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Abstract
Theoretical bases for building a logarithmic law for non-uniform flows over a large relative
roughness are presented. In order to define the equivalent velocity distribution and to smooth
out 3D flow irregularities, a special spatial averaging operation is defined. Basic equations are
spatially averaged and double-averaged momentum equations for primary component velocity
are derived for uniform flow over a gravel bed as well as for non-uniform flows. A new
hypothesis is proposed, and some assumptions are introduced to solve these momentum
equations. This results in a new version of the logarithmic velocity distribution (log law).
To define this distribution, a full reconstruction of Nikuradse’s graph for flows over an
irregular gravel riverbed is considered. It is based on very precise measurements of velocity
and other hydraulic parameters. In the case of non-uniform flows, the logarithmic velocity
profile appears also in accelerating flows in a gravel bed channel, but the friction velocity
should be re-defined according to Eq. (24). The same applies to decelerating flow with
a positive pressure gradient, but only if the gravitational force exceeds the pressure gradient.
For accelerating flows, the additive constant BP depends on the pressure gradient, and its
values grow with a growing pressure gradient.

Key words: open channel, log-law, non-uniform flow, rough flow, accelerating flows, de-
celerating flows

Notations

<> – double-averaged quantity,
B – universal (additive) constant in the log law,
Bp – additive constant in the log law for flow in a non-zero-

pressure gradient,
D50 – median diameter of gravel,
Ds – grain diameter,
h – water depth,
k – absolute size of roughness elements,
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ke f – height of the average roughness interfering with the
flow,

P – time-average pressure,
S0 – slope of the channel bed,
S f – slope of the energy gradient line,
U,V,W or u, v, w – corresponding velocity components,
Ui – i-th components of the time-average velocity,
ui – i-th components of the turbulent velocity,
Ui(x, y, z, t) = U(x, y, z) + ui(x, y, z, t),

x – horizontal (longitudinal) coordinate,
y – vertical coordinate,
y0 – location of the velocity origin (the effective velocity

origin),
yt – location of the velocity origin below the top of the

roughness element,
z – lateral (horizontal) coordinate,
κ – von Karman’s constant,
κe – von Karman’s constant related to the mixing length

le,
ν – kinematic viscosity,
ρ – mass density of the fluid,
ρs – mass density of the sediment,
τ f – form-induced stresses or form stresses,
τt – mean Reynolds stresses,
Φ(y) – roughness geometry function.

1. Introduction

The vertical profile of the mean velocity in an open-channel flow is of great interest
to engineers, particularly for both uniform and non-uniform flows over gravel beds.
The boundary of a channel is usually rough, and roughness elements interfere with
the flow. These interferences produce a complicated flow pattern even in the region
away from the boundary, especially in the case of non-uniform flows. This effect
is most pronounced when the size of roughness elements is relatively large, for
example, in the case of a gravel or pebble bed. Nikuradse’s concept of a loga-
rithmic velocity profile with the absolute size of roughness elements k and the
universal constant B, can be used only for sand roughness (Yalin 1977). When
the relative spacing, size and shape of roughness elements are particularly im-
portant, Nikuradse’s concept becomes problematic. Nevertheless, Nikuradse’s sand
grain roughness has become a standard method of describing the roughness of the
boundary in both pipes and open-channel flows.
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Two types of large relative roughness are distinguished. In the first case, some
roughness elements, such as boulders, are spread on the river bed and might protrude
into the water surface. In the second, the bed is composed of coarse but relatively
uniform materials. The second case is similar to sand roughness, the difference
being that the relative roughness is much greater, and the whole flow may directly
the influence of bed materials (Tu 1991). The object of the present investigation is
the second case, i.e., riverbeds covered with coarse but relatively uniform materials.
In both cases, however, turbulent flow characteristics are strongly influenced by the
heterogeneity of the bed topography. Therefore the near-bed time-averaged flow
is spatially heterogeneous and the double average method (DAM) can produce
meaningful estimation for two-dimensional flow (see Nikora et al 2001). The method
consists of averaging Navier-Stokes equations in time and space over a surface area
parallel to the flow direction.

On the basis of laboratory measurements of velocity over several roughness
heights (diameter of river gravel and pebbles) from D = 0.5 mm to 40 mm, Kam-
phuis (1974) concluded that the diameter was a poor roughness criterion. The log-
arithmic velocity distribution is valid when the average size of roughness elements
ranges from k = 1.5D to k = 2.5D, and the universal constant is 8.5 (this constant
is denoted by B, see Eq. (15)). The actual point where the velocity is zero (effective
velocity origin) has been found 0.3D below the crest of roughness elements.

When the roughness size is large in relation to the flow depth, it is important
to locate the theoretical (virtual) bottom, where y = 0. Bayazit (1976), in his ex-
periments with hemispheres of diameter D = 23 mm, found that the theoretical bed
would have to lie at a distance of 0.35D below the tops of the hemispheres in order
that the velocity distribution agrees with the logarithmic law. He showed that the
usual log law remains valid for velocity distribution as long as the flow depth is
greater than the roughness height. The equivalent sand roughness in this case is
2.5D, and the universal constant B = 8.5.

Kirkgoz (1989) investigates the velocity distribution in rough boundary flows
with roughness elements of different sizes, namely k = 1 mm, 4 mm, 8 mm and 12
mm. The experimental values of the position of the reference level, where the mean
velocity is zero, lie between 0.25 mm and 0.75 mm below the tops of roughness
elements. Finally, he concludes that the size of roughness elements is reflected in
the values of the friction velocity, and the friction velocity U∗ increases with the
increasing roughness size.

