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Abstract
The plane strain behaviour of sand is studied using, previously proposed, incremental model
describing its pre-failure deformations. Original model has been formulated for the tri-axial
configuration, and then generalized for 3D conditions. This 3D model was subsequently
adapted to study deformations of sand in the plane strain conditions, in the x1, x3 plane. There
are three unknowns in such a configuration, namely the principal strains ε1, ε3 and the principal
stress σ2. Respective equations were derived, and then applied to study deformations of sand
for chosen stress paths. The governing incremental equations were integrated numerically, and
it was shown, for some loading paths, that σ2 depends linearly on the other principal stresses,
so introduction of apparent Poisson’s ratio is justified, as a kind of approximation. Subsequent
analysis of deformations of sand was performed using this concept, as well as using full system
of governing equations.
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1. Introduction

This paper deals with the pre-failure behaviour of sand in the plane strain conditions,
which are often assumed and analyzed in geotechnical engineering, mostly for practi-
cal reasons. In the classical geotechnical literature, 2D models prevail, just to mention
the limit or the critical states theories, which are well elaborated, Chen (1975), Derski
et al (1988), Schofield and Wroth (1968), Wood (1990). Pre-failure behaviour of sands
is usually studied using elasto-plastic models, Lewis and Schrefler (1998), Saada and
Bianchini (1989), Zienkiewicz et al (1999), or hypoplastic, Kolymbas (2000), Gude-
hus (2011). Special approaches are applied to study the phenomenon of soil liquefac-
tion, Jefferies and Been (2006), Lade and Yamamuro (1999).

In this paper, a certain alternative to the above approaches is presented. Subse-
quent steps of the pre-failure analysis of sand are summarized in Table 1. The starting
point is the incremental model of sands’ behaviour, originally derived and calibrated
for the configuration of triaxial apparatus, Sawicki and Świdziński (2010a, b, c). Then,



86 A. Sawicki, J. Sławińska

these equations were generalized for 3D conditions, using the methods of tensor alge-
bra, Sawicki (2008). These results are summarized in Sections 2 and 3 of this paper. It
should be stressed that the incremental model proposed takes into account the initial
anisotropy of sand and its initial state, defined either as contractive or dilative. For the
triaxial conditions, it describes well the sand deformations before failure and it allows
for studying some instabilities of sand.

Table 1. Subsequent steps in the analysis of pre-failure behaviour of sand

Subsequent steps References
1. Starting point: Incremental model of sand’s
behaviour before failure, formulated and calibrated Sawicki and Świdziński (2010a, b, c).
for the triaxial configuration (determination of the Summary: Sections 2 and 3.
constitutive functions M, N, P, Q).
2. 3D generalization of the „triaxial” constitutive
equations using the methods of tensor algebra.

Sawicki (2008).

Determination of the constitutive functions A, B,C,D.
Summary: Sections 2 and 3.

3. Formulation of 3D model for the plane strain
conditions in the ε1, ε3 plane. The basic condition dε2 = 0 Section 4.
allows for determination of the respective stress increment
dσ2.
4. Applications include determination of pre-failure
deformations for arbitrary loading paths, analysis of Sections 5, 6, 7.
instability and liquefaction.

Then, the model is applied to study the pre-failure behaviour of sand in the plane
strain conditions. Respective equations are derived in Section 4, and some applica-
tions are presented in subsequent sections. These applications include the analysis of
pre-failure deformations of sand and its unstable behaviour. The results obtained, and
the proposed methodology, are original and can be used to test the experimental data
obtained from the plane-strain tests like, for example, those obtained by Wanatowski
and Chu (2006) or Chu and Wanatowski (2009).

The plane strain tests are not so popular in geotechnical engineering as con-
ventional triaxial tests, performed in standard apparatuses, even including advanced
equipment, enabling measurement of lateral stresses or propagation of stress waves,
and subsequent determination of respective moduli. There is relatively a small num-
ber of papers devoted to this important problem, just to mention Alshibli et al (2004),
Drescher et al (1990), Finno et al (1997), Han and Vardoulakis (1991), Hettler and
Vardoulakis (1984), Lee (1970), Marachi et al (1981) or Tatsuoka et al (1986). These
papers, however, do not take into account the phenomena which are described in the
present contribution, neither the proposed methodology. The model of soil behaviour,
presented in this paper, needs further empirical verifications to be useful for engineer-
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ing purposes, however, its structure enables, at least, some fundamental investigations
on the pre-failure behaviour of granular soils. The model presented in this paper is
not for practical purposes, for its complicated algebra, but it is a good tool for basic
investigations.

