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Abstract
In spite of many investigations performed on turbulent flows, their structure has not yet been
sufficiently explored. The difficulty is that, when a detailed picture of the velocity field is neces-
sary, the widely employed Particle Image Velocity (PIV) method can provide photos covering
only a short interval of flow, which cannot include the largest structures of turbulent flow, and
consequently these structures cannot be investigated. In this study, the author tried to obtain
necessary data about the processes occurring in the flow by analyzing instantaneous velocity
measurements carried out by 3D means. A measurement at the points of a flow cross-section
takes at least 1 minute. During this time all vortex structures, including the largest, occur re-
peatedly many times and can be studied. The analysis of such measurements was the aim of this
article. The process of the generation of vortices at the bottom and their further development,
including the conditions of the development of the largest vortices, has been investigated. The
results of these investigations are discussed in this article.

Key words: hydraulic investigations, turbulent vortices, measurement analysis, turbulent
structure.

1. Introduction

Despite abundant literature devoted to turbulent flow investigations, the process of the
generation and further development of turbulent vortices has not yet been sufficiently
expolored, although the structure of these vortices had already been investigated for
many years now (Vanoni and Nomicos 1959, Klaven 1966, Grishanin, 1969, Cuth-
bertson and Ervin 1999, Nezu and Azuma 2004). The structure of turbulent vortices
revealed by Vanoni’s experiments, i.e. the distribution of vortices in straight experi-
mental channels, is presented in Fig. 1. There are two main types of such vortices: (1)
bottom vortices that form as a result of high local velocity gradients existing near the
bottom, and (2) large whirlpools developing along the whole depth of flow.

Bottom vortices often originate as a result of the separation of flow from the bot-
tom unevenness; therefore they are displaced along the flow accidentally. They do not
exist for a long time, and only a few of them grow to 0.3 of water depth (Cuthbertson
and Ervin 1999). In contrast, the already developed large whirlpools are regular, they
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Fig. 1. Distribution of turbulent vortices according to Vanoni and Nomicos (1959)

recur in the flow periodically and seem to be stable. The distance between them, as it
can be seen in Fig. 1, is equal to about 6 water depths. This is a characteristic kind of
vortices, described by Yalin (1992) as “the largest turbulent vortices”. In this article
they are called “macro whirlpools” for short.

The Particle Image Velocimetry (PIV) photography of turbulent flow obtained in
Klaven’s (1966) experiments is presented in Fig. 2. Two macro whirlpools and several
bottom vortices are visible in this photo. The height of the first is equal to about 0.7
of water depth. The second is more developed, as these macro whirlpools flowing
along the flow are still growing. Therefore the second whirlpool includes more bottom
vortices. Eddies existing near the bottom are not visible in this photo, as the velocity
of the photo-camera (21.5 cm/sec) was too large to record it.

Fig. 2. Vector field of flow velocities according to Klaven’s investigations (1966)

These regular macro whirlpools have also been revealed by field investigations in
a straight interval of the Nevëžis river in Lithuania (Rimkus and Vaikasas 2001). The
distance between them was equal to 6 water depths, as well.

The main part of turbulence is created by bottom vortices. Macro whirlpools lift
water volume containing bottom vortices up to the water surface of flow. Thus they
help create turbulence throughout the flow volume. In the case of suspension flow,
they also lift sediments raised by bottom vortices to the water surface. Consequently,
they are an important kind of turbulent vortices, which has not yet been sufficiently
investigated.

Vanoni’s and Klaven’s velocity measurements were performed by the 2-D PIV
method. Measurements with 3-D means also showed the existence of transversal com-
ponents of velocity fluctuations (Breuer and Haenel 1989, Robinson 1991, Adrian et
al 2000, Nezu and Nakahawa 1993, Widera et al 2009, and others). These fluctuations
are formed because the intervals of the axis of bottom vortices are not long, and their
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ends are bent towardsthe bottom. Bottom vortices thus acquire rotating legs in which
the transversal velocity components are formed.

During the further development of bottom vortices, these legs are usually moved
to the bottom by flow velocities rapidly growing along the water depth. Consequently,
these vortices become hairpin-like structures (Adrian et al 2000). The legs, moved
to the bottom, become quite long form the intervals of longitudinal spiral vortices.
Bottom vortices are usually formed in groups. Such vortices are discussed in many
studies (Adrian et al 2000, Albayrak and Lemmin 2007, 2008, Rodriguez and Garcia
2008, and others).

The difficulty of employing the PIV method for the investigation of flow structures
is that, whenever a detailed picture of flow is necessary for investigations, the photos
obtained by this method record only a short interval of the flow, which cannot include
even a single macro whirlpool, and thus such whirlpools cannot be investigated. Macro
whirlpools were observed by the PIV method in only two of the above-mentioned stud-
ies, performed in a long interval of straight rectangular channels. The development of
both these kinds of turbulent vortices has not been sufficiently investigated, because
the measurement by the PIV method takes only a short time. In this study, the author
tried to obtain some new data about processes occurring in the flow by analyzing
instantaneous velocity measurements carried out by 3D means. The measurement of
velocities in vertical cross-sections of the flow takes at least 1 minute, in which macro
whirlpools, in their entire length, move through the measurement section. Periodically
they recur along with other vortices. Thus it is possible to treat measurement chrono-
grams as a picture with fixed vortices in a sufficiently long interval of a developed
flow. Velocity measurements in the whole cross-section can provide a picture of the
structure of all turbulent vortices in the flow. The aim of this study was therefore to in-
vestigate vortex properties by analyzing such measurement data. The paper discusses
the results of such analysis for a compound channel.