It is common to distinguish two regions for the velocity profile: the inner or wall
region, and the outer or core region. The velocity distribution in the inner region
follows a log law, and in the wake region are some deviations from the log law.
To reduce these deviations, some authors suggest that the additive constant should
increase with the Reynolds number in this region (Guo et al 2005). However, in
practice the log law is frequently applied to the whole outer region, i.e., from the
bottom to the surface.
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Also, it is possible to distinguish an interfacial sublayer, which is the vertical
distance from the virtual bed (y = 0) to the top of the maximum elevation of the
gravel bed. Nikora et al (2001) studied flow over an array of spherical elements
as the bed roughness and showed that the double-averaged streamwise velocity
distribution is approximately linear within the interfacial sublayer.

The case of non-uniform open-channel shear flows, namely accelerating flows,
which occur when the flow velocity increases along its path, thus creating a bound-
ary layer with a negative pressure gradient, will be analyzed on the basis of data
from Afzalimehr and Anctil (2000). Decelerating flows with a positive pressure
force will only be analyses theoretically because of the lack of data.

The main aims of the work are (1) to develop basic equations for vertical velocity
profiles for both uniform and non-uniform flows over rough beds, i.e., a log law for
the flow with a non-zero-pressure gradient; (2) to re-construct Nikuradse’s graph
for uniform flows over roughness elements (not for sand-bed roughness); and (3) to
show that the constant B is not universal and depends on the roughness geometry
and on the pressure gradient in the case of non-uniform flows.

2. Basic Hydrodynamic Equations

Three-dimensional steady turbulent flow in an open channel is governed by the
Reynolds-averaged Navier-Stokes equations. The continuity and momentum equa-
tions for incompressible turbulent flows may be written in the Cartesian tensor
notation in the following forms:
– continuity equation

∂Ui

∂ xi
= 0, (1)

– momentum equations

U j
∂Ui

∂x j
= −

1
ρ

∂P
∂xi
+ Fi −

∂

∂x j

(
uiu j − ν

∂Ui

∂x j

)
, (2)

where Ui and ui are the i-th components of the time-average velocity and tur-
bulent velocity, respectively, so that Ui (x, y, z, t) = U(x, y, z) + ui(x, y, z, t); P is
time-average pressure, ρ is density, ν is kinematic viscosity, g is the acceleration
of gravity, and F = (g sin θ, g cos θ, 0). The following notation will be used in this
paper: x, y, z for horizontal (longitudinal), vertical and lateral coordinates, respec-
tively, and U, V , W or u, v, w for the corresponding velocity components.

These equations are not suitable for engineering problems because of a highly
3D structure of the mean flow, especially for gravel bed materials. In this case, the
flow, at least in the very close neighborhood of an irregular rough boundary, is
strongly heterogeneous spatially. By applying the procedure of spatial averaging to
the above equations, they can be made much simpler and easy to integrate, Nikora
et al (2004).
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2.1. The Phase Averaging Theorem: Flows in the Interfacial Layer

The interfacial layer occupies the flow region between roughness crests and troughs.
To establish an equation for flow in this layer, a special averaging operation is
introduced (for details see Nikora et al 2007). The averaging area (A) is composed
of the area of the continuous phase, i.e. fluid (A f ), and the areas occupied by the
solid phase, i.e. roughness elements (As). The area has to be large enough so that
a small increase in the area would not affect the value of the average. Let K be some
property of the continuous phase per unit volume. The phase average, sometimes
described as the intrinsic average of K (see Slattery 1999), is the average over the
area of the continuous phase and is defined as

〈K〉 =
1
A f

∫
A f

KdA =
1
φ A

∫
A f

KdA, (3)

where φ(y) is the roughness geometry function and is defined as the ratio of A f (y)/A.
The domain of the integral in Eq. (3) is the rectangular area parallel to the plane
y = const (assumed as parallel to the mean bed) centered at the point (x, z). The
area of the domain should be wide enough in comparison with the characteristic
wavelength of the lateral disturbances of the velocity distribution and long enough
in comparison with the characteristic wavelength of longitudinal disturbances.

The area-averaging theorem for rigid roughness or frozen roughness elements
can be defined by analogy with the volume-averaging theorem by the formula (see
Slattery 1999) 〈

∂K
∂xi

〉
=

1
φ

∂φ 〈K〉
∂xi

−
1
A f

∫
Lint

KnidL, (4)

where ni is a unit normal vector directed away from the roughness elements and
Lint is the interface between the roughness elements and the fluid.

According to Eq. (4), the surface average of the gradient is the gradient of the
surface average plus an additional term which involves the integral of K over the
interface between the roughness elements and the fluid. The property K can be
a scalar, vector or second-order tensor. Now, the time-averaged equations are to be
subjected to spatial area averaging, but first the ensemble average variable (velocity
and pressure) is split into a double-averaged variable and a deviation from this
average (indicated by the wave overbar in Eq. (5)) according to

U(x, y, z) = 〈U(y)〉 + ũ (x, y, z) for all (x, z) ∈ A, 〈ũ〉 = 0,
P(x, y, z) = 〈P(y)〉 + p̃(x, y, z) 〈p̃〉 = 0, (5)

where the wave overbar denotes a disturbance in flow variables, i.e., the difference
between the double-averaged and time-averaged values.
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One notes that the double-averaged variables are the same at all points belonging
to the area of averaging. It is convenient to relate these variables with the location of
the center of gravity of the area of averaging A. If appropriate sizes of the averaging
area are chosen, the averaging variables are a function of the vertical coordinate
only. Applying Eqs. (4)–(5) to average the momentum and continuity equations,
one can obtain the so-called double-averaged (in time and space) equations for the
conservation of momentum (see Nikora et al 2007),

〈
U j

〉 ∂ 〈Ui〉

∂x j
= gi −

1
φρ

∂φ 〈P〉
∂xi

−
1
φ

∂φ
〈
uiu j

〉
∂x j

−
1
φ

∂φ
〈
ũiũ j

〉
∂x j

+

+
1
φ

∂

∂x j
φ

〈
ν
∂Ui

∂x j

〉
+

1
A f ρ

∫
Lint

p̃nidL −
1
A f

∫
Lint

(
ν
∂Ui

∂x j

)
dL

(6)

and the double-averaged continuity equation

∂φ 〈Ui〉

∂xi
= 0. (7)

Please note that the deviations of the velocities in time and space are not correlated
to each other.

