Archives of Hydro-Engineering and Environmental Mechanics
Vol. 58 (2011), No. 1-4, pp. 23-45

DOI: 10.2478/v10203-011-0002-9

© IBW PAN, ISSN 1231-3726

Simulation of Solitary Wave Mechanics by a Corrected
Smoothed Particle Hydrodymamics Method

The paper is devoted to numerical modelling of solitary wave propagation phenomena in
shallow water of uniform depth. The problem governing equations are solved by applying
a corrected smoothed particle hydrodynamics (SPH) method in which standard smoothing
kernel functions are modified in such a way that so-called linear reproducing conditions
for kernel approximations and their first-order spatial derivatives are satisfied. Numerical
performance of the proposed SPH model has been verified by comparing its predictions
with analytical results for a solitary wave travelling over the horizontal bottom. Also, the
results obtained by applying the corrected SPH method and those given by the standard SPH
method, with no kernel correction, are compared. Further, an impact of the solitary wave
on a vertical rigid wall is investigated, and finally an interaction of two colliding solitary
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Abstract

waves is considered.

Key words: solitary wave, non-linear wave interaction, meshfree Lagrangian method,

RIS ES‘QQ®‘>Q

smoothed particle hydrodynamics

Notations

reference particle label,
solitary wave amplitude,
neighbouring particle label,
solitary wave celerity,
acceleration due to gravity,
kernel smoothing length,

still water depth,

mass,

number of particles within a support domain,
pressure,

distance between two particles,
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— kernel support domain radius,

— time,

— velocity vector (with components u# and v),
— volume,

smoothing kernel function,

— position vector (with components x and z),
— free surface elevation,

— density.

PRI R TS X
|

1. Introduction

Since its origin (Lucy 1977, Gingold and Monaghan 1977), the Smoothed Particle
Hydrodynamics (SPH) method has undergone significant improvements that have
made it one of the most computationally effective discrete particle techniques used to
solve problems in applied mechanics and engineering. Possessing all the advantages
of a fully Lagrangian and meshless approach, the SPH method has the natural
capability of treating the problems in which large displacements and deformations
occur, or in which surfaces of material discontinuity develop and evolve.

Obviously, the SPH method has been also employed to solve a range of hy-
drodynamics problems, in particular those which are of importance to hydro- and
off-shore engineering. For instance, Monaghan (1996) applied the method to in-
vestigate gravity currents and solitary waves, Lo and Shao (2002) analysed the
run-up and run-down of solitary waves at a vertical wall and on a sloping beach,
Colagrossi and Landrini (2003) treated the classical dam-break problem, including
the analysis of water impact against a wall, Gomez-Gesteira et al (2005) simulated
the phenomenon of a wave overtopping a flat rigid horizontal plate, Dalrymple and
Rogers (2006) modelled problems of wave breaking on a sloping beach, Antoci et
al (2007) analysed a fluid—elastic structure interaction problem, and most recently
Ataie-Ashtiani et al (2008) considered the problem of the run-up of a tsunami wave
on a sloping beach.

In the above papers, different variants of the SPH method have been applied.
For example, in the papers of Monaghan (1996), Colagrossi and Landrini (2003)
and Antoci et al (2007) the conventional SPH approach is followed in which water
is treated as a weakly compressible fluid, in which pressure is related to fluid
density by a constitutive law. In another group of formulations, represented by
Lo and Shao (2002) and Ataie-Ashtiani et al (2008), water is modelled as an
incompressible fluid, which is a common simplification in problems of gravity
waves propagation. A typical feature of the latter formulations is the necessity to
solve a Poisson equation for pressure at each time step in order to enforce the
incompressibility constraint. This significantly increases the cost of computations,
since the use of fast explicit time-stepping schemes, typical of the standard SPH
method, is precluded.
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An important aspect of the SPH implementation is the method of construction
of an interpolation function (known in SPH as the smoothing kernel), used to
approximate field variables in terms of quantities assigned to discrete particles. In
a standard approach (Monaghan 1992, 1996), a single interpolating function, the
same for all particles in a mechanical system considered, is applied, irrespective
of mutual positions of the particles involved. By following this approach, a certain
numerical error is generated, since the effects of an irregular scatter in particles
distribution are not taken into account (the scatter is unavoidable as particles move
past one another). The magnitude of this error considerably increases for particles
situated near a boundary of the fluid domain. The reason for the above error to
appear is the fact that the standard SPH method does not form a partition of unity
(Belytschko et al 1998). To resolve this problem, a number of techniques have
been developed to increase the accuracy of kernel approximation; usually these
techniques originate from other discrete particle methods. It seems that the most
consistent is a method in which the standard SPH kernel function is modified
by multiplying it by a special correction function, so that the partition of unity
is ensured. The principles on which the construction of such corrected kernels
is based are the consistency and completeness of interpolating functions, and are
known from the general theory of particle methods (Belytschko et al 1998). Such
a combination of the standard SPH approach and the kernel correction technique is
often referred to as the Corrected SPH (C-SPH) method, which has many features
of a family of Moving Least-Square (MLS) particle methods. An improved accuracy
of the corrected method, however, requires an additional computational effort, as
the kernel function has to be calculated separately for each particle of the discrete
system.

