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Abstract
The problem is how to assess normal stresses around dynamically driven nails. Pull-out tests
show that these stresses are much higher than it would follow from classical analyses. There-
fore, an analysis of the cavity expansion method was applied to study this problem. It was
shown that the cavity expansion method, widely applied in soil mechanics, suffers from many
shortcomings. It was also shown that this method is not closely related to cone penetration
tests, nor to the technology of dynamic soil nailing.
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1. Introduction

The dynamic soil nailing differs from the classical technology, in which nails are in-
troduced into holes drilled in the soil mass, and then the whole system is grouted. As
a result, a kind of composite structure is created, consisting of the nail, surrounding
cement mixture, and natural soil. This technique does not essentially change the stress
state in the soil mass, except perhaps for local disturbances. A different situation oc-
curs when the nails are introduced dynamically, i.e. by hammering or vibrations, and
when the soil is not excavated but rather compacted around the nail. It appears that
the nailing technique may influence the stress state around the nail, but this problem
has not been sufficiently investigated, and no conclusions of practical importance can
be drawn. Some discussion of these problems will be presented in this paper.

The pull-out resistance of a nail can be estimated using a basic scheme shown in
Fig. 1. The pulling-out force F should simply resist the shearing stresses τ around the
nail. The maximum value of this force at the beginning of the pull-out process is the
following:

Fmax = τSL, (1)

where:
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L – nail’s length,
S – nail’s circumference.

Fig. 1. Simple scheme for estimating a nail’s pull-out resistance

During the movement of the nail with respect to the soil, there is τ = µσ, where µ
is a coefficient of friction between the nail and the soil. It is obvious that the pull-out
resistance strongly depends on the normal stress σ. Note that this simple analysis
does not take into account many details, such as the cross-sectional shape of the nail,
non-uniform distribution of stresses, etc. The normal stress is usually calculated from
the own weight of soil above the nail (geostatic stress).

However, in the case of dynamically driven nails the above simple procedure does
not apply. Some in-situ investigations, performed in Gdańsk during construction of ex-
cavations in urban areas, showed that the pull-out resistance of L-shaped nails driven
by vibrations was about 4 times larger than it would follow from the simple procedure
described above. One possible explanation of this phenomenon is that the process of
driving the nails in had generated some additional normal stresses around them.

In order to verify this hypothesis, laboratory investigations were performed in the
experimental setup shown in Fig. 2. A cylindrical steel nail of 16 mm in diameter
was hammered into a sand-filled closed cylindrical steel tube of 107 mm in diameter.
Unfortunately, the process of driving the nail in could not be controlled. Then the nail
was pulled out. A simple analysis, using Eq. (1), showed that radial stresses generated
around the nail should be of the order of 5 MPa, Sawicki and Kulczykowski (2010).

Fig. 2. Experimental setup

The above experiments support the hypothesis that the process of dynamic driving
generates additional radial stresses between the nail and the soil. Note that the experi-



A Study on the Pull-out Resistance of Dynamically Driven Nails. . . 245

mental nail has a conical edge, so the cone penetration during driving is coupled with
cavity expansion, which is supported by independent opinions. For example: “Due
to similar mechanical action generated by cavity expansion and cone penetration . . . .
cavity expansion theory has been used with considerable success in the interpretation
of . . . . in situ soil tests.”, cf. Yu (2000), page 209. An interesting question is whether
the cavity expansion method can make it possible to determine radial stresses gener-
ated by dynamic nailing.

2. Cavity Expansion Method and Its Shortcomings

The cavity expansion method has received a great deal of attention in soil mechan-
ics as it can be applied to solve various problems of practical importance, including
in-situ testing methods (penetrometers), pile foundations, underground excavations
and tunneling, underground explosions, etc., see Bigoni and Laudiero (1989), Carter
et al (1986), Salgado et al (1997), Su and Liao (2001). An advantage of cavity ex-
pansion methods is that they often enable researchers to find analytical solutions of
the problems considered. An extensive treatment of these methods is presented in Yu
(2000), where most relevant publications are also quoted. Sawicki and Kulczykowski
(2010) have tried to apply a simple cavity expansion method to analyse the problem
of interaction between a dynamically driven nail and the surrounding soil, but with
limited success. In this paper a more detailed analysis of this problem will be pre-
sented.