Some information about the double-averaging methodology (DAM) can be ob-
tained from measurements only. Aberle et al (2008) carried out a laboratory ex-
periment in a 0.90 m wide and 0.60 m high tilting flume, where coarse sediment
mixtures in a range of 0.63–64 mm were used as movable bed materials. The 3D bed
topography of the stable armor layer was estimated from surface scans of the bed
with a laser displacement meter within a 2.4 m long and 0.36 m wide test section.
These data were used to determine the roughness geometry function. Values of this
function vary almost linearly from 0 to 1 along the distance from the minimum to
maximum bed elevation, except close to the top of the roughness elements, where
they grow more quickly from 0.8 to 1 (see Aberle 2007 for details).

3. Uniform Flows Above the Crests of Roughness Elements

Equations (6) and (7) are valid for flow regions both above and below roughness
tops. Note that for the region above roughness tops all terms containing derivatives
of phi (Φ) and two integrals in Eq. (6) disappear, as does Φ in other terms, so Eq.
(6) takes the form

〈
U j

〉 ∂ 〈Ui〉

∂x j
= gi −

1
ρ

∂ 〈P〉
∂xi

−
∂
〈
uiu j

〉
∂x j

−
∂
〈
ũiũ j

〉
∂x j

+
∂

∂x j

〈
ν
∂Ui

∂x j

〉
. (8)

It is very natural to assume that for a wide open-channel flow (more exactly, for
a large aspect ratio) all terms in the lateral, z-momentum equation are zero, and
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for uniform flow the convective inertia term is negligibly small compared with the
others. Also, it is easy to show that the y-momentum equation gives the vertical
pressure distribution very close to the hydrostatic one, and its gradient is equal to
zero, but the x-momentum equation is simplified to

∂

∂y

(
−

〈
u′ v′

〉
− 〈ũ ṽ〉 + ν

∂ 〈U〉
∂y

)
= −gS0, (9)

where S0 = − tan θ ∼ − sin α is the slope of the bed.
After the integration of Eq. (9) across the boundary layer (above roughness

tops), one can receive a formula for the distribution of the total shear stresses in
the form

τtotal(y)
ρ

=

(
−

〈
u′ v′

〉
− 〈ũ ṽ〉 + ν

∂ 〈U〉
∂y

)
= ghS0

(
1 −
y

h

)
. (10)

Hence, the total shear stresses vary linearly with y. They become equal to zero
at the free surface (where y = h), and it is assumed that they reach their maximum
value at the roughness height but not at the virtual bed (where y = 0), because Eq.
(9) is not valid at y = 0. Aberle et al (2008) showed that the peaks of form-induced
stresses are located just below roughness tops (see Figure 1).

Fig. 1. Basic definitions of the log law for flows over spherical roughness elements: the
absolute size of roughness elements k is the diameter of spherical roughness elements, d is
the zero-plane displacement, ke f is the height of the roughness interfering with the flow (for

details see McLean et al 2002)

The total shear stresses can be expressed as a sum of three components: the mean
Reynolds (τt) stresses; new stresses (τ f ), called “form-induced stresses” or simply
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“form stresses” (see Gimenez-Curto and Corniero Lera 1996); and the mean viscous
(τv) stresses. It is therefore assumed that the bed shear stress has three components,
τot , τo f and τov , and it appears somewhere below the roughness height. Starting at
this level, viscous shear stresses become negligibly small compared with the other
two stresses. Viscous stresses are essential only in the viscous sublayer, in which the
other two stresses are negligibly small compared with viscous stress. The thickness
of the viscous sub-layer is very difficult to estimate, but it is approximately less
than 15% of ks for a rough sand bed (Yalin 1977). This means that the shear stress
due to the molecular viscosity µ (viscous shear stress) for the viscous sub-layer is
given by

τl(y) = µ
d 〈U〉

dy
. (11)

Outside the viscous sublayer (in a fully turbulent flow), the viscous stress in
Eq. (10) is negligibly small in comparison with the others. Thus, the total shear
stresses (in the wall region, y < 0.2 depth) can be modeled by Prandtl’s mixing
length hypothesis (MLH) as follows:

τtotal = ρ l2e

(
∂ 〈U〉
∂y

)2

, (12)

where le is a length scale defined in the framework of double average methodology
(DAM) by analogy with Prandtl’s mixing length. It is measured from the bed origin.

It is reasonable to assume (by analogy with the behavior of the log law) that
a double-averaged velocity profile can be obtained from Eq. (12) with a constant
total stress. This equation with the assumption that le = κey (κe is von Karman’s
constant related to the mixing length le) can be easily integrated in the ”turbulent
core” outside the viscous sub-layer, i.e., in the interval [yk , y]

〈U(y)〉
U∗

=
1
κe

ln
y

yk
+
〈Uk〉

U∗
, (13)

where Uk is the value of U at the top of averaged roughness elements, i.e. at yk = ke f ,
where ke f is the height of the averaged roughness interfering with the flow; it will be
assumed that κe = κ = 0.4 universal von Karman’s constant, which is independent
of the nature of the wall, whether smooth or rough. The shear velocity U∗ is the
most fundamental scale, and there are several methods to estimate this scale. For
the zero pressure-gradient model, we usually use the formula U∗ = (ghS0)0.5, where
S0 is the bed slope. It is also possible to use Clauser’s method (1956), which relies
on the validity of the logarithmic law for the inner (wall) region of the boundary
layer (y/h < 0.2).