With regard to free-surface water flows, the corrected SPH approach has been
applied by Colagrossi and Landrini (2003) and Dalrymple and Rogers (2006). The
former authors employed one of the methods proposed by (Belytschko et al 1998),
while the latter applied a kernel correction method known as the Shepard filtering.
In both cases, only the correction of approximation functions has been carried out.
In this paper, with the aim to further increase the accuracy of the SPH kernel inter-
polation, not only the approximation functions, but also their gradients (first-order
spatial derivatives) are corrected. The proposed method is employed to simulate
the behaviour of a solitary wave travelling in shallow water of uniform depth. In
order to assess its reliability, the numerical SPH model is tested against first- and
second-order analytical approximations to solutions of the Korteweg-de Vries equa-
tions describing non-linear waves in water of constant depth. Hence, it is shown how
well the model is able to preserve an unchanged shape of the free surface profile and
constant propagation velocity as the solitary wave propagates over a long distance,
and the results predicted by the corrected method are compared with those given by
the standard SPH method. Further, an impact of a solitary wave on a rigid vertical
wall is investigated. The results of numerical calculations illustrate the evolution
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of the free surface profile during an impact event, and show the variation of the
maximum wave run-up on the wall with different wave amplitudes. Finally, an
interaction of two solitary waves propagating in opposite directions is simulated,
illustrating the changes in the free surface profile as the two waves collide.

The structure of the paper is as follows. In Section 2 governing equations which
express the conservation and constitutive laws adopted in this work are presented,
and initial conditions describing the free surface elevation and velocity and pressure
fields in water generated by a solitary wave are given. Then, in Section 3, a brief
outline of the SPH method is provided, followed by discrete formulations of differ-
ential equations describing the wave propagation problem considered. The section
is concluded with a description of the time-integration method applied to solve the
SPH equations. In the following Section, 4, results of numerical simulations are
presented, and, finally, some conclusions are drawn in Section 5.

2. Problem Statement

In this work, water is treated as a weakly compressible inviscid liquid, and it is
assumed that its motion is entirely due to the action of gravity. The fluid mass
conservation balance, expressed in local form by the continuity equation, is given
by

Do

—+0oV-v=0 1
Dt-*@ v=0, (D

where D/Dt denotes the material (convected) time derivative, o is the fluid density,
t is time, v is the fluid velocity vector, and V is the nabla operator. The linear
momentum balance, expressing the Euler equation of motion, is defined by

Dv
op; = ~VP +ob. 2)
where p is pressure, and b denotes the body force vector. In the problem considered
here, the only body force is that due to the gravity.
The fluid motion is assumed to be barotropic, in which case the pressure is
uniquely determined by the fluid density. In the standard SPH method, the following
constitutive law relating the pressure p to density o is usually adopted (Batchelor

1967):
_ oY
Mm—mK—)—%- (3)
00

In the latter equation, py and gy denote the reference pressure and density, re-
spectively, and for water the typical value of the parameter y is 7 (Colagrossi and
Landrini 2003). The constitutive law (3) determines the speed of sound, c,, as

o= 22 )
Qo
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In practical implementations, the parameters pg, 0o and y are selected in such a way
that the maximum local fluctuations of density o around the reference value o are
of order 1%. The idea of using the equation of state (3) for p(o), instead of applying
the common water incompressibility condition ¢ = const, is that in this way one
avoids the necessity of solving the Poisson equation for pressure. Therefore, fast
explicit time-stepping algorithms can be employed in the SPH computations, instead
of implicit schemes required when the Poisson equation has to be solved as part of
the solution (Lo and Shao 2002, Ataie-Ashtiani et al 2008).