2. Constitutive Equations

The following incremental equations describe the pre-failure behaviour of granular
soils in a general 3D case, see Sawicki (2008):

dεv = Adp′ + BdJ2, (1)

dε dev = Cdp′ + Ddσdev, (2)

where: d(. . . ) = increment of respective quantity; εv = volumetric strain; εdev = devia-
toric strain; p′ = mean effective stress; σdev = deviatoric stress: J2 = second invariant
of the stress deviator; A, B,D = constitutive functions; C = constitutive tensor.

The above constitutive functions are given by other functions, determined from
the triaxial experiments:

A = M, (3)

B =
N
√

3
2
√

J2
, (4)

D =
3Q
2
, (5)

C = CSdev,

C =
3P
2
, (6)

where C = another scalar function, and

Sdev =
1
3

 2
−1

−1

 (7)

is the deviatoric part of the structural tensor, describing the cross-anisotropic proper-
ties of granular soils, see Sawicki (2008). The vertical direction x1 is privileged, as
shown by experimental results, cf. Sawicki and Świdziński (2010a).

The symbols M,N,P and Q denote the constitutive functions, determined from
the triaxial compression tests, see Sawicki and Świdziński (2010a). The constitutive
equations for triaxial conditions are of the following form:

dεv = Mdp′ + Ndq, (8)

dεq = Pdp′ + Qdq, (9)
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where:
q =

√
3J2, (10)

dq =
√

3
2
√

J2
dJ2, (11)

εq =

√
4K2

3
, (12)

K2 =
1
2

tr
(
εdev

)2
. (13)

Eqs. (1) and (2) reduce to (8) and (9) for the case of axi-symmetrical stress and strain
states. The functions M,N,P and Q have different shapes for the loading and un-
loading. The shape of function N also differs for the initially contractive and dilative
sand. The definition of loading and unloading differs from that widely adopted in soil
mechanics, and is the following:

dp′ > 0 – spherical loading;
dp′ < 0 – spherical unloading;
dη > 0 – deviatoric loading;
dη < 0 – deviatoric unloading,

where:

η =
q
p′
=

√
3J2

p′
, (14)

dη =
√

3
p′

(
1

2
√

J2
dJ2 −

√
J2

p′
dp′

)
. (15)

Tables 2 and 3 summarize the constitutive functions, for the loading and unloading
respectively.

Table 2. Constitutive functions for loading, see Eqs. (8) and (9). Initially contractive sand.

Function Analytical expression
M Av/2

√
p′

N 4c1η
3/
√

p′

P Aq/2
√

p′

Q [b1b2 exp(b2η)]/
√

p′

Table 3. Constitutive functions for unloading

M N P Q
Au
v /2
√

p′ av/
√

p′ Au
q/2
√

p′ bq/
√

p′
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The quantities like Av, Aq, c1, b1, . . . are just numbers (material’s coefficients), and
their values will be presented later. As already mentioned, the function N differs from
that shown in Table 2 for the initially dilative sand, and is the following:

dεv =
∂εv
∂η

∂η

∂q
dq =

1
√

p′
(2a1η + a2)dq = Ndq, (16)

for 0 < η < η′, and

N =
1
√

p′
{
exp(a6η)

[
a3a6η

2+(2a3+a4a6)η+a4+a5a6
]
−2a3η−a4

}
(17)

for η′ < η < η′′, where η′ corresponds to the instability line (surface), and η′′ cor-
responds to the Coulomb-Mohr failure criterion (assumed as the critical or steady
states). Exemplary values of the coefficients ai will be presented later. The instability
line, in the case of triaxial compression is of the following form:

q = Ψp′, (18)

where Ψ is the coefficient determined from experiments. In the case of triaxial com-
pression tests, there is Ψ = η′ = 0.9 ÷ 1.