The above solution is true only for small distances from the wall, i.e., in the
inner layer, where the mixing length varies linearly with the distance and the shear
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stress is a constant. The second term of Eq. (13), called the roughness function,
is a non-dimensional quantity related to flow over rough walls. It depends on the
Reynolds number based on the shear velocity and on a length associated with the
size of the roughness, i.e., (Re∗ = U∗ke f /ν), and it is often presented in the form
(Perry et al 1969)

〈Uk〉

U∗
=

1
κ

ln
U∗ke f

ν
+C. (14)

The above equation is universal for a given roughness geometry in a pipe, chan-
nel and zero pressure gradient boundary-layer flow. The coefficient C is a constant
whose value depends on the nature of the wall surface. For a hydraulically smooth
flow (ke f U∗/ν < 5) C = 5.5 (see Yalin 1977). For a hydraulically rough flow and
for a sufficiently large Reynolds number, the velocity distribution does not depend
on viscosity and Uk/U∗ = B (const), so Eq. (13) becomes

〈U(y)〉
U∗

=
1
κ

ln
y

ke f
+ B, (15)

where y is the depth above the channel bottom. It is easy to see that the effective
velocity origin is located above the theoretical bed at y0 = ke f exp(−κB). It is worth
emphasizing that Eq. 15 is identical with Nikuradse’s log law for sand roughness.
For sand roughness the universal constant B = 8.5 at Re∗ = keU∗/ν > 70 and y0 =
k/30.

This result needs some comments. Very precise measurements by Nezu and Rodi
(1986) showed that our data for uniform flow, though formally valid only in the inner
region, can be applied throughout the channel depth, with two universal constants:
κ (von Karman’s constant) and B. A close examination of velocity measurements
showed a slight deviation from the logarithmic law in the region close to the water
surface (0.7 < y/h < 1). To adjust Eq. (15) to the data, Coles’ law was usually
adopted (for details see Cordoso 1989, Nezu and Rodi 1986).

Sarkar and Dey (2010) showed that the double-averaged streamwise velocity
above the interfacial sublayer follows the log law with an added constant of 5.57.
A damping in the distributions of the double-averaged Reynolds shear stress within
the form-induced and interfacial sublayers was observed. That damping is rather
severe below the virtual bed level. The form-induced stress that is augmented mainly
within the interfacial sublayer has a decelerating effect on the fluid.

Eq. (15) is widely used for a rough turbulent flow when the relative roughness
is small ke f /h < 0.05 (see Tu (1991). In the case of non-uniform flow over a rough
bed, when the relative roughness is large, the coefficient B is no longer constant.
Generally, the B value depends on the size, shape and distribution of roughness
elements.
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It is smaller than 8.5 in rough flows with a small relative roughness, e.g., Bayazit
(1976) found that when h/ke f < 3, B should be smaller than 8.5. It decreases as ke f /h
increases to 0.25, after which its value remains at approximately 5.0 for experiments
with bed materials Ds = 23.5 mm (see Tu 1991).

Tu (1991) distinguished three zones for experiments with bed materials Ds =

23.5 mm:

1. zone 1 gives a constant B value of 8.5, when the roughness is relatively small,
i.e., Ds/h < 0.05,

2. zone 2 shows a dependence of B on the relative roughness: B decreases as Ds/h
increases to 0.25,

3. zone 3 suggests that B is independent of the relative roughness and approxi-
mately constant at 5.0 when Ds/h > 0.25.

How to determine the equivalent sand roughness, which is related to the grain
diameter, is still a problem. Different investigators suggested different values. In
Nikuradse tests in which uniform sands were used, ke f = Ds; for non-uniform sands,
Einstein and El-Sami assumed ke f = D65, Mayer-Peter chose ke f = D90, whereas
Lane and Carlson, ke f = D75 (for more details, see Tu (1991).

As regards the location of the reference level, zero bed or theoretical bed (where
y = 0), as it is called by different researches, Einstein and El-Sami found y0 =
0.20D, for uniform roughness elements (hemispheres); Bayazit (1976), y0 = 0.35D,
also for hemispheres (D = 23 mm); and Grass (1991), y0 = 0.18D, for rounded
pebbles (D = 9 mm).

3.1. Measurements

Eq. (15) describes the velocity distribution for roughness type flow. However, the
position of the virtual bed, the velocity origin (y0) and the effective height of rough-
ness elements ke f should be determined depending on the situation. To calculate the
typical ke f and the position of the virtual bed for different geometries of roughness
elements, the results of laboratory experiments were re-analyzed. These experiments
are two Ph. D. dissertations by Mansour-Tehrani (University of London, 1992) and
K. Koll (University of Karlsruhe 2002).

3.1.1. Mansour-Tehrani’s Experiment (1992)

The experiment was carried out in a recirculating water channel 0.5 m wide, 6.2 m
long and 0.3 m deep. The flow depth above the bed was kept at 50 mm for all
experiments. Single layers of spherical roughness elements of different diameters
(1.15 mm, 6 mm and 12 mm) were used to form rough beds along the first 2 m of
the channel bed.

Laser Doppler anemometry was used to obtain velocity measurements in a fully
developed turbulent flow over these rough beds. The measurements showed that
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Table 1. Flow and bed roughness conditions of Mansour-Tehrani’s (1992) measurements,
y0 = location of the velocity origin yt = distance between the location of the velocity origin

and the top of a roughness element (see Figure 1 for details)

Spherical Roughness Mean Shear Effective Location Log law
elements height = velocity velocity velocity of velocity parameter U∗k/ν

Diameter origin origin
k = D Um U∗ y0 yt B Re∗
mm mm/s mm/s mm mm – –

K1Q1 1.15 227.8 12.48 0.02 0.35 7.28 14.3
K1Q2 1.15 164.8 9.18 0.02 0.45 7.81 10.5
K1Q3 1.15 106.0 6.46 0.03 0.45 6.79 7.4
K6Q1 6 219.4 15.91 0.167 1.30 5.43 95.4
K6Q2 6 154.6 13.15 0.174 1.30 5.34 78.9
K6Q3 6 111.0 8.46 0.169 1.20 5.23 50.7
K12Q2 12 155.9 14.82 0.32 2.40 5.35 177.8
K12Q3 12 106.0 9.21 0.327 2.40 5.30 110.5

the flow becomes fully developed within the first meter of the channel, and that
velocity profiles therefore remain unchanged. Thus, it can be assumed that a fully
developed and steady channel flow was achieved in the test section.