Consider an expansion of a cylindrical cavity in an infinite medium caused by the
internal pressure p, as shown in Fig. 3. The initial radius of the cavity is a. The pressure
p increases the cavity radius to b. The plane strain and axi-symmetric conditions are
assumed. For the sake of simplicity, an initial stress-free condition in the medium
surrounding the cavity is also assumed. On the other hand, the experiments mentioned
in the previous section were performed under almost stress-free initial conditions. The
pressure p generates radial and circumferential stresses in the medium, designated as
σr andσΘ respectively. The soil mechanics sign convention is applied, where the plus
sign denotes compression.

The stresses should satisfy the following equilibrium equation:

∂σr

∂r
+
σr − σΘ

r
= 0, (2)

with the boundary condition σr(r = a) = p. The following functions satisfy these re-
quirements:

σr = p
(a
r

)2
, (3)

σΘ = −p
(a
r

)2
. (4)
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Fig. 3. Expansion of cylindrical cavity in infinite medium

Note that these stresses disappear when r → ∞, as it should be. Eqs. (3) and (4) are
well known in applied mechanics, see Hill (1950) or Timoshenko and Goodier (1951).
In the case of an elastically linear medium, they also satisfy the strain compatibility
condition. Therefore, from a formal point of view, Eqs. (3) and (4) properly describe
the stress state in a medium surrounding an expanding cavity. However, if this medium
consists of granular matter, such as sand, the above solution raises some questions.

In the case of an initially unstressed granular medium, Eq. (4) leads to negative
(extension) circumferential stresses, which cannot be accepted in the case of granu-
lar materials, for which σΘ ≥ 0. If these stresses are imposed onto some initial stress
state, one can accept this formal solution, provided that the Coulomb-Mohr yield con-
dition is not violated. In the case of an initially unstressed medium, this condition is
violated from the very beginning. In the case considered, the Coulomb-Mohr yield
condition has the following form:

σr − σΘ − (σr + σΘ) sin ϕ ≤ 0, (5)

where ϕ is the angle of internal friction.
Substitution of Eqs. (3) and (4) into Eq. (5) leads to contradiction. This means

that the above solution cannot be applied to granular soils in initially stress-free con-
ditions. The stress path followed during the cavity expansion is outside the statically
admissible region in the stress space, as shown in Fig. 4.

In the case when the constant hydrostatic pressure p0 acts throughout the soil
before cavity expansion, the following stresses describe the problem:

σr = p0 + (p − p0)
(a
r

)2
, (6)

σΘ = p0 − (p − p0)
(a
r

)2
. (7)
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Fig. 4. Stress path defined by Eqs. (3) and (4) is outside the statically admissible region

Substitution of Eqs. (6) and (7) into (5) gives the following inequality:

p − p0

[
1 +

( r
a

)2
sin ϕ

]
≤ 0. (8)

The above relation takes the following form at the cavity boundary (r = a):

p ≤ p0(1 + sin ϕ). (9)

On the other hand, there should be p > p0 if the process of cavity expansion may take
place. Eq. (9) gives a relatively small margin of statically admissible pressure before
reaching the Coulomb-Mohr yield condition.

3. Some Heuristic Considerations

Yu (2000) provides an extensive theoreticul discussion of cavity expansion methods.
He reviews basic findings and solutions from the world literature, as well as presents
his own achievements. However, the question is whether classical models of materials
can be directly applied to the problem considered in this paper. For example, the as-
sumption of incompressibility is sometimes adopted, which is physically unrealistic
in the case of dynamic nailing. Consider again Fig. 3. During the expansion of the
cavity from r = a to r = b, the soil mass from region I is displaced to region II. This
means that the soil in region II is compacted, so volumetric deformations should be
taken into account.

Another problem is that during the dynamic nailing large stresses are applied,
which causes partial fracturing of sand grains. It was discovered that a ring, composed
of very fine particles, had been formed in front of the cone. This structure collapsed
under its own weight during post experimental investigations. Such phenomena are
not taken into account by classical models. The grain size distribution in region II
(Fig. 3) is probably different from that in region I.
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Another question concerns the application of critical state models in the analysis
of cavity expansion. Recall that the soil in the critical (or steady) state deforms con-
tinuously at constant stresses and volume. This definition of the critical/steady state
does not apply to cavity expansion as the constant volume condition is not satisfied,
because of the compaction of the soil surrounding the nail. Additionally, it is diffi-
cult to imagine a continuous expansion of the cavity under constant pressure, as it
is sometimes assumed in purely theoretical considerations. Also note that during the
process of nailing, the cavity is expanded by large forces indeed. If their action ceases,
the cavity remains as it was before, without any further expansion, and eventually
some partial unloading may take place. All these facts severely limit the usefulness
of critical/steady state models in the case of cavity expansion in granular media.