2. Laboratory Investigations

The measurements analyzed here were performed in the Hydraulic Laboratory of the
Department of Hydraulic Structures, Faculty of Environmental Science, of Warsaw
Agricultural University in a concrete channel 16 m long 2.1 m wide with a three-
-component acoustic Doppler velocity meter at a frequency of 25 Hz. Each measure-
ment lasted 6.0 min (9000 measurement steps). The cross-section of the channel and
the displacement of measurement verticals are shown in Fig. 3.

The bed slope of the channel was 0.05%. The water depth was H = 28.3 cm, and
water discharge Q = 95.2 l/s. The surface of the main channel bed was smooth; the
floodplains and sloping banks were covered in cement with grains of 0.5 to 1 cm in
diameter.

These measurement data have already been analyzed for investigation of turbu-
lence (Czernuszenko et al 2007, Chernuszenko 2002, Czernuszenko and Rowiński
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Fig. 3. Cross-section of the experimental channel and the location of measurement verticals.
The measurements of the model are given in cm

2008). The distribution of turbulent intensities, Reynolds stresses, autocorrelation
functions, turbulent scales, and energy spectra were investigated. In this article these
measurement data are employed for the study of vortex structures: their generation,
development and interaction in the process of flow structure formation. Such data
make it possible to better understand these processes and peculiarities of the flow, as
the above flow characteristics depend on formed vortex structures.

3. The Analysis of Velocity and Turbulence Intensity Distribution in the
Main Channel

The velocity distribution and its fluctuations were analyzed in measurement verticals
39, 38, 37 and 36 of the main channel, which are shown in figures 4a, 4b, 5a and 5b.
These fluctuations represent the turning intensity of bottom vortices and their further
development.

Fig. 4 shows the average values of longitudinal u/u∗, vertical v/u and transversal
w/u velocities, calculated from these data, where u, v, w are instantaneous velocities

measured in the channel. Fig. 5 illustrates turbulence intensity values:
√

(u − u)2/u∗

– longitudinal,
√

(v − v)2/u∗ – vertical and
√

(w − w)2/u∗ – transversal. The shear ve-
locity: u∗ =

√
gRi = 2.29 cm/s.

3.1. Generation and Development of Bottom Vortices

The points at which bottom vortices are generated are visible in the turbulent intensity
profiles shown in Fig. 5a and 5b. Particularly large fluctuations of both longitudinal
and vertical velocities appear in verticals 38 and 39 at a height of 3 cm from the bottom
(0.1 of water depth h), exactly where bottom vortices are generated. In this case the
measurement point happened to coincide with that place. It should be noted that such
high fluctuations near the bottom were not observed, for example, in Cellino’s inves-
tigations (1999), performed in a straight flume with high bottom roughness, where
bottom eddies were mostly generated at the protuberances of the bottom. Then at
a height of 0.1 h the velocities were only slightly increased. In our model, the laminar
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Fig. 4. Velocity profiles in measurement verticals 39, 38, 37, 36; a – of longitudinal velocities,
b – of transversal and vertical velocities

layer was situated close to the flat bottom, so conditions for vortex generation and
critical velocity module gradients were different. In this model, velocity fluctuations
at the points of their generation are not very large in the valley, where the flow bottom
is rough. It is possible that more information about the process of vortex generation
could be obtained if more measurement points were established there.
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Fig. 5. Turbulence intensity profiles in measurement verticals 39, 38, 37, 36; a – of longitudi-
nal velocities, b – of transversal and vertical velocities

It is peculiar that at a height of 4 cm the velocity fluctuation is already much lower.
Apparently, the generated eddies acquire a considerable amount of energy in a small
volume, and this energy is quickly employed for turning the closest water volume.
Afterwards, the eddy becomes more stable and develops slowly.

The generation of many eddies at a height of 3 cm (0.1 of water depth) takes
a certain amount of energy from the flow. Therefore longitudinal and other velocity
components decrease slightly at this point, which can be seen in the velocity profiles
of verticals 39 and 38 (Fig. 4a, 4b). This slight decrease in velocity is not accidental, as
it is obtained as an average from 9000 measurements. Consequently, all peculiarities
in the velocity distribution measured in fluctuation profiles have their reasons, which
can be determined.

The rapid deployment of energy received by bottom vortices as they are created
means that for their further development other energy sources are necessary. This
role is played by higher flow velocities and their gradients, which occur higher in the
flow. The vortices are growing, as they absorb some amounts of water through fluid
viscosity in their front and backsides, which lift the rotating center of the vortex. Thus
absorbed water amounts with low velocities are raised to the upper part of the vortex,
where they acquire energy from flow layers with a higher velocity. That is where the
necessary source of energy is found. Velocity gradients are large until a height of 0.3
of water depth, where bottom vortices develop. The longitudinal velocity decreases
towards the bottom because of the viscosity stress and as a result of the generation
and development of initial eddies near the bottom. As a result, the profile of vertical
velocity distribution and velocity gradients are formed.