The location of the origin y (y = 0) and the position of the velocity origin were
determined by the Clauser method suggested by Perry at el (1969). This Clauser
method is only valid when applied to the logarithmic region of the velocity profile,
and therefore the determination of this region is very important. The velocity was
measured at vertical positions directly above roughness elements and in between
the elements above their tops. The lower limit of the log layer level was found to
be about one third to one half of the roughness size. The position of the velocity
origin, relative to the roughness crest height, is very sensitive to a specific roughness
configuration. The position of velocity origins below the average roughness tops
(yt) and other hydraulic parameters are presented in Table 1 and Figure 1 (for details
see Tehrani 1992).

It is possible to calculate the effective roughness height ke f by adding two
values: y0 and the location of the velocity origin below the average roughness tops
yt . This sum indicates the location of the theoretical or virtual bed below the average
roughness tops. It is easy to note from the table that ke f grows with the size of
roughness elements but never exceeds their size.

Summary of Mansour-Tehrani’s measurements
For a non-dimensional parameter (U∗k/ν) in a range from ≈ 50 to ≈ 180, the

velocity distribution does not depend on viscosity (rough turbulent flow) and the
parameter B is constant, approximately equal to 5.3. For a much smaller shear
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Reynolds number, Re∗ < 15 (spherical roughness k = 1.15 mm), the parameter B
increases up to 7.5, i.e., approaches Nikuradse’s value for sand roughness.

3.1.2. Koll’s Experiment (2002)

Velocity measurements were performed in a fully developed turbulent boundary
layer formed on the rough bed of an open-channel water flow. The tests were
performed in a tilting laboratory channel (0.3 m wide and 10 m long) for different
bed roughness comprising artificial elements as well as natural riverbed material.
Several bed roughness elements were used: 9 mm spherical elements glued to
a bedplate (designated in Table 2 as RK-bill and RK-bs); 8 mm cubes glued to
a bedplate with two different densities (cw and cd in Table 2); The series RK
was performed with roughness elements of almost the same size but of different
geometry (shape and density of the elements).

Fig. 2. Reconstruction of Nikuradse’s graph for flows over spherical and cubical roughness
elements and over river pebbles

Three beds comprised natural, river pebbles of 20 mm, 25 mm and 35 mm
in average size (RI, RII and RIII, respectively in Table 2). The position of the
virtual beds below the average roughness tops and other hydraulic parameters are
presented in Table 2. The position of the theoretical (virtual) bed was calculated
using a very precisely measured velocity and assuming the linear distribution of
the mixing length in the roughness layer. Velocity distributions were measured
at five places attached chosen gravels and then averaged. The roughness function
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Table 2. Results of Koll’s measurements (see Koll 2002); where: RK- bill - spherical rough-
ness elements of 9 mm in diameter, arranged in line; RK-bs – spherical roughness elements
of 9 mm in diameter, arranged in a stagger pattern; RK-cw (L2) – cubical roughness ele-
ments of 8 mm in size, sparsely arranged on the channel bed; RK-cw (L3) – the same as
L2 with a slightly different relative submergence; RK-cd – cubical roughness elements of 8
mm in size, densely arranged; R0-RIII – Four beds comprising natural, river pebbles of 28
mm, 20 mm, 25 mm, 35 mm in average size and the rough density L/k = 2.1, 1.7, 3.2, 4,
respectively; d – the zero-plane displacement, calculated from the linear regression between
u(z) and ln(z − d) (for details see Koll 2002); ke f – height of the roughness interfering with
the flow, equal to (k − d); also measured from the top of roughness elements, i.e., y0 + yt

(see Figure 1); L – distance between neighboring roughness elements

Zero- Rough. Relative
Rough. Mean Shear plane effective Rough. sub- Log law Re∗
height velocity velocity display- height density mergence parameter

cement
k Um U∗ d ke f L/k h/k B = UR/U∗ U∗ke f /ν

mm mm/s mm/s mm mm – – – –
RK-bill 8.3 551.3 56.6 5.9 2.4 1.9 13.11 5.23 135
RK-bs 8.3 558.0 56.7 6.1 2.2 1.85 13.17 6.68 124

RK-cwL2 8.0 534.3 57.5 5.8 3.2 4.0 14.04 4.85 153
RK-cwL3 8.0 542.9 56.5 4.8 3.2 4.0 20.34 5.30 179