A certain shortcoming is that the initial state of the soil is not taken into account
in most of theoretical analyses. This initial state may be defined either as contractive
or dilative, depending on the position of the point e, p′ with respect to the steady-state
line (SSL). Here, e = void ratio, p′ = mean effective stress. The initial states lying
above the steady-state line are considered as contractive, and those below as dilative.
In a contractive state, the sand is compacted during shearing, and in a dilative one,
it expands while sheared, after a small initial compaction. SSL should be determined
experimentally. Interesting possible scenarios are shown in Fig. 5.

Point A corresponds to an initially contractive state of the soil, and point B to
an initially dilative one. In both cases, during the cavity expansion, the mean stress
increases and the void ratio decreases as a result of compaction. Respective paths can
be represented by arrows AB and CD. The steady (or critical) state may occur when
points B or D approach SSL, which may never happen. On paths AB and CD shown in
Fig. 5 certainly no steady-state conditions are satisfied. The above heuristic discussion
suggests that a new and special model of soil should be developed in order to describe
realistically the problem considered.

Fig. 5. Possible paths in the e, p′ space during cavity expansion
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4. Oedometer Analogy

As already mentioned, during cavity expansion in a granular soil, one may expect
circumferential stresses to be positive, i.e. compressive, and not negative, as it fol-
lows from Eq. (4). An oedometer analogy will be useful to understand the physics of
phenomena taking place around the nail.

During cavity expansion, the arc element MN transforms into the arc element
M′N′, as shown in Fig. 6. The length of M′N′ is greater than that of MN. In classical
mechanics of materials, it is assumed that material particles lying on the arc MN
are merely displaced to a new place, defined by the arc M′N′. This assumption may
be accepted in the case of an expanding elastic rubber tube, but not in the case of
granular matter, as schematically illustrated in Fig. 6. Before incremental deforma-
tion, only the particles numbered 1, 2 and 3 occupy the length MN. Particles 4 and
5 lie above the sector MN. After the deformation, these particles are replaced onto
the sector M′N′, and additional circumferential stresses are generated to support this
new configuration. It bears a certain analogy to partially oedometric conditions, with
controlled lateral displacements.

Fig. 6. Re-arrangement of grains during cavity expansion

The above heuristic example shows that some basic principles of continuum me-
chanics do not apply in the case of granular materials. According to the physical in-
terpretation of a basic assumption known as the strain compatibility, neighbouring
points remain neighbours after a deformation. Fig. 6 shows that particles 4 and 5,
which had been neighbours before the incremental deformation, were separated by
particle 3 after this deformation.

5. Simple Static Solution for Stresses

We are looking for a simple static solution that satisfies the equilibrium equation (2)
with respective boundary conditions and takes into account the physical requirement
that circumferential stresses should be positive (compressive). Assume that the cir-
cumferential stress is proportional to the radial stress:

σΘ = kσr , (10)

where k is a coefficient of proportionality.
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Substitution of Eq. (10) into the equilibrium equation (2) leads to the following
differential equation for the radial stress:

r
dσr

dr
+ (1 − k)σr = 0. (11)

The solution, with the boundary condition σr(r = a) = p, is the following:

σr = p
(a
r

)1−k
. (12)

Substitution of Eqs. (10) and (12) into the Coulomb-Mohr condition (5) leads to the
following inequality, which guarantees that the stress state is statically admissible:

k ≥
1 − sin ϕ
1 + sin ϕ

. (13)

In the case when k = (1 − sin ϕ) /(1 + sin ϕ) , the stress path coincides with the
Coulomb-Mohr line, cf. Fig. 4. Such a value of k is unrealistic as it means that all
the soil outside the cavity is in the plastic state (condition (13) is independent of r). It
is physically expected that outside the cavity, only a certain ring would remain in the
plastic state, but the soil beyond that ring would behave elastically or would remain
rigid. Note that when k = −1, Eqs. (10) and (12) are the same as (3) and (4). However,
k = −1 does not satisfy the condition (13), as already mentioned. In the case when
k = 1, one obtains the hydrostatic stress around the cavity, which is also unrealistic.
On the other hand, the latter case corresponds to ϕ = 0, which means that the medium
is not granular. Therefore, physically sensible values of k are given by the following
relation:

1 − sin ϕ
1 + sin ϕ

< k < 1. (14)

This means that only the stress paths similar to those shown in Fig. 4 in a statically
admissible region can be realized. Similar stress paths are followed during oedometric
experiments, cf. Sawicki and Świdziński (1998). Note that during oedometric tests,
the Coulomb-Mohr criterion is not satisfied, but plastic strains develop because of
compaction. The static solution, presented in this section allows only for some esti-
mation of stresses generated during the cavity expansion as the value of k is unknown,
except for the interval given by relation (14). It should also be noted that Eq. (12) gives
a much smaller decrease of radial stress with increasing r than Eq. (6). An analysis
of deformations and constitutive relations is necessary in order to get further insight
into the problem of cavity expansion in a granular medium.

6. More Advanced Static Solution

The static solutions presented in Sections 2 and 5 will be combined in order to obtain
a more realistic stress state around the expanding cavity. Assume that before reach-
ing the Coulomb-Mohr yield condition, stresses are given by Eqs. (6) and (7). This
condition is reached when
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p = p∗ = p0

[
1 +

( r
a

)2
sin ϕ

]
. (15)

Recall that the loading process starts from the isotropic stress state p = p0, which
corresponds to σr = σΘ = p0 (point 1 in Fig. 7). During this stage, the stress path
σr = −σ0 + 2p0 is followed (1–2 in Fig. 7). The Coulomb-Mohr yield condition is
attained for the following stresses (point 2 in Fig. 7):

σ∗r =
2p0Φ
1 + Φ

, (16)

σ∗Θ =
2p0

1 + Φ
, (17)

where Φ = (1 + sin ϕ)/(1 − sin ϕ), see Fig. 7.

Fig. 7. Stress paths followed during cavity expansion: 1–2 elastic/rigid range; 2–3 plastic
behaviour

Further loading is possible only along the Coulomb-Mohr envelope (path 2–3 in
Fig. 7). Stress increments along this path should satisfy the following equation:

dσr = ΦdσΘ, (18)

as well as the equilibrium equation:

∂(dσr)
∂r

+
dσr − dσΘ

r
= 0, (19)

where d() denotes an increment of respective quantity.
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Integration of Eqs. (19) and (18) with the initial condition at point 2 in Fig. 7 leads
to the following stresses:

σr = σ
∗
r + (p − p∗)

(a
r

)β
, (20)

σΘ = σ
∗
Θ +

1
Φ

[
(p − p∗)

(a
r

)β]
, (21)

where β = (Φ − 1) /Φ = 2 sin ϕ/ (1 + sin ϕ).

7. Kinematics of Cavity Expansion

7.1. Basic Definitions

For small strains, the following classical measures are appropriate:

εr = −
∂u
∂r
, (22)

εΘ = −
u
r
, (23)

where

u – radial displacement,
εr – radial strain,
εΘ – circumferential strain.

The minus signs in Eqs. (22) and (23) were introduced according to the soil mechanics
convention that compression is positive.

In the case of large strains, various strain measures can be applied. It seems that in
the axisymmetrical case considered, logarithmic strain measures are the most appro-
priate, see Hill (1950), Życzkowski (1973) or Yu (2000). They are defined as follows:

εr = − ln
(

dr
dr0

)
, (24)

εΘ = − ln
(

r
r0

)
, (25)

where r0 denotes the initial position of a chosen point before deformation, r denotes
the current position of the same material point after deformation and d() is an incre-
ment of respective quantity, see Fig. 8. An advantage of logarithmic strain measures
is that they are additive. It follows from Fig. 8 that

r = r0 + u. (26)
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Fig. 8. Kinematics of deformation along radius r

Assume that the character of the radial deformation (u) is known. In such a case,
one knows the relation r = r(r0), from which respective strains can be determined,
see Eqs. (24) and (25). A typical continuum mechanics procedure assumes that the
system of governing equations, with respective initial and boundary conditions, is
known, and the basic problem is to solve these equations in order to determine the
strain and stress states. In previous sections, an independent stress analysis was pre-
sented, and statically admissible stress fields were determined. In the present section,
the kinematics of the deformation is analysed. Subsequently, we shall try to find re-
spective relationships between stresses and strains in order to describe properly the
soil behaviour around the nail. In fact, we do not know which constitutive equations
are the most appropriate in the case considered, so a typical continuum mechanics
procedure cannot be followed.