Growing neighbouring vortices come into contact. Stronger ones absorb some
of the volume from the weaker eddies, so that eventually these are destroyed. In the
region of high velocity gradients, small eddies with a reverse rotation are generated
between stronger vortices. They are visible in the PIV photos by Adrian (2000) be-
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tween the main vortices. Weaker vortices become gradually very small and are moved
around the stronger ones. They are also visible in Adrian’s photos between the groups
of younger and older vortices.

This is how the bottom vortices are developed. It is a complex and still insuffi-
ciently investigated process. Such investigations would require a greater density of
measurement points and parallel 3D measurements at neighbouring points. Then the
energy balance and velocity gradients developed between vortices could be studied.
For that purpose, a special device is necessary. More detailed PIV photos would be
useful as well.

Adrian et al (2000) observe that the growing bottom vortices help in the generation
of new ones. This probably happens when the above-mentioned central part of weaker
eddies, which has not been fully destroyed, is brought by the stronger vortices down to
the zone with high velocity gradients. Then they grow anew, and thus the generation
process of bottom vortices continues.

The strong initial rotation of eddies may help increase their length. The ends of
these growing bottom eddies turn down to the bottom and develop their rotating legs at
verticals 37–36. Therefore the intensive rotation of the bottom vortices generated here
is distorted and invisible (Fig. 5). This distortion decreases the intensity with which
bottom vortices are generated here, so less energy is consumed for their generation and
further development. Consequently, the longitudinal velocities in vertical 37 remain
greater than in vertical 39 (Fig. 4a).

At a height of 3 cm, where turbulent eddies are generated, the transversal veloc-
ity fluctuation also increases slightly. It is possible only if the axis of the generated
eddy is not entirely perpendicular to the channel axis, which means that transversal
flow occurs across the channel. The existence of such flow is also confirmed by the
fact that the average component of transversal velocity, measured (Fig. 4b) along the
whole depth of flow, is not equal to zero, At a height of 2–3 cm from the bottom,
it is equal to −2 cm/sec. (the minus sign shows it is directed towards verticals with
higher numbers. Evidently this transversal flow is created as a result of the uneven
distribution of water discharge flowing into the channel. The fluctuating transversal
flow across the main channel may also be created by horizontal macro whirlpools
formed throughout the width of the floodplain. These whirlpools, however, move with
the flow and can raise fluctuating transversal flow only, which does not change their
average intensity magnitudes. Such an insignificant asymmetry of flow is impercep-
tible during experiments, but can be detected by the analysis of measurement data.
Nevertheless, experiments with a symmetric inflow would be necessary.

Near the sloping banks, the conditions for the generation of bottom vortices
change, so that in vertical 36 all components of the velocity fluctuation are greater
than in the middle flow. Apparently, because of the greater roughness of slopes, lon-
gitudinal velocities are smaller there. At a height of 7 cm (0.25 h), longitudinal and
vertical fluctuation components are also increased. This occurs at a distance of 4 cm
from the slope, where bottom eddies are generated at the slope flow boundary.
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At a height of 9–17 cm (0.4–0.6 of h) from the bottom, time-averaged vertical and
transversal velocity components change in each of verticals 36–39, and their profiles
twist. This is caused by the transversal flow moving from the floodplain across the
main channel. It generates longitudinal spiral vortices descending from the top of the
channel slope, which increases the turbulence. The measured vertical and transversal
velocities can be higher or lower, depending on the location of the measurement point
in the rows of spiral vortices. The profiles of vertical and transversal velocities in
vertical 36 up to a height of 10 cm (0.35 h) twist also because of longitudinal spiral
vortices created the legs of hairpin vortices, pressed to the bottom. This is why the
profile in vertical 36 is very twisted.

The legs of hairpin vortices laid at the bottom create long spiral vortices, com-
monly called “secondary flows”. (This name is not quite exact, as these long spiral
vortices are only a part of the main type of bottom vortices. They are formed period-
ically and seem stable.)

3.2. The Study of Macro Whirlpools

It is characteristic of the model of a compound channel investigated here that the
velocity fluctuation amplitudes of both above-mentioned vortex types are of similar
size. However, the groups of bottom vortices are quite irregular, i.e. of very different
length and velocity fluctuation amplitudes, which are sometimes even greater than
those of macro whirlpools. Consequently, the cycles caused by macro whirlpools are
well masked in many places. Therefore it was somewhat difficult to find intervals
sufficiently long for an investigation with well visible cycles caused by the macro
whirlpools. Fig. 6 shows the interval of measurements made in vertical 39 at a height
of 15 cm, where the cycles of macro whirlpools were less masked. The cycle length
of these whirlpools is equal to about 100 measurement steps. At this height from the
bottom, the interval of the whole whirlpool cycle consists of two divided parts. There
are two places of minimum longitudinal velocity on the front and the backside of the
whirlpool with vertical velocity components directed downwards and upwards. Two
maximum velocity strips correspond to the middle of the whirlpool and to the strip
between the neighbouring whirlpools (see Fig. 1).

In the interval shown in Fig. 6 the velocity fluctuations caused by groups of vor-
tices were quite regular. At a lower height from the bottom, they were more irregular,
as the bottom vortices were stronger there, so that only short intervals with 1-2-3
macro whirlpools occurred there.

Apparently because of the large irregularity of vortex groups, some contemporary
mathematical models assume that the size of instantaneous velocities is accidental.
Despite the above-mentioned randomness, there are some regularities which can be
estimated.