RK-cd 8.0 567.4 56.2 6.6 1.4 1.9 20.12 5.02 78
R0-1 28 578.9 89.3 9.1 18.9 2.1 3.37 3.43 1726
R0-2 28 561.9 77.8 3.8 24.2 2.1 4.00 5.08 1963
R0-3 28 546.4 64.5 11.3 16.7 2.1 5.05 5.18 1086
R0-4 28 532.0 54.7 16.6 11.4 2.1 6.76 5.33 618
RI-1 20 455.2 53.5 5.5 14.5 1.7 4.87 4.69 800
RI-2 20 519.8 59.1 3.4 16.6 1.7 5.93 5.23 1014
RI-3 20 642.4 68.1 6.1 13.9 1.7 7.89 5.19 963
RI-4 20 742.3 76.1 10.4 9.6 1.7 9.83 5.73 732
RI-5 20 740.9 83.9 7.2 12.8 1.7 11.97 5.10 1084
RII-1 25 408.7 55.0 12.9 12.1 3.2 4.11 5.04 649
RII-2 25 483.7 60.8 9.7 15.3 3.2 5.02 5.69 923
RII-3 25 610.5 70.0 1.7 23.3 3.2 6.66 5.46 1661
RII-4 25 684.3 78.1 9.7 15.3 3.2 8.30 4.73 1183
RII-5 25 723.6 85.0 11.3 13.7 3.2 9.82 4.27 1156
RIII-1 35 407.1 54.7 19.4 15.6 4.0 2.90 7.63 889
RIII-2 35 451.2 60.8 18.9 16.1 4.0 3.59 7.53 895
RIII-3 35 595.5 69.8 23.1 11.9 4.0 4.73 7.36 806
RIII-4 35 664.3 77.8 23 12 4.0 5.88 7.53 951

(parameter B in Eq. (15)) was estimated directly from the definition as the ratio of
velocity measured at the top of roughness elements (exactly at the upper boundary
of the roughness layer) to the shear velocity.
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Summary of Koll’s measurements
– Spherical elements: the parameter B is greater for spherical elements arranged

in a stagger pattern than for those arranged in a line. This can depend on
the geometry of roughness elements forming the bed, but this conclusion is
supported by only one case.

– Cubical elements: B value is greater for elements arranged sparsely than for
those arranged densely. This is confirmed by only one case.

– For the non-dimensional parameter (Re∗) in the range ≈ 450 < (U∗k/ν) ≈ 1750,
the velocity distribution does not depend on viscosity, and the parameter B is
in a range from 5 to 5.46. For the largest pebbles (k = 35 mm) and sparsely
arranged gravel at Re∗ > 2000, B is greater than 7.

3.2. Summary

Precise measurements of the flow velocity over spherical roughness elements of 6,
9 and 12 mm in diameter, cubes (8 mm) and gravel (20 mm and 25 mm) show
that starting from a Reynolds number of (U∗ke f /ν) = 75, the flow condition can be
described as a rough turbulent flow. For this type of flow, the velocity distribution
does not depend on viscosity, and it is described by Eq. (15) with the effective
roughness height ke f and the parameter B taken from a range of 5 to 5.5. The
coefficient ke f is defined as the height of the roughness that interferes with the
flow. In a pipe (Nikuradse case) and in an open channel with a flat sand bed, ke f is
equal to the diameter of the sand grains and the parameter B takes a value of 8.5.

4. Flows in Gravel-bed Channels in the Presence of a Pressure Gradient

For environmental engineers, the knowledge of the vertical distribution of the mean
velocity in open-channel flows is particularly important, especially for non-uniform
flows, which are more natural in rivers or open-channel flows. However, efforts to
assess this velocity distribution have concentrated mainly on uniform flow condi-
tions. Thus, the non-uniform flow is of interest here. First, the basic equation of
a two-dimensional vertical velocity profile is developed for flows with a pressure
gradient.

Non-uniform flows are produced by changes in the channel geometry as one
uniform-flow condition changes to another and in accelerating and decelerating
flows. Depending on the sign of the pressure gradient, one can distinguish families
of velocity profile results which correspond to the following conditions:

– d < P > /dx < 0 accelerating flow,
– d < P > /dx = 0 zero-pressure gradient flow this case was already discussed in

Chapter 3,
– d < P > /dx > 0 decelerating flow,
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where P stands for free stream pressure. Some authors have studied the effect of
dP/dx on velocity distributions. Most of them dealt with decelerating flows. The
formulation of the velocity distribution in equilibrium turbulent boundary layers
concern for decelerating flows, as it was reviewed by Yaglom (1979). He showed that
in the overlapping region the velocity distribution follows the logarithmic law, which
holds for accelerating flows as long as they are in a local equilibrium. However, it
can be expected that the logarithmic law will probably not hold up to arbitrarily
high values of the pressure gradient. In the case of accelerating flows, the criterion
for the breakdown of the universal law of the wall is given by equation (see Cordoso
1989)

∆p =
ν

ρU3
∗

dP
dx
< −0.02. (16)

Generally, the effect of spatial acceleration on the deformation of the mean
velocity field, can be written on the basis of some measurements (see Cordoso
1989, Tu and Yang 2009) that

– The velocity distributions could no longer be represented entirely by the univer-
sal log law. Deviations from this law are to be attributed mainly to acceleration.
The existence of an inner layer, which is in equilibrium and follows the law of
the wall, and of an outer layer, which deviates from that law, can be postulated.
The inner log law seems to extend up to about 0.05 of the flow depth.

– Bagherimiyab and Lemmin (2010) found in their experiments that during accel-
erating and decelerating flows, all mean velocity profiles followed a logarithmic
law in the inner layer. However, differences in the profile form were observed,
i.e., the accelerating flow profile has a greater shear velocity than the decelerating
one.

– The mixing length distribution is self-similar up to y = 0.05h, where it also
follows Prantdl’s mixing length hypothesis. The log law can also be used for
unsteady flow.

– For the equal water depth, the point velocity in the rising branch (for accelerating
flow) is generally greater than the one in the falling branch (for decelerating
flow).

– For the equal vertical-averaged velocity, the velocity profiles fall on one another,
except near the water surface, where the point velocities in the rising branch are
usually greater than the ones in the falling branch.

– For a given hydrograph, the friction velocity in accelerating flow (rising branch)
is usually higher that the one in decelerating flow (falling branch).

– The vertical shear-stress distributions for the rising branch are usually concave,
implying accelerating flow (when dp/dx is negative); those for the falling branch
are convex, implying decelerating flow (when dp/dx is positive). If the longitu-
dinal pressure gradient is zero, the constant shear stress layer is to be observed.
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– At the same water height, the shear stress in accelerating flow is larger that the
one in decelerating flow.