An important problem is to understand the soil behaviour in the range of large
strains and displacements, even for proper interpretation of experimental data. There-
fore, some attention will be focused on physical interpretation of large strain measures.

7.2. Interpretation of Large Strains

Assume that the displacement field is known. Usually, this field should be determined
from the solution of respective equations with appropriate initial and boundary condi-
tions, but we would like to avoid such an onerous procedure and guess an approximate
solution. The following function is a good candidate:

u = u0 exp(a − r0) = A0 exp(−r0), (27)

where u0 is the displacement of the boundary of a cylindrical cavity, and a is the initial
cavity radius.

Eq. (27) is the simplest function that displays physically expected features of the
soil behaviour around an expanding cavity as the radial displacement decreases expo-
nentially with r. Obviously, some modifications of Eq. (27) are possible, but we do not
have sufficient experimental data to propose a more realistic relationship. Therefore,
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let us analyse possible consequences of Eq. (27) and find physical interpretations of
large strain measures. Combination of Eqs. (26) and (27) gives the following relation:

r = r0 + A0 exp(−r0). (28)

Respective strains are the following:

εr = − ln(1 − A0 exp(−r0)), (29)

εΘ = − ln
(
1 +

A0

r0
exp (−r0)

)
. (30)

In order to show a physical interpretation of the above measures, let us consider
a deformation of a cavity defined by the initial radius r0 = a = 1. Assume a large
displacement of this cavity defined by b − a = u0 = 0.2, see Fig. 9. Therefore, A0 =

u0 exp(a) = 0.5437.

Fig. 9. Large cavity expansion

Note that points lying on the circle r = a were displaced to the new posi-
tion r = b. Respective strains, calculated from Eqs. (29) and (30), are the fol-
lowing: εr = 0.2232, εΘ = −0.1823. The points initially lying on the circle r0 =

b = 1.2 were displaced to the position r = c. Respective displacement is u = c −
b = 0.5437 exp(−1.2) = 0.1638, therefore c = r = 1.3638, and the strains are: εr =

− ln(1 − 0.5437 exp(−1.2)) = 0.1788, εΘ = −0.1279. The average values of these
strains are the following: εr = 0.201, εΘ = −0.155. The average volumetric deforma-
tion εv = εr + εΘ = 0.0459 = 45.9 × 10−3.

Consider now a classical definition of volumetric deformation, based on purely
geometrical considerations, cf. Fig. 9:

ε
geom
v =

V0 − V1

V0
, (31)

where V0 = area of the ring bounded by r = a and r = b, V1 = respective area bounded
by r = b and r = c. Elementary calculations lead to the following result: εgeom

v =
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45.35 × 10−3, which is very close to the previous result, namely εr = 45.9 × 10−3.
Recall that this latter result was calculated from average values of respective strains.

The radial and circumferential strains defined by Eqs. (22) and (23) lead to the fol-
lowing results for the cavity boundary: εr = 0.5437 exp(−1) = 0.2, versus large strain
result of 0.2232; εΘ = −0.2/1 = −0.2 versus – 0.1823. For the circle defined by r0 = b,
one obtains respectively: εr = 0.1638 v. 0.1788 and εΘ = −0.1365 v. – 0.1279. Deter-
mination of average values of “small strains”, as in the case of logarithmic strain mea-
sures, and subsequent determination of the average volumetric strain lead to a worse
result than in the previous case (εv = 13 × 10−3).

Note that the method applied in this section is a kind of “back analysis”, as the
displacement field u (Eq. 27) was assumed/guessed, and then the respective strains
were calculated. This means that the strain compatibility condition is satisfied auto-
matically. In usual procedures, the strains are determined first, and then respective
equations should be integrated in order to determine displacements. In the case of
axisymmetrical cavity expansion, a single function u should be determined from two
strain functions. That is why the strain compatibility condition should be satisfied.

8. Small Elastic Expansion of Cavity

Consider a small elastic expansion of a cavity corresponding to the stress path 1–2 in
Fig. 7. Assume that Hooke’s law is valid, i.e.

εr = M∗σr + N∗σΘ, (32)

εΘ = −N∗σr + M∗σΘ, (33)

where M∗ = (1 − ν2)/E; N∗ = M∗ν/(1 − ν) and E = Young modulus; ν = Poisson ra-
tio.