The boundary conditions, with which the continuity and motion equations (1)
and (2) are solved, are adopted in the standard form, namely:

p=0 on rp, v-n=0 on I, (5)

where I', denotes the fluid free surface, I', denotes the solid boundary, and n is
the unit vector normal to I',. The initial conditions are defined by prescribing the
free surface displacements and the velocity and pressure fields induced by a soli-
tary wave at a given reference time. The latter fields are adopted as solutions of
the Korteweg—de Vries (KdV) equations for plane non-linear waves propagating in
shallow water of constant depth. In this work, use is made of the solutions derived
by Wehausen and Laitone (1960) by applying a perturbation method. Referring to
Fig. 1, showing the adopted coordinate system Oxz and relevant geometric param-
eters, two sets of relations defining the initial conditions for equations (1) and (2)
are considered. These two sets represent, respectively, the first- and second-order
approximations to the solitary wave solutions of the KdV equations.
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Fig. 1. Solitary wave problem definition: geometric parameters and coordinate axes

Assuming that the wave propagates in the direction of increasing x and its
crest (the point of maximum free surface elevation) is at x = 0 at time ¢ = 0, the
first-order approximation is given by the expressions:

2
n(;l’ D = %sech2§+ 0(%) , (6)
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u(x,r) n é ’
VoH ~ H +0(H) ’ K
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2
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where sech x = 1/ cosh x, 7 denotes the free surface elevation (measured with respect
to the still water level z = H), u and v are the horizontal and vertical fluid particle
velocities, and p is pressure. The argument of the hyperbolic functions, {(x, 1), is

defined by
x—ct |3(A A"
= —|= — 1
=G ) ela) (10)
and the wave celerity (propagation velocity), c, is given by
¢ 1A A\
=1l+=-(=|+0(=] . 11
VgH 2 (H ) (H ) o

The second-order approximation to the solitary wave is given by the following
set of formulae:

1) A g3 (%)2 (1= sech®¢) sech®¢ + 0 (%)3 , (12
L %_;(g)z L 6(Z 1) 3(E 1) [secnc +
%( ) 1 +9(% - 1)+ ;(% - 1)2]sech4§+ 0(%)3, (13)
”(f/gz_;) Vi (%)y2 sech? £ tanh ¢ {1 ¥ % [% - - % (%- 1)2 ¥
e
501112 e
. o(g) (15)
with the function {(x, t) defined by
Gl
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and the wave celerity given by

c 1{AY 3 [(A\ A\
1+ ala)-wla) ~ola) an
3. SPH Formulation

In the SPH approach, a continuum is discretized into a collection of particles,
each of which carries, in a Lagrangian sense, information on all local physical
properties of the medium under consideration. As no topological connectivity for
neighbouring particles is required, the method has a fully meshless character, which
gives it a great flexibility in dealing with large deformations. Field variables are
approximated by using interpolation functions (smoothing kernels), which define
weightings with which individual particles contribute to the value of a field function
evaluated at a given spatial/material point. These functions are constructed in such
a way that they have non-zero values only in a domain (usually a sphere or a circle)
of a limited size, thus a number of particles involved in the interpolation is relatively
small (typically between 20 to 50 in two-dimensional problems). The characteristic
size of the above domain, known in the SPH as the kernel support, is described by
a parameter R, which defines the kernel radius. All the particles which lie further
than R from a given point do not contribute to the interpolation at that point (in
other words, they do not interact with a particle currently being at that point). These
features of the SPH interpolation method are sketched in Fig. 2.

o material particles

o o
° o o ° smoothing kernel
o ° (<] (] °
o o .
o o reference particle
o o o o °
neighbouring particle
o o °
o o
o kernel support
o
° ° boundary
o ° ° o o (<] o o o o o o