– Turbulence intensity decreases for negative pressure gradients flows and in-
creases for positive pressure gradient flows.

4.1. Basic Equations

If the flow depth varies with respect to the distance, the flow is called gradually var-
ied. Equations describing the gradually varied flow, in accelerating and decelerating
flows, are derived under the following simplifying assumptions:

1. The slope of the channel bottom is small.
2. The pressure distribution at a channel section is hydrostatic.
3. The head losses in a gradually varied flow may be determined by using an

equation for head losses in uniform flows, i.e., U2
∗ = ghS f .

It is very natural to assume that for wide open-channel flow all terms in the
lateral, z-momentum equation are zero, and it is easy to show from Eq. (8) that the
y-momentum equation for steady flow takes the form

〈U〉
∂ 〈V〉
∂x
+ 〈V〉

∂ 〈V〉
∂y
=

= gy −
1
ρ

∂ 〈P〉
∂y
−
∂ 〈uv〉
∂x

−
∂
〈
v2

〉
∂y

−
∂ 〈ũṽ〉
∂x

−
∂
〈
ṽ2

〉
∂y
+

+
∂

∂x

〈
ν
∂V
∂x

〉
+
∂

∂y

〈
ν
∂V
∂y

〉
,

(17)

where gy = g cos θ. We will need the following assumptions:

1. flow is unidirectional with the double-averaged velocity vector equal to (< U >
+u, v);

2. two x-derivatives of turbulent and form stresses can be neglected.

Under the above assumptions, the y-momentum equation is simplified to

0 = gy −
1
ρ

∂ 〈P〉
∂y
−
∂
〈
v2

〉
∂y

−
∂
〈
ṽ2

〉
∂y
. (18)

After integrating Eq. (18) in the domain [y, h], one can get

〈P〉 (y) = ρgh cos θ
(
1 −
y

h

)
+

(〈
v2

〉
(h) −

〈
v2

〉
(y)

)
+

(〈
ṽ2

〉
(h) −

〈
ṽ2

〉
(y)

)
. (19)
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One can conclude from Eq. (19), that the pressure distribution is hydrostatic only
for a small bed slope, vertically homogeneous turbulence and the spatial deviation
of vertical velocity equal to zero.

The x-momentum equation under similar assumptions as those for the y-equation
Eq. (17), takes the form

〈U〉
∂ 〈U〉
∂x

= gx −
1
ρ

∂ 〈P〉
∂x
−
∂ 〈uv〉
∂y

−
∂
〈
u2

〉
∂x

−
∂ 〈ũṽ〉
∂y

−
∂
〈
ũ2

〉
∂x

+ ν
∂2 〈U〉
∂y2

, (20)

where gx = g sin θ.
We can certainly assume that two terms related to the x-derivative of Eq. (20),

i.e., the longitudinal component of the turbulent velocity squared and the deviation
velocity squared, are negligibly small and can be omitted in further consideration.
It is obvious, from Eq. (20), the total shear stresses at the bed as the sum of viscous,
turbulent and form-induced stresses in the form

τb
ρh
=
∂ 〈uv〉
∂y

−
∂ 〈ũṽ〉
∂y

+ ν
∂2 〈U〉
∂y2

. (21)

For a small bed slope, sin θ ∼ tan θ = S0 and hydrostatic pressure P = ρgh, and
Eq. (20) can be re-written in the form

〈U〉
∂ 〈U〉
∂x
+

1
ρ

∂ 〈P〉
∂x
= gxS0 −

τb
ρh
= g (S0 − S f ). (22)

To define the derivative dU/dx in Eq. (22), one can use the continuity equation

h
∂ 〈U〉
∂x
+ 〈U〉

∂h
∂x
= 0→

∂ 〈U〉
∂x

= −
1
h
〈U〉
∂h
∂x
. (23)

Taking into account the above two equations (Eqs. (22)–(23) and applying the
formula for the bed shear τb/ρ = U2

∗ = ghS f , we may, after some algebra, write
a formula for the friction velocity:

U∗P =

√
gh

[
S0 −

dh
dx

(
1 − Fr2)] where Fr =

〈U〉√
gh
. (24)

The above equation can only be used for steady non-uniform flows. It is also valid in
unsteady flows if the wave is a kinematic one, but it cannot be extended to unsteady
flows if the wave is dynamic. We are now in a position to show the possibility of
applying the MLH to describe velocity profiles. We can certainly assume that the
total shear stress can be modeled by a formula similar to the MLH as shown in Eq.
(12).
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− 〈uv〉 (y) = U2
∗P

(
1 −
y

h

)
. (25)

Solving Eq. (25) for a small y << h and assuming the legitimacy of Prandtl’s MLH
with l = κy (see Eq. (12)), one obtains the log law in the form

〈U〉 (y)
U∗P

=
1
κ

ln
y

ke f
+
〈U〉 (ke f )

U∗P
, (26)

where U∗P is defined by Eq. 24, κ is von Karman’s constant, ke f is the effective
roughness height, < U > (ke f ) is the value of < U > at ke f , and the last term of the
above equation can be recognized as the additive constant and designated as BP.

To define the additive constant in the case of non-uniform flow over a gravel
bed, the measuring data of Afzalimehr and Anctil (2000) were analyzed.

4.2. Measurements by Afzalimehr and Anctil (2000)

The behavior of the velocity distributions along a gravel-bed channel (8.8 m long
and 0.6 m wide) is investigated experimentally in the presence of a negative pressure
gradient (accelerating flow) in channel flows at different water depths ranging from
0.2 m to 0.3 m. In order to obtain an accelerating flow in which the flow depth
decreases along the flow direction, a tailgate was installed downstream. To ascertain
that the flow was fully developed, velocity distributions were measured at three
sections, 1.9, 2.4 and 2.9 m, so as to check the similarity of these profiles. The bed
was covered with gravel material ranging in size from 16.8 mm to 34 mm with
a standard deviation of 3.9 mm and a median value of 25.4 mm.