The following relation is valid along path 1–2:

σΘ = −σr + 2p0. (34)

Substitution of Eqs. (33) and (34) into Eq. (23) leads to the following expression for
radial displacement:

u = r[(M∗ + N∗)σr − 2M∗p0]. (35)

At the end of stress path 1–2 (point 2 in Fig. 7) and for r = a, there is σr = σ
∗
r =

p0(1 + sin ϕ), cf. Eqs. (15) and (16). In this case, the following formula for the cavity
displacement is obtained:

u0 =
ap0(1 + ν)

E
[(1 + sin ϕ) − (1 − 2ν)]. (36)

Assume the following data, which correspond to the average values of parameters
characterizing sands: E = 3 × 108 N/m2; ν = 0.2;ϕ = 30◦. For p0 = 3 × 105 N/m2

one obtains the displacement u0 = 1.08a × 10−3, which is a small value indeed.
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An interesting conclusion following from the above simple analysis is that the
volumetric strain that develops during the first stage of expansion is equal to zero.
There is only an initial uniform volumetric deformation caused by the initial confining
stress p0.

9. Stress – Strain Relations

Up to now, some statically admissible stress fields were determined and an analysis of
kinematics around an expanding cavity, including large deformations, was presented.
The problem is how to collate these results in order to obtain the relationship between
the pressure around the cavity p and its displacement u0. A simple Coulomb-Mohr
condition and classical flow rules are insufficient in this case, as we are not sure
whether the soil around the cavity is in the limit state (cf. oedometer analogy discussed
in Section 4). No appropriate experimental data have been found in the available lit-
erature. It also seems that some of the theoretical models collated by Yu (2000) are
not the most appropriate to describe the soil behaviour around the expanding cavity
(see some remarks presented in Section 3). All this means that we have to formulate
appropriate stress – strain relations for the problem of an expanding cavity.

It is convenient to introduce the following stress and strain measures:

p′ =
1
2

(σr + σΘ), (37)

q = σr − σΘ, (38)

εv = εr + εΘ, (39)

εq =
1
2

(εr − εΘ), (40)

where p′ = mean stress, q = deviatoric stress, εv = volumetric strain, εq = deviatoric
strain. The above quantities satisfy the following relation for the work increment dW :

dW = σrdεr + σΘdεΘ = p′εv + qdεq. (41)

A general form of incremental stress-strain relations for an initially isotropic soil is
the following:

dεv = Mdp′ + Ndq, (42)

dεq = Qdq, (43)

where M,Nand Q are certain constitutive functions. They may be determined from the
assumed flow rule or by other methods. For example, Sawicki and Świdziński (2010a,
b) have proposed the following functions on the basis of extensive experimental data
obtained from triaxial tests:

M =
Av

2
√

p′
, N =

4c1η
3

√
p′
, Q =

b1b2 exp(b2η)
√

p′
, (44)



A Study on the Pull-out Resistance of Dynamically Driven Nails. . . 257

where η = q/p′. Coefficients appearing in Eq. (44) can be found in Sawicki and Świ-
dziński (2010a).

10. Simplified Approach

In the conventional continuum mechanics approach, the full system of governing
equations should be solved for given boundary conditions. Because the behaviour
of soil is highly non-linear, both physically and geometrically, it is a difficult task that
would require a separate paper. On the other hand, it is not clear which model of soil
is appropriate in this case, and we do not even know the initial radius of the cavity.
Recall that our aim is only to assess radial stresses around the nail. It seems that the
cavity expansion method is not a proper approach in this case. Therefore, a simplified,
semi-empirical approach is proposed.

This approach is based on the results of experiments described in Sawicki and
Kulczykowski (2010). The first set of experiments dealt with pulling nails out, see
Fig. 2. Analyses of these experiments have shown that normal stresses around the
nail of 16 mm in diameter are of the order of 5 MPa. The second set of experiments
were cone penetration tests. Wooden cones were pressed into a sand-filled steel tube,
as shown in Fig. 10. At the top of the tube, a steel plate was installed in order to prevent
upwards soil deformation. The depth of penetration z and the pressing force P were
recorded.