As mentioned above, the fluctuation amplitudes of bottom vortices and those of
macro whirlpools are of similar size in the present model. However, according to in-
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Fig. 6. Example of a longitudinal instantaneous velocity histogram with measurement points
5400–6400. The fluctuations caused by large whirlpools are illustrated with the thick line

vestigations conducted in rectangular flumes, for example by Cellino and Graf (1999),
low-frequency fluctuations caused by macro whirlpools were about 4 times greater
than those created by bottom vortices. This shows that the macro whirlpools are much
less intensive in the compound channel investigated here. The reason is apparently
the existence of the above-mentioned transversal flows (fluctuating and stable) across
the main channel. They bring the growing macro whirlpools from the main channel.
The length of streams flowing along the channel becomes, and therefore the macro
whirlpools do not have enough time to grow fully.

In order to detect all the not entirely masked macro whirlpools by computer, the
acutally existing whirlpools were compared with a standard whirlpool. For this com-
parison, a diagram of the standard whirlpool was moved along the velocity chrono-
gram until the point where the standard whirlpool was similar to the one being
searched for. For the latter, a correlation function (1) was calculated as:

F j =
1
λ

λ∑
i=1

∣∣∣ustand
j − u j+i

∣∣∣, (1)

where λ – the length of the macro whirlpool in measurement time steps (for the main
channel λ = 100), ustand

j – longitudinal velocity at the current measurement point j
of the standard whirlpool, u j+i – the longitudinal velocity of the supposed whirlpool
at the measurement point j + i, i – the number of the chronogram point where the
searched-for macro whirlpool is supposed to begin.

The sum of differences between the velocities of the standard and found whirlpools
becomes minimal in the place where the standard whirlpool and the one being search
for coincide. If the detected and standard whirlpools were of the same form and size,
and the bottom vortices were absent, the connection function would be equal to zero.

For the purpose of constructing a standard whirlpool with a length of λ, the ve-
locities of macro whirlpools were taken from the chronogram shown in Fig. 6.

To search for ordinary macro whirlpools, the function F was calculated for each
measurement point i, in which the beginning of the standard whirlpool was placed.
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When this point occurs at the beginning of the existing macro whirlpool, this function
reaches its minimal value. Longitudinal velocity distribution in macro whirlpools is
different at different heights from the bottom. Therefore standard whirlpools must be
constructed for each case.

The intensity of a detected whirlpool was estimated as a relationship between
the velocity amplitude of this whirlpool and the amplitude of a standard one. In or-
der to estimate this relationship, the amplitude of the standard macro whirlpool was
gradually decreased until the correlation function became minimum, i.e., until the
intensities of the standard and the found whirlpools became equal.

As one can see, macro whirlpools were detected with the individual correlation
function, which made it possible to detect and investigate all of them. The autocorre-
lation function, used in many studies, operates with the average intensity of the pairs
of neighbouring vortices and is not quite suitable for this purpose.

The distribution of thus estimated intensities of macro whirlpools is shown in
Fig. 7. Macro whirlpools of various intensities, mostly distorted by bottom vortices,
were found almost along the whole measurement interval. They were not detected in
only several places, where their calculated intensity was found very weak. Some of the
detected whirlpools were unrealistically large. These whirlpools were highly distorted
by bottom vortices and their groups. Along the interval shown in Fig. 6 (5500–6000
steps), where the bottom vortices are regular, the amplitudes of macro whirlpools are
also regular.

Fig. 7. Amplitudes of the longitudinal velocities of macro whirlpools in measurement vertical
39 at a height of 15 cm

As mentioned above, under the conditions of a compound channel, macro whirl-
pools in the main channel are weak. As a result, the sediment transport ability of
the flow is much lower than in a rectangular flume, as sediments are not lifted to the
outer zone of the flow to the same extent as in a rectangular flow. This undesirable
effect is increased in this model by the existence of a stable transversal flow resulting
from an imperfectly symmetric inflow in the experimental channel. Transversal flows



Structure of Turbulent Vortices in a Compound Channel 123

occur in natural flows. It is therefore useful to obtain measurements with this flow and
without it.

3.3. The Influence of Voltage Fluctuations in Electrical Systems

The chronograms also revealed long intervals (1000–6000 measurement points) with
higher or lower velocities, which were much longer than those that could be formed in
the flow naturally. Such fluctuations were earlier observed in laboratories, when the
water discharge produced by pumps and flowing into the channel changed because of
unstable and frequency in the electrical system. It occurs in re-circulating channels.
Such unnatural fluctuations distort the real velocity fluctuation amplitudes. It was
necessary to eliminate them.

It was noted that these unnatural fluctuations were clearly visible only in the
measurements of longitudinal velocities. Analogical changes in turbulent vortices are
much smaller than those in longitudinal velocities, so they are less noticeable. This is
so because some time is necessary for the development of bottom vortices until they
are fully grown. Therefore, only long-lasting electrical fluctuations can have some
effect, which means that the process of this influence is quite complex.

For the elimination of these distortions, the average values of instantaneous veloc-
ities in time intervals of estimated length were calculated. These values were changing
about the average value over the whole measurement time. To obtain the exact average
meanings of flow velocities under such conditions, a relatively long measurement time
(6.0 min) was necessary. The corrections were calculated for each measurement point
with this point in the middle of the time interval used for averaging.