Vertical velocity profiles were measured for three different flow discharges (Q =
0.04; 0.06; 0.08 m3/s), and four different bottom slopes. The range of relative
submergence for all measured velocity profiles was 7.5 < h/d < 13, and the range
of the aspect ratio was 1.82 < w/h < 3.16, where w is the channel width.

The mean velocity measurements were performed with a downlooking Acoustic
Doppler Velocimeter. A detailed analysis of all velocity profiles confirmed that
the logarithmic law is valid for gravel-bed channels as long as it is applied to the
inner layer of the flow (y/h < 0.2). On the basis of these velocity profiles, the shear
velocity was estimated from the parameter of regression of the velocity and ln y
(for more details see Clauser 1956).

The numerical constant of integration BP was calculated on the basis of the
measured velocity, estimated friction velocity, D50, and von Karman’s constant.
The reference level was 0.2d50 below the top of the plane passing through the
average tops of the gravel. Results are displayed in Figure 3, and they show that the
parameter BP increases with the pressure gradient (dh/dx). The data is insufficient
to establish any formula for the relation between BP and dh/dx, but the tendency
is quite clear.
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Table 3. Measured and calculated parameters: d50 = median value of grain sizes, h = water
depth, Um = cross-section average velocity, U∗ = friction velocity, S0 = bed slope, BP =

additive constant in the log law, Re∗ = U∗P ∗ d50/ν

Run d50 H Um U∗Clauser BP S0 − grad h Re∗
1 0.0254 0.253 0.264 0.026 6.907 0.007 0.00758 660.4
2 0.0254 0.286 0.233 0.024 6.155 0.007 0.00742 609.6
3 0.0254 0.253 0.395 0.036 7.725 0.007 0.00792 914.4
4 0.0254 0.330 0.404 0.037 7.008 0.007 0.00809 939.8
5 0.0254 0.270 0.247 0.024 6.882 0.010 0.01045 609.6
6 0.0254 0.284 0.352 0.030 8.197 0.010 0.01069 762.0
7 0.0254 0.261 0.511 0.043 8.559 0.010 0.01170 1092.2
8 0.0254 0.255 0.367 0.036 6.928 0.007 0.00780 914.4
9 0.0254 0.190 0.351 0.032 8.438 0.015 0.01700 812.8
10 0.0254 0.253 0.527 0.040 9.928 0.015 0.01780 1016.0
11 0.0254 0.253 0.264 0.021 9.324 0.020 0.02076 533.4
12 0.0254 0.253 0.395 0.030 9.920 0.020 0.02170 762.0
13 0.0254 0.253 0.527 0.040 9.928 0.020 0.02300 1016.0

Fig. 3. Relation between BP and the pressure gradient in the presence of a negative pressure
gradient based on measurements by Afzalimehr and Anctil (2000)

The relation between Bp and the Reynolds number is shown in Figure 4. One
can see that the coefficient BP ranges from 6 to 10 as Re∗ ranges from 500 to 1100
(see Fig. 4). These calculations are based on the measured velocities in the inner
region of the boundary layer, as well as von Karman’s constant and the reference
level (location of the theoretical bed y = 0 plane).



84 W. Czernuszenko

Fig. 4. Relation between Bp and the Reynolds number Re∗ based on measurements by
Afzalimehr and Anctil (2000)

5. Conclusion

– The logarithmic velocity profile appears in any stationary, unidirectional flows,
as well as in accelerating flows in a gravel bed channel, but the friction velocity
should be re-defined according to Eq. (24). The same applies to decelerating
flows with a positive pressure gradient, but only if the gravitational force exceeds
the pressure gradient.

– The BP coefficient for accelerating flows depends on the pressure gradient and
grows with the growing gradient h (see Fig. 3).

– The BP coefficient for rough turbulent flows is almost independent of the
Reynolds number (see Fig. 4). The result is similar to Nikuradse’s graph defined
for a flat, sand bed, i.e. the velocity distribution does not depend on viscosity
but on the size and nature of the roughness.
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Appendix. Some definitions

1. Outer layer. In this region, viscous effects are negligible, and spatially-averaged
equations are identical to time-averaged equations. This layer, including the
near-surface and wake regions (Nezu and Nakagawa 1993), is similar to the
outer layer for open-channel flows over hydraulically smooth beds.

2. Logarithmic layer. In this intermediate flow region, viscous effects are negligi-
ble, and spatially-averaged equations are identical to time-averaged equations,
as for the outer layer. This layer is similar to the logarithmic layer for flows with
hydraulically smooth beds.
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3. Dispersive sublayer. Flow in this region is influenced by individual roughness
elements, and the dispersive sublayer occupies the region just above roughness
crests.

4. Interfacial sublayer. This sublayer is also influenced by individual roughness
elements and occupies the flow region between roughness crests and troughs
(i.e., where the roughness geometry function φ (y) changes from 1 to 0).

The dispersive and interfacial sublayers together can be identified as the rough-
ness layer. Similar to boundary layers with hydraulically smooth beds, we can
identify the flow region occupied by the logarithmic and roughness layers as the
wall or inner layer. The same analogy suggests that the role of the roughness layer
for hydraulically rough beds is similar to that of the viscous and buffer sublayers for
smooth beds. The interfacial sublayer could be interpreted similarly to the viscous
sublayer, while the dispersive sublayer, as the buffer sublayer. At the boundary be-
tween the logarithmic layer and the roughness layer, the shear stress and turbulence
intensities should attain maximum values as in smooth-wall flows.