Fig. 2. Particle approximation involving material particles x; (solid circles) located within

a circular support domain of radius R around a reference particle x, (solid square). Particles

outside the support domain (empty circles) do not contribute to the approximation of field
functions at x,. W is the smoothing kernel function centred at x,
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Let x be the position vector, and a and b be labels of a pair of material particles.
Then, the value of any field variable f(x) at particle a (so-called reference particle),
located at position x,, is evaluated by means of the kernel function, W, centred at
this particle, by means of the formula

N
fax) =D Vi b W), (18)
b=1

where f;, = f(x;) is the discrete value of f at particle b, V,, is the volume of particle
b, and N is the number of particles within the kernel support. The smoothing kernel
W is a function of two arguments. r is the distance between particles a and b, that
is,

r=xq — X, (19)

and £ is the so-called kernel smoothing length which defines the resolution of the
discretization (an average number of particles involved in kernel interpolations).
Since the kernel W is a continuous function, it can be differentiated with respect
to spatial coordinates to yield approximations to differential operators, needed to
express physical laws in the SPH discrete forms. There is a variety of possible ap-
proximations to the gradient and divergence operators (Monaghan 1992, Li and Liu
2004). In this work, the gradient of a scalar function f at particle a is interpolated
by
> (o,
(Vfa = 0a Z mp (_; + _1;] VW, (20)
- 9 0,

1

while the divergence of a vector field f at particle a is interpolated by

N

1
(V-fla==— > my fur-VaWa, 21)

4 p=1

with my; denoting the mass of particle b. The following notations, typical of the
SPH nomenclature, are used:

Wab = W(lxabl’h), fab = fu - fb 5 (22)
and V,W,,, defined by

a aW a ’h
VW, = Xap (1xapl, h) ’ 23)
Ixab| aIxub|

denotes the gradient of the kernel function W taken with respect to the coordinates
of particle a.
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In terms of the interpolation formulae (20) and (21), the continuity and the
momentum equations, (1) and (2) respectively, become

N
doa
= vy VaWas (24)
b=1
and
do, N Pa , Pb
== |5+ 5 | VaWa + b (25)
b=1 a @

The latter two forms are known to conserve exactly (Monaghan 1992, Li and Liu
2004) the mass and linear momentum of a system of material particles.

There are a number of kernel functions (Monaghan 1992, Liu and Liu 2003)
that have been successfully applied in the SPH implementations, with the Gaussian
and the cubic spline functions being probably the most often used. Here, a modified
Gaussian kernel, proposed by Colagrossi and Landrini (2003), is employed which,
in contrast to the common Gaussian distribution function, has a finite support.
Hence, in two dimensions, the following expression is adopted:

C [ |exp(-¢%) —exp(-0>)|, q <O,
W = £ | exp(—¢®) - exp(-0%)]. g<0Q 06)
h* (o, 920,
where
g=r/h and Q =R/h, 27)
and the normalizing factor C is given by
1
C (28)

27 [exp(-¢?) — exp(-0%)] qdg

Following the recommendation of Colagrossi and Landrini (2003), the kernel
smoothing length ~ has been chosen to be equal to R/3, in which case C =
1.0012356234/x.

As said earlier, the standard SPH kernel does not form a partition of unity, since,
in general, Z’bvzl VuWyp, # 1 for a set of arbitrarily distributed discrete particles. This
deficiency is particularly pronounced for particles located near/on the boundaries
of a body, which is due to the fact that part of the particle kernel support domain
(the part outside the body) is not filled with neighbouring particles. To restore
the partition of unity, the standard SPH kernel is modified here by employing
a formulation proposed by Belytschko et al (1998), in which both the SPH kernel
functions and their gradients are corrected. Accordingly, for the two-dimensional
case, the corrected kernel, W,;,, and the two corrected components of the kernel
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gradient, (VaWab)x and (VaVVa;,)Z, are given in terms of the standard kernel functions
W, as follows:

~ s
Wa, = (c11 + c12 Xap + €13 2a0)W,,
~ s
(VaWap)x = (ca1 + o2 Xap + €23 2ap)W,,, 5 (29)

(VaWab)z = (31 + €32 Xap + €33 Zab)W;fb >
where Wfb denotes the Shepard filtering function defined by

Wa
W3, = —=—, (30)

Z Vb Wab
b=1

Xab = Xq — Xp, and z,5 = z, — Zp- Note that the Shepard functions represent a partition
of unity, since Zf)vzl ijVb = 1 at any particle a in the domain, irrespective whether
it is near, or far from, the boundary.