The length of the averaging intervals must not be shorter than the really existing
cycle in natural flow velocity fluctuations. The longest fluctuation cycle in the main
channel is caused by the macro whirlpools. Their cycle in the main channel is 100
measurement steps long. Consequently, the time interval for averaging here must not
be shorter than 100 steps.

However, horizontal macro whirlpools are also formed throughout the entire width
of the floodplain. They can create transversal velocity fluctuations in the main chan-
nel, as well, which also move along the flow. The cycle of horizontal whirlpools in
the floodplain is longer. The width of the floodplain is 60 cm, so the distance between
vortices of this type is 60 × 6 = 360 cm. The average flow velocity in the right flood-
plain is 31 cm/sec, so the length of cycle is 360/31 = 11.6 sec, or 11.6 × 25 = 290
measurement steps. It is the longest cycle that can be formed in this model, as larger
flow elements containing macro whirlpools are absent. To avoid the elimination of
these fluctuations, the above-mentioned averaging interval for the valley flow must be
equal to 300 measurement steps.

On the left side of the floodplain, the water discharge and flow velocities are
slightly lower than on the right side. Therefore, the horizontal whirlpools move with
slightly different velocities, and their position along the flow is somewhat different.
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Consequently, the fluctuating flow velocities are formed across the main channel. In
the case of symmetrical floodplain flows, the flow across the main channel would be
impossible. Thus, the fluctuations of transversal velocities of about 300 measurement
steps in length are natural and visible in chronograms. This fluctuation of transversal
velocity changed the conditions for the development of macro whirlpools. That is
why their amplitudes and the size of longitudinal velocities fluctuated at the same
frequency. Consequently, for the calculation of corrections the averaging length in
the valley and the main channel was set at 300 steps. The calculated corrections are
plotted in Fig. 8. Measurement data were corrected in this way.

Fig. 8. Longitudinal velocity corrections eliminating the influence of electrical voltage fluc-
tuations in vertical 39 at heights of 7–15 cm from the bottom

The largest longitudinal velocity correction was over 2 cm/sec. In these intervals
the amplitudes of the measured velocity fluctuations were mostly 4–6 cm/sec. Thus
the errors in these intervals were as large 50%. Differences in the average fluctuations
of longitudinal velocities calculated with corrected and uncorrected measurement
data reached 5%. These errors are fairly significant, so they need to be eliminated
by this procedure. Such distortions could be avoided by means of an apparatus for
electrical voltage stabilization or by means of upper leveling reservoirs. When they
are absent, a parallel measurement of flow velocity at the beginning of the channel
would be helpful. It could be directly used for a more exact calculation of corrections.
It is possible that the electrical voltage twisting cycles have a similar length as the ones
occurring in the water flow. Such measured velocities could be used for calculations
to eliminate these unnatural fluctuations.

3.4. Development of Bottom Vortices

As mentioned above, the high gradients of longitudinal velocities in the main channel
lead to the formation of hairpin-like bottom vortices. They occur in groups.

When the first vortex in the group is formed, it decreases the longitudinal velocity
near the bottom in that place, which is favourable for vortex generation. When the first
vortex is moved by the flow, another vortex can be formed in its place. As a result,
vortex groups are formed. This process continues until it is stopped by some reason,
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for instance, because of: (1) the older group of vortices going on higher, (2) the passing
rising part of a macro whirlpool, which lifts the vortex group into the outer zone of
the flow, (3) any accidental event changing the velocity.

Below the already growing group of bottom vortices, a zone of lower longitudinal
velocities is formed. It decreases velocity gradients near the bottom. Owing to the
decrease in longitudinal velocity below the row of vortices, a zone of almost constant
longitudinal velocities is formed between the neighbouring groups. This phenomenon
has been observed by many researchers.

In order to observe vortices passing the measurement points in the central verticals
of the main channel, it is most convenient to analyze vertical velocity chronograms.
When the front of a vortex approaches, velocities are directed downwards. Here their
minimum (negative maximum) is found. When the end of the vortex passes by, the
velocities are directed upwards. Thus the chronogram becomes twisted. The num-
ber of twists shows how many vortices have been recorded by the measurement. In
the interval of 100 points, 28–32 vortices passed by. An arriving vortex group also
has the minimum values of the longitudinal velocity. When a vortex group situated
above passes by, it decreases the longitudinal velocity. The maximum is formed when
a neighbouring vortex passes below. After this, the velocity graph is slightly twisted,
as the vortices further from the measurement point pass by. The longitudinal veloc-
ity decreases gradually until the next vortex group approaches. When a vortex of any
group is passing by the measurement point with its inner part, its longitudinal velocity
changes slowly.

Most of the vortices flowing not too far from the measurement point only cause
twists in chronograms. However, hardly any of them pass this point with their central
part. These vortices can serve for the study of their characteristics. When the central
part of a vortex passes near the measurement point, vertical velocities change sig-
nificantly, but there is much less change in longitudinal pulsations. The observation
of these velocities made it possible to recognize the searched-for vortices. For this
search, it is necessary to estimate changes in vertical the longitudinal velocities at
two neighbouring measurement points. After some trials, it was assumed that a vortex
whose central part passes the measurement point is detected when the vertical velocity
grows by not less than 0.5 cm/sec and the change in the longitudinal velocity is less
than 0.5 cm/sec. When the velocities selected for this purpose were, for example, 0.6
and 0.4 cm/sec, stronger vortices were detected. When the center of a vortex passes
the measurement point at a greater distance, the change in the longitudinal velocity is
greater. In the lower or the upper part of a vortex, longitudinal velocities change the
most while vertical velocities change slowly. To catch a vortex in both these cases,
the control increment in vertical velocity was set at 0.2 cm/sec, and of longitudinal
velocity at less than 0.7 cm/sec.