In the 3D case, this equation takes the following form:

J2 =
1
3

(Ψp′)2. (19)

3. Values of Parameters

The parameters appearing in the constitutive functions M, N , P and Q were deter-
mined from the triaxial tests, performed on the model sand “Skarpa”, see Sawicki
and Świdziński (2010a). Their values were determined separately for the initially
contractive and dilative sand, using the following units: stress unit 105 N/m2 and
strain unit 10−3. Such units are convenient in numerical calculations, as we deal
with numbers of the same order of magnitude. Consider, for example, the uni-axial
Hooke’s law σ = Eε. Let E = 2 × 108 N/m2 and ε = 3 × 10−3. Substitution of these
values into the above equation givesσ = 6 × 105 N/m2. It is much more convenient to
introduce the values E = 2 and ε = 3, and the result of calculation is obviouslyσ = 6,
but expressed in respective unit. The average values of parameters are listed below.
Loose sand:

Av = 6; Aq = −0.95; Au
v = 4.4; Au

q = −0.45.

Dense sand:

Av = 3.47; Aq = −0.53; Au
v = 2.9; Au

q = −0.21.

Initially dilative sand (dense):

a1 = −1; a2 = 2; a3 = 4.07 × 10−6; a4 = −9.44 × 10−3;



90 A. Sawicki, J. Sławińska

a5 = 1.1 × 10−2; a6 = 6.54;

b1 = 3.5 × 10−4; b2 = 6.65; bq = 0.4; av = −0.4.

Initially contractive sand:

c1 = 2.97; av = −0.87; b1 = −0.023; b2 = 6.245; bq = 0.76.

Angles of internal friction:
Loose sand ϕ = 34◦; η′′ = 1.375; dense sand ϕ = 41◦; η′′ = 1.68.

Instability line: η′ = Ψ = 1, see Eq. (18).

4. The Plane Strain Conditions

4.1. General Relations

Consider the case shown in Fig. 1, where σi; i = 1, 2, 3 are the principal stresses. The
stress σ2 is perpendicular to the σ1, σ3 plane. The plane strain condition is defined
by the following relation:

ε2 = 0 or dε2 = 0. (20)

The deviator of stress tensor is the following:

σdev =
1
3

 2σ1 − (σ2 + σ3)
2σ2 − (σ1 + σ3)

2σ3 − (σ1 + σ2)

 =
=

 σ
dev
1

σdev
2

σdev
3

 .
(21)

The same form takes the deviator of strain tensor, when the symbol σ is replaced by
ε. The second invariant of the stress deviator, and its increment are the following:

J2 =
1
2

tr
(
σdev

)2
=

1
3

(
σ2

1 + σ
2
2 + σ

2
3 − σ1σ2 − σ1σ3 − σ2σ3

)
, (22)

dJ2 = σ
dev
1 dσ1 + σ

dev
2 dσ2 + σ

dev
3 dσ3. (23)

Substitution of the above relations into the general constitutive equations (1) and
(2) leads to the following system of scalar equations:

dε1 + dε3 = A1dσ1 + A2dσ2 + A3dσ3, (24)

2dε1 − dε3 = B1dσ1 + B2dσ2 + B2dσ3, (25)

−dε1 − dε3 = C1dσ1 +C2dσ2 +C1dσ3, (26)

2dε3 − dε1 = C1dσ1 +C1dσ2 +C2dσ3, (27)
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Fig. 1. Principal stresses in the plane strain conditions

where:
A1 =

A
3
+ Bσdev

1 ; A2 =
A
3
+ Bσdev

2 ; A3 =
A
3
+ Bσdev

3 ,

B1 =
2C
3
+ 2D; B2 =

2C
3
− D,

C1 = −
C
3
− D; C2 = −

C
3
+ 2D.

There are four equations (24)–(27), but only three unknowns, namely ε1, ε3, σ2. It can
be shown that one of these equations depends on the others. If we add Eqs. (24) and
(26), the following formula for dσ2 is obtained:

dσ2 = G1dσ1 +G2dσ3, (28)

where:
G1 =

[−A +C + 3D − B(2σ1 − σ2 − σ3)]
Ω

,

G2 =
[−A +C + 3D − B(2σ3 − σ1 − σ2)]

Ω
,

Ω = A −C + 6D + B(2σ2 − σ1 − σ3).