The nine coefficients c,p(x) (a,8 =1,2,3) in (29) are determined by apply-
ing the completeness conditions for interpolating functions and their derivatives
(Belytschko et al 1998). These conditions yield the matrix equation

¢l =A7", (31)
in which ¢ is the matrix of unknown coefficients ¢,z , and A is given by

N 1 Xab Zab
A=Y VWS | xa X2 Xaa |. (32)
b=1

2
Zab  Zab Xab Zab

Note that the correction procedure requires, in two dimensions, the generation and
subsequent inversion of the 3 X 3 matrix A for each discrete particle a. The resulting
corrected kernel functions and their gradients are used to replace respective standard
SPH counterparts in the equations of continuity and motion, expressed by relations
(24) and (25).

Hence, the problem to be solved numerically can be summarized by the follow-
ing set of first-order differential equations

do, dov, dx,
——=M,, =F,, =U,, 33
dr dr dr (33)

where the third equation in (33) describes the trajectory of particle a. The interaction
terms M, and F, in (33) are determined by the mass and momentum conservation
balances. On account of (24) and (25), with the corrected forms of kernels and their
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gradients applied instead of the standard ones, the terms M, and F, are expressed
by

N
Mg = Myt VoWap, (34)
b=1
N —~—
F,=— mb[p—; + p—g)vawa,, +b,. (35)
=1 a O

The term U, appearing in the third equation in (33) represents a corrected
velocity of particle a, which is evaluated by employing the formula proposed by
Monaghan (1992):

N
m — _ Qa + 0p
Ua =0, +¢& Z __a VpaWab » Qab = aT . (36)
=1 Qab

The latter is known in the SPH literature as the XSPH correction, and its aim is
to smooth out the velocity field around particle a by means of an average velocity
of all neighbours b located within the kernel support of a. This helps to prevent
inter-penetration of particles and ensures a more orderly and regular pattern of
particles compared to the standard SPH approach. According to Monaghan, one
should take 0 < £ < 1 in (36); in the subsequent numerical simulations the value
e = 0.5 will be used.

The system of evolution equations (33), to be solved for all material parti-
cles of the discrete system, has been integrated in time by employing an explicit
time-stepping scheme of a predictor—corrector type. Let a current time increment be
defined by instants ¥ and r**!, so that the time step length is 4t = t**! — ¥, Then,
in the first prediction stage, the particle density, velocity and position are evaluated
at the mid-step time #**12 = (¢* + t**1)/2 by

Y N L Mk

Qq =0, * ? a’
At

oi = v+ S Fy, 37)
At

x, =X+ S U

Then, using the latter half-step densities, the pressures pﬁ“/ 2 are calculated from

the constitutive law (3). These pressures, in turn, together with the predictions (37),
yield the half-step values of M**"* and F5*'  determined by (34) and (35), and
the half-step velocities U2, given by (36).
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In the second stage of the current time step calculations, the mid-step values of
the interaction terms are employed to calculate the respective values at the end of
the time step, at # = t**!, according to the equations

o' = g+ ey,
it = ok + At FET2 (38)

a

R )

Finally, the pressures pt*! are updated by using the above end-step values of den-

sities in (3), before the terms M’a‘”, F ’g” and U'g“ are determined from (34), (35)
and (39) to start the next time integration step.

In order to maintain the stability of computations, the time step length has been
controlled by a Courant-Friedrichs-Levy-type condition expressed by

At < ,8L , (39)
Cs * Umax
where d denotes an average inter-particle spacing, c, is speed of sound given by (4),
and vnax 18 the largest particle velocity, chosen here as the solitary wave celerity ¢
defined by either (11) or (17). For the predictor—corrector time integration scheme
applied in this work, the constant 8 should not exceed 0.3 (Colagrossi and Landrini
2003).