It is a well known fact that the central part of a vortex rotates statically, and the
velocities are proportional to the radius. From these conditions it was possible to
calculate the distances of the detected vortex center from these two points, and the
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rotational velocity of the vortex. These two calculated rotational velocity values were
somewhat different because the trajectories of the vortex points were not quit circular,
or the rotation of the central part was not quite static, or the two measurement points
could not be placed in one vortex.

From the measurements at various points along the height of verticals, the rela-
tionship between the rotational velocity and the distance from the bottom was esti-
mated.

Naturally, the method described above made it possible to detect only sufficiently
large vortices, in which two neighbouring measurement points could be placed. The
distance between measurement points was 1.2–1.5 cm. It sometimes happened that
rotation measured at these two points was very different or even. If the difference was
greater than 50%, the points were rejected. This usually happened when the vortex
was too small for such an investigation. During measurements with all 9000 steps,
300–400 sufficiently large vortices were found. These were mostly vortices of the
groups flowing through the measurement point. Having emerged and developed un-
der very different and random conditions, these vortices had significantly different
intensities of rotational velocities. The calculated rotational velocities were disposed
according to the turning intensity, and so the probability graphs of this characteristic
were obtained. They are plotted in Fig. 9. As can be seen, the change in rotational
velocities (30–70% probability) at different heights from the bottom is similar to the
change in the fluctuations of vertical and longitudinal velocities (Fig. 5). It is quite
natural, as the rotational velocities of vortices are proportional to vertical and longi-
tudinal velocities.

The change in the rotational velocity of a vortex at heights of 5, 7, and 9 cm is
larger than at greater heights, as velocity gradients are large there. At heights of 11,
13, and 15 cm vortices are not developed further. They are lifted by macro whirlpools,
so that their rotational velocity differs less.

The distances calculated from the measurement point to the centers of the vortices
being searched for are in many cases quite large. They show the possible sphere of
influence of these vortices. It was interesting to estimate how far this influence reached
in various directions. In the direction of the flow, their influence is naturally limited
by the distance between them, Downwards and upwards, however, this influence is
limited only by their intensity. The sphere around the measurement point was divided
into 12 sections, each of 300. The sections 1 and 12 were directed downwards. Sec-
tions 1–6 were at the left side of vortices. The calculation results are plotted in Fig.
10a and 10b.

Fig. 10a shows the number of vortices that occurred in the sections. The measure-
ment results at heights of 5, 9 and 15 cm from the bottom are presented. Mostly the
vortices are directed downwards (sections 1 and 12) and upwards (sections 6 and 7).
The cases of horizontal directions occur seldom, as these are few in these directions,
and the distances between them are relatively short. In Fig. 10b the distances from the
measurement point to the center of the vortex are shown.
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Fig. 9. Probability of the turning intensity of bottom vortices in measurement vertical 39 at
heights of 7 to 13 cm from the bottom

Fig. 10. The number of vortices which occurred in particular sections (Fig. a) at heights of 5,
9, and 15 cm from the bottom. The distances of the vortices from the measurement point (Fig.
b): dmx5, dmx9 and dmx15 – the maximum distances of the vortices from the measurement
point at heights of 5, 9, 15 cm; dmd5, dmd9, dmd15 – the middle distances of the vortices from

the measurement point

The distances between the vortices in developed groups are not large. Therefore
only the oldest vortex can freely absorb water volumes by fluid viscosity. These vol-
umes are brought down to the region of a neighbouring vortex, which sends this wa-
ter volume to the next, younger vortex. Brought down, these volumes lift the vortex
group higher. The energy of vortices is expended on this process, but this energy is
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restored by an upper flow layer with higher velocities. Here, the rotation of the vortex
is increased by fluid viscosity. By influence of vortices, the flow in this upper layer
becomes somewhat twisted. Therefore our method would make it possible to register
the influence of vortices in this layer, as well. The extent of this influence upwards
and downwards appeared quite similar.

As can be seen, groups of bottom vortices operate in unison, which is why they
are called ”coherent structures”. According to PIV photographs (Adrian et al 2000),
these structures are usually not quite regular. In some places, the distances between
vortices are larger. Apparently this occurs because the weaker ones have been de-
stroyed. Through these larger intervals, water volumes are brought downwards, and
these new vortices are lifted higher than the older ones. As a result these structures
become irregular.

As already mentioned, the rotation of the vortex and velocity fluctuations would be
damped out if they were not supported by velocity gradients along the flow depth. The
energy of flow layers with higher velocity is employed for that purpose. In this way the
stability of macro whirlpools is supported, as well. The analysis of the distribution of
instantaneous velocities showed the process of the formation and further development
of bottom vortices, Macro whirlpools, however, were already formed in the measure-
ment section, and the process of their generation could not be observed. It is safe to
assume that at the beginning of the experimental channel, where the turbulence is
still developing, the largest bottom vortices continue to grow and thus assist the for-
mation of macro whirlpools. However, for the full development of macro whirlpools,
the profile of longitudinal velocities must be formed.