4.2. Changes of σ2

The first important problem is to examine the changes of σ2, taking place in the plane
strain conditions. In the case of linear and isotropic elasticity, this stress is given by
the well known relation:

σ2 = ν(σ1 + σ3), (29)

where ν denotes Poisson’s ratio, see Timoshenko and Goodier (1951). It can be
checked by elementary calculations that this stress is either an intermediate principal
stress, or even may take values smaller than remaining two principal stresses.
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First, let us examine the changes of σ2 in the case of anisotropic compression,
which means that σ3 = ξσ1, where ξ = const. Note that this parameter should satisfy
the following relation:

Φ1 =
1 − sin ϕ
1 + sin ϕ

< ξ < Φ2 =
1 + sin ϕ
1 − sin ϕ

, (30)

where ϕ is the angle of internal friction. Inequality (30) follows from the condition
that the stress path should not exceed statically admissible region, bounded by the
Coulomb-Mohr limit surface, see Fig. 2.

C-M

anisotropic compression

Coulomb-Mohr limit surface

σ3

σ1

Fig. 2. Anisotropic compression stress path

The stress σ2 is calculated by integration of Eq. (28). Fig. 3 illustrates σ2 as func-
tion of σ1 and σ3, for initially contractive and loose sand, and for ξ = 1/2. Interesting
conclusion is that this stress changes linearly, although the character of incremental
equation (28) is nonlinear. This result suggests that a certain analogy to linear elastic-
ity can be adapted in this case, cf. Eq. (29). Apparent Poisson’s ratio is the following:
ν = 7/(16 + 8) = 0.29. Such assumption may significantly simplify numerical calcu-
lations.

Similar analyses, performed for different values of ξ, also show that σ2 linearly
depends on the other principal stresses. However, values of ν obtained from those
calculations slightly differ, as they vary from 0.2 for ξ = 1 to 0.38 for ξ = 3 and
1/3, i.e. extreme values of ξ, corresponding to stress paths nearly adjacent to the
Coulomb-Mohr lines. The following formula approximates quite well numerical re-
sults: ν = νmin + 0.141 (ln ξ)2. In spite of that, the assumption (29) will be used in
further analysis, as the first approximation, in order to simplify calculations.

It should be added that in the case P = 0, which corresponds to initially isotropic
soil, Eq. (28) give the same result for the anisotropic compression stress paths, sym-
metric with respect to the σ1 = σ3 line in the stress space as it should be.

It is interesting to notice that the stress σ2 is not necessarily an “intermediate
principal stress” as traditionally assumed in the limit states theory. Recall that the
Coulomb-Mohr yield condition assumes that such an intermediate principal stress
does not influence the limit behaviour of sand. Our analysis shows that σ2 could be,
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8 16

Fig. 3. Changes of σ2 during anisotropic compression (ξ = 1/2) of initially contractive sand

as well, the minor of principal stresses. Assume, for example, that ν = 0.29; σ1 = 2;
σ3 = 1. For these data, Eq. (29) leads to σ2 = 0.29(2 + 1) = 0.87 < 1. It seems that
this important problem has not been sufficiently investigated in geotechnical engineer-
ing.

4.3. Instability Line

Instability surface is given by Eq. (19) which is a generalization of respective expres-
sion obtained from the triaxial compression tests, see Sawicki (2008). The second
invariant of the stress deviator is given by Eq. (22). In order to simplify the analysis,
Eq. (29) will be adapted, which is justified by previous calculations. Eqs. (19), (22)
and (29) lead to the following expression:

β1
(
σ2

1 + σ
2
3

)
+ β2σ1σ3 = 0, (31)

where
β1 = α1 − Ψ2α3; β2 = α2 − 2Ψ2α3,

α1 = 1 + ν(ν − 1); α2 = 2ν(ν − 1) − 1; α3 =
(1 + ν)2

9
.

Eq. (31) represents a curve in the σ1, σ3 space. A character of this curve can be deter-
mined by well known methods of classical mathematics. For the data corresponding
to “Skarpa” sand, i.e. ν = 0.29, Ψ = 1, one obtains the pair of straight lines:

σ1 = 2.531σ3; σ2 = 0.395σ3, (32)

which are symmetrical with respect to σ1 = σ3. These lines are situated inside the
statically admissible region as Φ1 = 0.32 and Φ2 = 3.12, cf. Eq. (30). Note that we
have used an average value of ν, see remarks presented in previous sub-section.