Besides the regularization of the velocity field by the XSPH correction method,
it is also advisable to regularize the density field, as this helps to ensure consistency
between particle mass, density and volume near the fluid free surface (Colagrossi
and Landrini 2003, Dalrymple and Rogers 2006). Hence, in numerical computa-
tions, the density field is periodically smoothed out according to the formula

0a= Y myWay, (40)

which is derived from equation (18) by setting f = o and replacing W, by its
corrected form W, (recall that m; = V;, 05). In the simulations, the results of which
are presented in the next section, the above density regularization was carried out
every twentieth time step.

4. Numerical Simulations

The numerical method described in the preceding section has been employed to
simulate a plane problem of solitary waves propagation in water of uniform depth.
In the simulations, an infinitely long layer of water has been replaced by a rect-
angular domain, with two vertical rigid walls confining the fluid at both sides
of the rectangle. The length of the computational domain, L, has been chosen in
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such a way that the initial free surface elevation induced by the solitary wave is
sufficiently small at the vertical walls. Hence, these walls have been assumed at
a distance of at least 10H from the wave crest, which means that the initial surface
elevation at the walls is of order 1073 of the wave height A. The initial water domain,
the shape of which is determined by the profile of the free surface prescribed by
either (6) or (12), has been discretized by adopting a regular grid of particles, with
a uniform spacing d in the horizontal direction, and about the same spacing d along
the vertical (the exact vertical spacing follows from the local free surface position).
An example of the initial grid of discrete particles, near a wave crest, is given in
Fig. 3.

18.0 ! ! ! ! ! ! ! ! !
16.0
14.0 —
12.0

-50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0

Fig. 3. Initial distribution of discrete particles. Labels along the axes show x- and
z-coordinates in metres

At the solid boundaries (the horizontal bottom and the two vertical walls),
free-slip conditions, defined by the second equation in (5), are enforced. There are
a few methods available to implement boundary conditions in the SPH method.
In this work a technique originated by Cummins and Rudman (1999), and slightly
improved by Staroszczyk (2010), is used, in which so-called ghost particles are
generated outside the walls to mirror physical properties of corresponding particles
inside the water domain. Similar methods have been also used, among others, by
Antoci et al (2007) and Ataie-Ashtiani et al (2008). However, this ‘ghost particles’
technique proves effective only in cases of simple convex fluid domains. Otherwise,
when the fluid domain boundaries have a more complex geometry, more sophisti-
cated methods ought to be employed. It seems that the technique developed very
recently by Monaghan and Kajtar (2009), in which the boundaries are modelled
by means of particles which exert repulsive forces on a fluid, has a potential of
becoming a universal tool for treating such more complex boundaries.

The results presented below have been obtained for still water depth H = 10 m,
and the wave amplitudes A ranging from 1 to 5 m. The physical parameters entering
the equation of state (3) were py = 10° Pa, oy = 10° kg/m? and y = 7. The evolution
equations (33) were integrated with the time step length 4r = 1 x 1073 or 2 x 1073 s,
depending on the particle spacing d, so that the condition (39) with §=0.3 is
satisfied.

At first, in order to assess the numerical efficiency of the proposed corrected SPH
model, the simple problem of a single solitary wave travelling over the horizontal
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bottom has been simulated. Hence, three amplitude ratios A/H = 0.1, 0.3 and 0.5,
and the two cases of the initial free surface elevation, velocity and pressure fields in
water given by the first- and second order approximations, defined by equations (6)
to (11) and (12) to (17) respectively, are investigated. In the simulations, the water
domain is adopted of length L = 800 m = 80H, and the initial inter-particle spacing
is d = 1 m (10 particles along the water depth H). Therefore, the discrete system
consists of 8066, 8136 and 8202 particles for the wave height ratios A/H = 0.1, 0.3
and 0.5, respectively. In all the computations, the SPH kernel support radius has
been taken as R = 4d, and the kernel smoothing length parameter 4, see (26) and
(27), has been equal to 4d/3. The maximum time of simulations is 50 s, during
which the waves travel, see equations (11) and (17), the distances of about 50 to
60 water depths.