Fig. 10. Cone penetration test – schematic diagram

Fig. 11 shows the relationship between the force P and the depth of penetration z.
The following power law approximates experimental results:
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P = mzn, (45)

where m and n are certain numbers. Fig. 11 corresponds to the experiment in which
the cone characterized by the angle α = 30◦ was used. The maximum diameter of the
cone was 50 mm. For these data, there is m = 3.32 × 10−5, n = 3.42. Note that P is
expressed in newtons (N), and z in mm. Also note that the height of the cone was
43.3 mm, so Fig. 11 covers the whole range of cone penetration, up to the wooden
cylinder of 50 mm in diameter. At the beginning of pressing, down to approximately
the mid-height of the cone (ca 20 mm), the pressing force is almost negligible, but
then increases exponentially. It may be a hint suggesting the possible initial radius of
the cavity.

Fig. 11. Relation between the pressing force and the depth of penetration

From the theoretical view point, the cavity expands from the zero initial radius
(cone’s tip) to its finite size. In such a case, some theoretical solutions admit a constant
cavity pressure at which the cavity expands, see Yu (2000), page 125. Such a model
can hardly be applied to cavity expansion in granular soils as it is not supported by any
experimental observations. Fig. 11 shows that it is increasingly difficult to press the
cone into the soil, and no indication exists that there is a limit pressure under which
the cavity would expand to infinity.

Eq. (45) suggests that a similar formula can be assumed for the cavity pressure:

p = p0 + A
(

a
a0

)B

, (46)

where a0 = initial radius of the cavity, a = final radius of the cavity, A and B are certain
coefficients. It is assumed that B = n = 3.42, just because of the analogy suggested.
It is also assumed that a0 = a/2 because Fig. 11 suggests that the cavity pressure is
negligible when the cone penetrates down to the half of its height. These two assump-
tions, combined with the empirical observations that normal stresses around the nail
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are of the order of 5 MPa and that the initial confining stress is equal to zero, make it
possible to determine A. In this special case, Eq. (46) takes the following particular
form:

p = 0.467 ×
(

a
a0

)3.42

(MPa). (47)

The formulae (46) and (47) are rough approximations of actual normal stresses around
the nail, but at the present stage we cannot expect better results. Note that Sikora
(2006) offers hardly any hints or solutions as to possible links between cone penetra-
tion tests and the cavity expansion method, although he attempts to discuss the main
contemporary achievements.

11. Discussion and Conclusions

The aim of this study was to find a method that would make it possible to assess
normal stresses around a dynamically driven nail. The cavity expansion method was
analyzed as a possible candidate because this approach is often applied in geomechan-
ics in connection with cone penetration tests. The main results can be summarized as
follows:

1. Static solutions for cavity expansion were presented. Solutions presented in Sec-
tion 2 have already been known as almost classical, but solutions presented in
Sections 5 and 6 are more advanced and realistic in the case of cavity expan-
sion in granular soils. Statically admissible solutions, i.e. those bounded by the
Coulomb-Mohr yield condition, were identified and discussed.

2. Some solutions proposed in literature were discussed. Some of them are based
on the critical/steady state models of the soil around the cavity. It seems that the
application of such models is vague as during the expansion of the cavity, vol-
umetric strains develop, and the cavity pressure increases. From the definition,
during the critical/steady state the soil deforms continuously at a constant volume
and constant stresses. This means that there is a contradiction between basic def-
initions and some analytical approaches. Therefore, the proposed solutions are of
little meaning. Another controversial example is the expansion of a cavity from
the zero initial radius. In some papers, it was shown that such a cavity expands to
infinity at a constant cavity pressure. From the physical point of view, it is difficult
to accept such results as the soil surrounding the cavity imposes strong constraints
on its expansion.

3. The oedometer analogy presented in Section 4 shows that during the cavity ex-
pansion in granular soils one of the basic principles of continuum mechanics, the
strain compatibility condition, may be violated., This is obviously no revolution-
ary discovery, but it may be a hint that this principle should be relaxed in soil
mechanics.
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4. Another important problem is the kinematics of an expanding cavity. The theory of
small strains and displacements is of limited value as these kinematic variables are
large during the cavity expansion. Some discussion of this problem is presented
in Section 7, where the logarithmic strain measures were introduced.

5. Stress-strain relations are one more important problem. In fact, proper constitutive
equations describing the behaviour of the soil around an expanding cavity are not
known. As already mentioned, the critical/steady state models are not relevant in
this case. General suggestions presented in Section 5 are just a tentative proposal.
Their application requires further studies.

6. A simple empirical relation between the normal stress around the nail and the ra-
dius of the cavity was proposed. It is the first attempt to find a correlation between
the cavity expansion and other factors. The problem is certainly extremely difficult
and needs further investigations.
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