4. The Analysis of Turbulent Vortices in the Valley

At the flow boundaries of the valley, where high velocity gradients are formed, turbu-
lent vortices are generated as well, similar to those in the main channel. At the banks
of the valley horizontal vortices are generated, too. These can also be divided into two
kinds of structures: bank vortices (and their groups) and horizontal macro whirlpools,
which take up the whole width of the valley side. The influence of all these vortices
intertwines, which makes it quite difficult to estimate properly their parameters.

4.1. Vertical Vortices in the Valley

For the study of vertical vortices in the valley, the chronograms of vertical velocity
components are most convenient. Horizontal vortices do not influence these compo-
nents, as they contain only longitudinal and transversal velocity components. Vertical
velocities in the valley are formed only by vertical vortices, so they can be investigated
in these chronograms much easier than in longitudinal and transversal ones. In the
valley, as in the main channel, the influence of bottom vortices and their groups and
of macro whirlpools is reflected in chronograms. The influence of macro whirlpools
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is therefore somewhat masked. However, there are many intervals, where bottom vor-
tices and their groups are quite regular and macro whirlpools are well visible. Such an
interval, between measurement points 2900 and 3450, is illustrated in Fig. 11, which
shows measurements in vertical 19 at a height of 4 cm.

Fig. 11. Vertical bottom vortices (thin line) and macro whirlpools (thick line) in the valley
(vertical 19)

Since water depth in the valley was h = 12.3 cm, the length of macro whirlpools
amounted to L = 6 × h = 73.8 cm. The average velocity in the valley was 31 cm/sec.
Then the time in which macro whirlpools flowed by the measurement point was t =
L/v = 73.8/31 = 2.4 sec, or 2.4 × 25 = 60 steps, in measurement points. In Fig. 11,
the average length of macro whirlpools is also about 60 steps. This length changes
slightly along the flow because the longitudinal velocity components of vertical macro
whirlpools are changed by horizontal macro whirlpools, which make the flow twist.
Then the direction and flow velocity of vertical macros changes, as well. Conse-
quently, the length pulsation of vertical macro whirlpools is of the same frequency
as that of horizontal macro whirlpools.

The bottom vortices in the valley are also hairpin like. As a result, their legs, laid
at the bottom, cause longitudinal spirals (secondary flows) with increased fluctuations
of transversal velocities.

It should be noted, that macro whirlpools in the main channel are much less vis-
ible in the chronograms of vertical velocities than in those of longitudinal velocities
because they are masked by bottom vortices. In the valley, as shown in Fig. 11, the
fluctuation of bottom vortices and their groups are also large, even somewhat larger
than the fluctuation of macro whirlpools. However, the bottom vortices in the valley
are much more regular than in the main channel, where their regularity is distorted
by longitudinal spiral vortices, caused by transversal flow across the channel.

The intensity of vertical macro whirlpools in the valley was also studied with the
use of correlations calculated according to formula (1). The calculated amplitudes
of macro whirlpools in the valley are plotted in Fig. 12. The same figure also shows
the amplitudes of macro whirlpools calculated for vertical 39 in the main channel.
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They are even somewhat smaller than those in the valley, as their growth is limited by
transversal flow across the channel.

Fig. 12. Amplitudes of the vertical velocities of macro whirlpools in vertical 19 at a height of
4 cm and in vertical 39 at a height of 15 cm

It is easy to see that the influence of bottom vortices in the valley also distorts the
intensity of macro whirlpools, and as a result they get dispersed. However in many
intervals, fluctuation cycles of about 150 measurement steps are clearly visible. Such
fluctuation is caused by horizontal macro whirlpools is valley. Their cycle is 290 steps.
Flowing once through the measurement point, they make the direction of flow parallel
to the channel axis twice (each 150 steps). Then the conditions for the development
of vertical macro whirlpools apparently improve. When the flow is diagonal, these
macro whirlpools become weaker. Consequently, this fluctuation cycle of 150 steps
is formed.

4.2. Horizontal Vortices in the Valley

At the bank boundary of the flow, where large longitudinal velocity gradients are
formed, turbulent vortices are generated in a similar way as those at the bottom. Be-
cause of the large width of the valley, they are accordingly larger. The largest bottom
vortices reach a height of 0.3 of water depth. Analogical valley vortices could be as
large as 0.3 of the valley width, i.e. 0.3 × 60 = 18 cm. The average valley flow velocity
is 0.3 cm/sec. Such a vortex flows by the measurement point in 18/30 = 0.6 sec, i.e.
0.5 × 25 = 15 steps. These vortices also form groups of about 100 steps in length.
The distance between horizontal macro whirlpools, as already mentioned, is equal
to 290 measurement steps. All these vortices are represented in the chronograms of
measured velocities. A characteristic interval of a longitudinal velocity chronogram,
containing fluctuations caused by vertical and horizontal vortices, is plotted in Fig.
13.
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Fig. 13. Longitudinal velocities in vertical 19 at a height of 4 cm caused by horizontal and
vertical vortices in the valley. The dotted line illustrates single horizontal vortices

In this figure it is possible to observe one long twist caused by a horizontal macro
whirlpool in the interval 6220–6540 of the chronogram. The finest fluctuations are
caused by bottom vortices and their groups. Single horizontal vortices (dotted line)
cause fluctuations of 10–30 steps; fluctuations caused by groups of vortices are up to
60–120 steps long. There are some intervals in which single horizontal vortices are
not observed. In these places, they are either weak or masked by groups of bottom
vortices.