The above mentioned symmetry follows from mathematical procedure, and this
problem is still not clear from the physical point of view, as the behaviour of soil may
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be a little bit different in the triaxial compression and extension tests. The experimen-
tal data, quoted in this paper, deal with the triaxial compression tests.

5. Pre-Failure Deformations

5.1. Basic Equations

The starting point are Eqs. (24)–(27). These are four equations for three unknowns,
but only three of these equations are independent, which can be checked by addition of
Eqs. (25)–(27), after which one obtains the identity. Therefore, one can use arbitrarily
only two of these equations, for example (25) and (27). They are equivalent to the
following relations:

dε1 = S3dσ1 + S4dσ3, (33)

dε3 = S1dσ1 + S2dσ3, (34)

where

S1 = −
3
2
νQ; S2 =

3
2

(1 − ν)Q; S3 =
3
2

(1 − ν)Q +
1 + ν

2
P; S4 = −

3
2
νQ +

1 + ν
2

P.

The functions P and Q are defined in Tables 2 and 3, and ν was introduced in Eq. (29),
which was supported later by numerical analyses. Note that Eq. (24) was replaced by
the assumption (29).

5.2. Deformations During Anisotropic Compression

The anisotropic compression stress path is shown in Fig. 2, and is given by the fol-
lowing relation:

σ3 = ξσ1, (35)

where the meaning of ξ was explained in Section 4.2, see Eq. (30). The same relation
is valid for the stress increments. In the case (35), Eqs. (33) and (34) take the following
form:

dε1 =
T2
√

p′
dσ1; dε3 =

T3
√

p′
dσ1, (36)

where:

T2 =
3
2

(1 − ν − ξν)T1 +
(1 + ν)(1 + ξ)Aq

4
,

T3 =
3
2

[
ξ(1 − ν) − ν

]
T1,

T1 = b1b2 exp(b2η).
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The coefficients appearing in the above expressions are defined in Tables 2 and 3, and
their values are presented in Section 3 of this paper. The mean effective stress and the
non-dimensional shear stress are given by the following relations:

p′ =
1
3

(1 + ν)(1 + ξ)σ1 = R1σ1, (37)

η =

√
3R2

R1
= const, (38)

where
R2 =

1
3

[(
1 + ν2 − ν

) (
1 + ξ2

)
+

(
2ν2 − 2ν − 1

)
ξ
]
. (39)

Eqs. (36) can be integrated easily, and the following formulae for strains obtained:

ε1 =
2T2
√

R1

√
σ1; ε3 =

2T3
√

R1

√
σ1. (40)

Fig. 4 illustrates Eqs. (40) for the data corresponding to initially contractive sand,
see Section 3 and ν = 0.2. Fig. 5 presents the volumetric and deviatoric strains as
functions of the mean effective stress, for the same data. Recall that the deviatoric
strain is defined by Eq. (12).

Fig. 4. Principal strains for anisotropic compression, cf. Fig. 2 and Eqs. (40)

The stress-strain relations, shown in Figs. 4 and 5, were determined from Eqs.
(24)–(28), which means that they are the exact solution of the problem considered.
The stress σ2, and subsequently the coefficient ν, were also determined from these
equations. Then, simplified Eqs. (40) were used to determine the same strains. The
results of computations were the same as before, which means that the formulae de-
rived are correct.

5.3. Deformations Caused by Another Simple Loading Path

The next example deals with deformations caused by increasing vertical stress, whilst
the horizontal stress remains unchanged (path AB in Fig. 6). It is assumed that
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Fig. 5. Volumetric and deviatoric strains as functions of the mean effective stress. Alternative
presentation of the results from Fig. 4

the strain state at point A is known. It can be calculated as shown in the previous
sub-section or assumed as, for example, the geostatic stress state. On this path, there
are only two stress increments, namely dσ1 and dσ2 = νdσ1 as dσ3 = 0. The gov-
erning equations (33) and (34) reduce to the following form:

dε1 = S3dσ1; dε3 = S1dσ1, (41)

where S1 and S3 are defined after Eq. (34). Unfortunately, these equations cannot be
solved analytically, so numerical procedure should be applied. Figs. 7 and 8 show the
results of calculations, for the data from previous example. Fig. 7 shows the changes
of principal stresses, and Fig. 8 respective changes of the volumetric and deviatoric
strains. Other stress paths, and subsequent deformations, can be analyzed applying
the introduced procedure.