The three sets of plots in Fig. 4 illustrate free surface profiles of solitary waves
moving to the right from the initial (wave crest) position at x = 0. Compared in the
plots are the predictions of the proposed C-SPH method and the first-order analytical
solutions of the KdV equations. It is seen that for the smallest wave considered,
A/H = 0.1, there is a very good agreement between the numerical and analytical
results, with the SPH profiles matching nearly exactly, both in terms of the height
and the current position, those obtained analytically. For the wave height A/H =
0.3 still reasonable accuracy of the SPH solutions is maintained throughout the
simulations, though it can be observed that the numerically obtained wave profiles
are by several per cent higher, and a little slower, than the quantities predicted by the
theory. On the contrary, the results given by the numerical method for the case of
the largest waves, A/H = 0.5, clearly differ from the analytical ones, as significant
discrepancies in the wave heights are observed, and also qualitative differences
in the wave behaviour (the occurrence of negative free surface elevations 1) are
evident.

The plots in Fig. 5 present, in turn, the evolution of the free surface of water
for the case of the initial wave profile given by the second-order approximations to
the solution of the KdV equations. Again, the predictions of the C-SPH model are
plotted against the analytical wave profiles, and additionally the results given by the
standard (that is, not corrected) SPH method are shown. Comparing the correspond-
ing plots in Fig. 4 and Fig. 5 it is seen that by taking the second-order solution as
the initial wave profile in the simulations, better numerical results are achieved for
the wave amplitudes A/H = 0.1 and A/H = 0.3, both in terms of the wave height and
speed. Certainly, this has to be attributed to the fact that the second-order solution,
for smaller ratios A/H, is by about one order of magnitude more accurate than the
first-order analytical result — compare the respective expressions (6)—(17). On the
other hand, it can be noted that the SPH predictions for the case of A/H = 0.5 are
again unsatisfactory, which indicates that the waves of such a large height, due to
their strongly non-linear behaviour, cannot be treated successfully by the proposed
method, at least for the grid resolution and time step length applied in the present
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Fig. 4. Evolution of the water free surface for different dimensionless wave heights A/H, for
the initial wave profile defined by the first-order solution of the KdV equation. Comparison
of the numerical (C-SPH) results with analytical solutions

computations. The plots in Fig. 5 also show that the standard SPH approach, when
compared with the corrected SPH method, yields the results of practically the same
accuracy for the small waves defined by A/H = 0.1, slightly worse results for the
medium-size waves A/H = 0.3 (with the differences increasing with increasing time
1), and give definitely wrong results for the large waves A/H = 0.5. In the latter case,
the numerically predicted wave starts to disintegrate as early as after about 20 s,
that is, after the wave has travelled a distance of about 25H.

Next, the problem of a solitary wave impacting on a rigid vertical wall has been
examined numerically. In the SPH simulations, the computational water domain
has a length L = 25H, and the fluid is represented by a grid of discrete particles
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with an average spacing d = 0.625 m (16 particles along the still water depth H)
in both x and z-directions. Hence, the model includes about 6800 particles. As the
initial wave profile, the second order approximation defined by (12) has been used,
together with accompanying expression (13) to (17) for other wave variables. The
time integration of equations (33) has been carried out with the time increment
At =1x1073 s.

The results obtained for a solitary wave of the height ratio A/H = 0.3 are pre-
sented in a series of plots in Fig. 6. The plots illustrate the evolution of the free
surface elevation, starting from the instant ¢ = 0, for a wave initially propagating to
the right, then hitting the wall situated at x/H = 10 at the time # ~ 9 s, and, upon the
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Fig. 6. Evolution of the free surface profile for a solitary wave of the amplitude A/H = 0.3
impacting at a vertical wall at x/H = 10

reflection, subsequently moving to the left. One can see in the plots that the reflected
wave preserves its initial shape quite well, with satisfactorily smooth variation of
the free surface profile throughout the simulations. However, with growing wave
amplitudes, it is increasingly more difficult to maintain the smooth shape of the
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reflected waves, though for the wave amplitude ratios as large as A/H ~ 0.45 still
reasonable results are delivered by the present C-SPH method.

The above simulations have been conducted for wave height ratios A/H ranging
from 0.05 to 0.6, with the aim to investigate the maximum wave run-up on the
vertical wall. The results of calculations are given in Fig. 7, showing the dependence
of the normalized run-up height, 7y.x/H, on the dimensionless wave amplitude
A/H. For reference, also the corresponding predictions of the standard SPH model
are provided. It is seen that the two variants, corrected and standard, of the SPH
method yield practically the same results for the wave amplitudes A/H < 0.2, with
discrepancies becoming gradually more apparent as the ratio A/H increases beyond
0.2. Comparison of the results displayed in Fig. 7 with those collected by Lo and
Shao (2002) and plotted in Fig. 3 of their paper shows that the predictions of the
C-SPH model proposed here agree well with both experimental data and the results
of other particle methods.