The fluctuation amplitude of longitudinal velocities observed in the chronogram,
caused by single horizontal vortices, reaches 5–10 cm/sec. Amplitudes of horizontal
macro whirlpools amount to 15–20 cm/sec.

5. Vortices at the Contact of Main Channel and Valley Flows

At the contact of the main channel flows and valley flows, the gradients of longitudinal
velocity, critical for the generation of vortices with vertical axes, are also formed. The
vortices formed here are also of two main types. They are either small contact vortices,
generated at points of critical velocity gradients, or large macro whirlpools, supported
by longitudinal velocity gradients across the channel width. Horizontal vortices, gen-
erated in this manner, cause longitudinal and transversal velocity fluctuations. The
insignificant components of vertical velocity exist only because the vertical axis of
macro whirlpools is slightly bent by longitudinal velocities growing along the water
depth. Vertical velocity components here are mainly due to bottom vortices. Here
they are also hairpin like. Therefore they have all three velocity components. They
are quite strong and can also mask the above-mentioned horizontal macro whirlpools.
A characteristic interval of measurements in vertical 30 at a height of 4 cm, where the
vortices are clearly visible, is illustrated in Fig. 14. It shows longitudinal and transver-
sal velocity fluctuations.

The thin lines in both chronograms show high frequency fluctuations caused by
bottom vortices. In Fig. 14a a macro whirlpool is visible at an interval of 10–160 mea-



132 A. Rimkus

Fig. 14. Longitudinal velocities (a) and transversal velocities (b) in vertical 30 at a height of
4 cm. The thin lines depict velocities caused by bottom vortices, and the thick lines represent

velocities caused by horizontal contact vortices in the main channel

surement points. Its length is equal to 6 distances to the middle of the channel. The
cycle length of horizontal vortices in a row at the contact of flows changes between
steps 15 and 50 (thick line). These lengths of longitudinal and transversal velocities
are the same; only the place with maximum longitudinal velocities corresponds to the
minimum of transversal velocities. High velocities in channel flow increase longitu-
dinal velocities in the valley at the contact with the main channel. This increases the
turning intensity of horizontal whirlpools in the valley.

The fluctuation amplitude of longitudinal velocities in macro whirlpools is equal
to about 10 cm/sec, and that of vertical velocities to about 3 cm/sec. Amplitudes of
fluctuations in the vortices in a row at the contact of the two flows are about 6 cm/sec
for longitudinal velocities and 4 cm/sec for transversal velocities. These amplitudes
are much larger than the amplitudes of macro whirlpools generated at the bottom,
which are low in this compound channel.

6. Possibilities of Mathematical Modelling

Flow structures are also investigated by mathematical modeling. Mathematical mod-
eling of actually existing flow structures and the development of hairpin vortex groups
was performed by Adrian et al (2000). The 3D Direct Numerical Simulation (DNS)
was employed for this purpose. For the calculation of these hairpin-like vortices, their
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initial generation was included in the model. Further development of hairpin vortices
was calculated according to Navier-Stokes equations. To estimate, for example, the
existing macro whirlpools, it would also be necessary to include their correspond-
ing initial conditions in the model. As a result, the development and the influence of
these whirlpools on the flow structure would be estimated as well. In addition, such
models could also include the calculation of sediment motion and deposition. Thus
they would provide more exact results than contemporary models. Instead of build-
ing physical models, one could employ such mathematical models to investigate, for
example, several model variants with various relative measurements.

The difficulty of employing DNS for such investigations lies in a proper selec-
tion of initial conditions and in the long time of computer work. That is why simpler
models have been created, which calculate only time-averaged velocity values. They
are less precise. Their exactness depends on the methods employed to estimate the
existence of turbulence. Various methods are created for this purpose, including eas-
ily defined algebraic equations. The exactness of these methods may be increased
through research on the development of actually existing turbulent vortices.

7. Conclusions

In the compound channel investigated here, two kinds of turbulent vortices were de-
tected: hairpin-like bottom vortices and macro whirlpools. Vertical and horizontal
macro whirlpools occurred both in the main channel and in the valley. The chrono-
grams of measured velocities were used to calculate the characteristics of both these
kinds of turbulent vortices.

The analysis of instantaneous velocity measurements revealed that bottom vor-
tices did not receive the amount of energy sufficient for their growth as they were
generated. They owed their further development to longitudinal velocity gradients.
They obtained the necessary energy from higher flow layers of greater velocities.
Macro whirlpools were also supported by these velocity gradients.

Macro whirlpools in the main flow of the compound channel were much weaker
than those in rectangular flumes because of a transversal flow running through the
main flow. This reduced the sediment transport ability of the channel.

The velocity values measured in re-circulating channels can be distorted by the
fluctuations of voltage in the electrical system. In such cases the pumps produce a fluc-
tuating water discharge. These distortions can be eliminated by a special calculation
procedure.

A detailed analysis of turbulent vortices can help to better understand the pro-
cesses taking place in the flow and to improve the methods of studying them. The
analysis of these measurement data is continued with the aim of finding better ways
to estimate the characteristics of detected vortices.
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