Fig. 6. Exemplary simple loading path

Fig. 9 shows that the horizontal strain decreases along the stress path AB, which
physically means expansion of the sample analyzed. This is consistent with intuition.
Fig. 9 illustrates the changes ofσ2 along the same path, as function ofσ1. This relation
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Fig. 7. Principal strains developed along the stress path AB, cf. Fig. 6

Fig. 8. Volumetric and deviatoric strains along stress path AB. Alternative presentation of the
results from Fig. 7

is slightly non-linear, but a linear approximation seems reasonable from the practical
point of view.

Fig. 9. Changes of apparent Poisson’s ratio along stress path AB, see Fig. 6
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5.4. Relation between Eqs. (24) and (29)

The above strain-stress relations were derived from Eqs. (25)–(27). It was shown that
only two of these equations are independent. Eq. (24) was “replaced” by the assump-
tion (29), and possible consequences of this “replacement” should be analyzed. The
main problem is that the constitutive functions Si depend only on the constitutive
functions P and Q. They are independent on the functions M and N , appearing in Eq.
(24). The functions M and N describe the volumetric changes of granular soils, due to
the respective changes of the mean effective stress and the stress deviator. Replacing
of Eq. (24) by the assumption (29) needs some explanations. Some of them were
presented in sub-sections 5.2 and 5.3. Recall that the exact solution of the problem
analyzed takes into account Eq. (24) in which the functions M and N appear. This full
system of equations leads to same results as those obtained from simplified version
of governing equations represented by Eqs. (40). Such a result means that the con-
stitutive functions introduced in the description of the triaxial behaviour of sand are
dependent. At present, we have not discovered such possible relations.

6. Stability

Hill’s condition is used in soil mechanics to study stability of granular materials. It
states that a stress-strain state is stable if for all stress and strain increments, linked by
the constitutive relations, the second order work is positive, Darve et al (2004). In the
plane strain case, considered in this paper, this condition takes the following form:

d2W = dε1dσ1 + dε3dσ3 = S3dσ2
1 + S2dσ2

3 + (S1 + S4)dσ1dσ3 ≥ 0, (42)

where d2W denotes the second order work.
In the case of anisotropic compression, considered in sub-section 5.2, the above

condition takes the following form:

d2W =
3
2

(1 − ν)
(
1 + ξ2

)
Q +

(
1 + ν

2

)
(1 + ξ) P > 0, (43)

as Q > 0 and P > 0, so the soil behaviour is stable for such stress paths.
In the case of stress path AB shown in Fig. 6, there is dσ3 = 0, so the second order

work is given by the following relation:

d2W = S3dσ2
1 . (44)

Because S3 > 0, there is also d2W > 0, so the sand behaviour along the path AB is
also stable.
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7. Discussion and Conclusions

The results obtained in this paper can be summarized as follows:

1. The model enabling studies of the plane strain behaviour of sand in the plane
strain conditions is consistent with the requirements of continuum mechanics. It
has been calibrated for the tri-axial configuration, and then adapted to analyse
3D conditions, including a special 2D case. There is a lack of direct verification
of the results obtained in the plane-strain experimental apparatus, as the Authors
have not had access to such devices. However, the model presented is a kind of
proposition that can be used to design rational experiments. Published data from
such experiments are of a little value for our purposes as those experiments were
usually performed randomly. Unfortunately, we have not found, in available litera-
ture, the stress-strain curves, which could possibly be used to verify our theoretical
results.

2. An important result, obtained in this paper, is that the stress σ2, perpendicular
to the analysed plane of deformations, can be approximated by a simple formula
(29), similar to that applied in linear elasticity. Such an assumption significantly
simplifies theoretical analyses of the problem, but needs further verifications.

3. The incremental constitutive equations allow for studying the problem of stability
of granular soils. It was shown, for exemplary stress paths, that their behaviour is
stable. It should be not so in the case of other stress paths.

4. It seems that the proposed constitutive equations have opened some new possibil-
ities to study the pre-failure behaviour of granular soils. Note that such problems,
as the liquefaction of saturated sands, have not been included in the analysis pre-
sented, as they need a special treatment, but still within the framework proposed.
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