinal particle velocities are estimated as approximately 2U∗.

3. The roughness height has a strong influence on the lift force very close to the bed,
especially for small roughness. In this case the lift forces greatly exceeded all other
forces. This is due to direct effect on the gradient velocity distribution.
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4. For large particles the length and height of hops are smaller than for small parti-
cles. The maximum saltation length and height in the present study were approx-
imately 100D and 10D, respectively.

5. The lift force reaches its maximum value in the rising stage for the biggest differ-
ence between fluid and particle velocities, and then it gradually decreases almost
to zero. The particle accelerates only for the first two time steps and then slows
down (see Fig. 7).

6. The horizontal as well as vertical components of the post-collision velocity should
be positive to ensure continuous saltation. Then the range of collision angles
shrinks a little for a perfect collision and even more for a non-perfect collision.
This shrinking depends on the friction and restitution coefficients.
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