Finally, a collision of two solitary waves propagating in opposite directions has
been simulated. Such a phenomenon gives rise to a complex non-linear interaction
of the two waves, and therefore serves as a good test case for assessing the numerical
robustness of any discrete method. Hence, the problem of two waves of different
amplitudes, A; and A,, approaching each other is examined in order to see how the
wave profiles evolve during, and after, a collision event (the collision of two waves
of the same amplitude is, essentially, equivalent to the wave reflection at a rigid wall,
as illustrated in Fig. 6 above). The simulations have been performed by adopting
a computational domain of a length L = 50H, with the initial wave crest positions of
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Fig. 8. Evolution of the discrete particle distribution during a collision of two solitary waves
of the amplitudes A;/H = 0.3 and A,/H = 0.2. The larger wave moves from the left to the
right

the two waves separated by a distance of 20H. The same particle resolution as in the
above-discussed problem of the wave impact against a wall is used, with 16 particles
distributed uniformly along the water depth H, so that the model incorporates about
13500 particles. Also, the same time increment 4¢ = 1 X 107 s has been used to
integrate equations (33).
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Fig. 9. Evolution of the free surface profiles of two colliding solitary waves of the amplitudes
Aj/H =0.3 and Ay/H =0.2

The results of simulations are presented in Figures 8, 9 and 10. The first figure
illustrates the evolution in time of the distribution of discrete particles in the central
part of the computational domain, where the wave collision event takes place, in
the case of waves of dimensionless amplitudes A;/H = 0.3 and Ay/H = 0.2. The
corresponding Fig. 9 displays the free surface profiles at successive time instants.
We notice that the maximum free surface elevation at the collision time (f ~ 9 s) is
larger than the sum of the two wave heights, which is an indication of the non-linear
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Fig. 10. Evolution of the free surface profiles of two colliding solitary waves of the ampli-
tudes A;/H = 0.4 and A,/H =0.2

character of the wave interaction mechanism. Further, one can observe that after
the collision the two waves preserve their original shapes, with the free surface
elevations varying in a smooth manner also for larger times, which demonstrates
that the numerical model deals well with the solution of the problem considered.
A numerically more challenging case of the higher wave having a larger am-
plitude is illustrated in Fig. 10, displaying two colliding waves of amplitudes
Ai/H = 0.4 and Ay/H = 0.2. Again, it seems that the results predicted by the C-SPH
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model describe well the mechanism of the solitary wave interaction. Though, com-
paring the respective plots in Fig. 9 and 10 for larger times ¢, it is seen that some
small oscillations of the numerical nature develop in the free surface profile behind
the crest of the larger wave.

5. Conclusions

The results of simulations presented in Section 4 of the paper show that the corrected
SPH method, in which the standard kernel function and its gradient are modified
in order to enforce the partition of unity, deals well with the mechanics of solitary
waves in shallow water. The method has proved to be capable of efficient modelling
of strongly non-linear waves, the amplitude of which are as large as about 0.4 of
the water depth. The predictions of the wave behaviour during two phenomena
investigated — a solitary wave impact against a vertical wall and an interaction of
two colliding waves — demonstrate that the model yields satisfactorily accurate and
stable solutions. Of the two types of analytical approximations to the solution of
the KdV equations used to prescribe the initial shape of the wave, the second-order
approximation has proved to give better results, though the differences, in the case
of small and medium-size waves, are not significant.

Comparisons of the results given by the corrected SPH method and those ob-
tained by the standard SPH approach indicate that the two variants of the method
yield practically the same results as long as the wave height does not exceed 0.2
of the still water depth. Therefore, in the case of such waves, it is recommended to
use the standard SPH approach, since it is computationally much cheaper. On the
other hand, larger solitary waves, the height of which is 0.2 and more of the water
depth, can be treated with success only by applying the corrected SPH method,
even though the latter turns out to be about three to four times computationally
more expensive than its standard counterpart.
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