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Abstract
It has been discovered that the shallow water model based on approximate Riemann solvers
can produce unrealistic flows in the case of uneven topography and inaccurate solutions of
discharge near hydraulic jumps. To overcome these deficiencies, we proposed a new approach
to implement the HLL Riemann solver for open channel flows, including: (1) adopting a form
of Saint Venant equations which have only one source term representing driving forces; (2)
defining discharge at interface and evaluating it according to the flux obtained by the HLL
Riemann solver. In this paper, the performance of this new method is evaluated by means of
dam-break flows over a channel with triangular cross-section and a natural river valley with
complex topography, respectively. Comparisons of computed results with analytic solutions
and data measured from the physical model show that the proposed method is capable of
satisfactorily reproducing dam-break flows over complex topography.
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1. Introduction

The applications of TVD schemes and approximate Riemann solvers to one-
-dimensional (1D) open channel flows have been frequently reported in recent times
(e.g. Toro 2001, Zoppou and Roberts 2003). These schemes were originally devel-
oped to deal with gas dynamics problems. They are accurate in some situations, but
problems such as unphysical flows caused by numerical imbalance and inaccuracy
in the solution of discharge arise when the channel has complex geometry and
the flow includes a hydraulic jump. In conventional formulation, the momentum
equation includes three terms which respectively represent the hydrostatic pressure
force, the pressure force due to cross-sectional variations, and the gravity effect due
to bed slope. The numerical imbalance is created when these terms are calculated
using different methods, which leads a numerical flow even in a still water test
case, as illustrated by Rogers et al (2003) through a two-dimensional simulation of
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a circular water basin with uneven bathymetry. In addition, Delis (2002) evaluated
Roe’s Riemann solver and several TVD schemes by means of several test cases
with a hydraulic jump and revealed that the solution of discharge cannot converge
at the exact solution over several cells near the hydraulic jump. These limitations
restrict the applications of the TVD schemes and approximate Riemann solvers
to real-life open channel flows. To overcome these deficiencies, Ying and Wang
(2008) proposed a new approach to implement the HLL Riemann solver for open
channel flows, including: (1) adopting the form of the Saint Venant equations which
include only one source term representing driving forces; (2) defining discharge at
interface and evaluating it according to the flux obtained by the HLL Riemann
solver. The resulting numerical scheme has been validated and tested by means of
various open channel flows with rectangular cross-sections (Ying and Wang 2008).
It has been demonstrated that the scheme has excellent numerical balance and mass
conservation property. In this paper, the scheme is extended to natural open channel
flows with irregular cross-sections. The performance of the schemes is evaluated by
means of two dam-break flow problems in a channel with triangular cross-section
and a natural river valley with complex geometry, respectively. The comparisons of
computed results with analytic solution and data measured from the physical model
show that the scheme is capable of satisfactorily reproducing dam-break flows over
complex topography.

2. Governing Equations

1D unsteady flows in a natural channel with irregular cross-sections are often de-
scribed by the Saint Venant equations, that is

∂U
∂t
+
∂F(U)
∂x

= S(U), (1)

where, U, F(U), and S(U) are, respectively, the vectors of primitive variables, fluxes,
and sources, defined as follows

U =
[

A
Q

]
, F(U) =

 Q
Q2

A

, S(U) =

 0

−gA
∂Z
∂x
− g

n2Q|Q|
R4/3A

.
In above equations:

A – cross-sectional area,
Q – discharge,
g – gravitational acceleration,
Z – water surface level,
n – Manning’s coefficient,
R – hydraulic radius (= A/P),
P – wetted perimeter of the channel.
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3. Numerical Scheme

The finite volume method is employed for solving the governing equations. Fig. 1
shows the computational grid, which has N cells, N − 1 interfaces between cells
and two boundary interfaces.

Fig. 1. Definition sketch of computational grid

Integrating Eq. (1) over the ith cell with length of ∆xi yields

∂

∂t

∫
∆xi

Udx +
∫
∆xi

∂F(U)
∂x

dx =
∫
∆xi

S(U)dx. (2)

Applying Green’s theorem to Eq. (2) and using an explicit scheme for time
advancing, the following discretized equation is obtained,

Un+1
i = Un

i −
∆t
∆xi

(
Fi+ 1

2
− Fi− 1

2

)
+ ∆tSi, (3)

where Ui is the vector of primitive variables at ith cell center, representing the
average values over the entire cell; Fi+1/2 and Fi−1/2 are the fluxes at (i+1/2)th and
(i-1/2)th interfaces, see Fig. 1.

The HLL approximate Riemann solver, proposed by Harten, Lax and van Leer
(1983), is used to calculate the intercell flux, because of its robustness and ease to
implement. The HLL scheme assumes only one constant intermediate state between
the left wave and the right wave, as shown in Fig. 2. The intercell flux is defined
as

Fig. 2. Three possible wave configurations
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FHLL =


FL when SL ≥ 0

F∗ when SL < 0 < SR

FR when SR ≤ 0,

(4)

where SL and SR are left and right wave speeds, respectively, see Fig. 2. That is, the
flux at an interface is determined by the left state if SL ≥ 0 (Fig. 2a), and by the right
state if SR ≤ 0 (Fig. 2c). When SL ≥ 0 and SR > 0 (Fig. 2b), the Harten-Lax-van
Leer approach provides the approximate expression for estimating F∗. In the case of
channels with irregular cross-sections, it can be written as (Ying and Wang 2008)

f ∗1 =
SRBR f L

1 − SLBL f R
1 + SLBLSRBR (ZR − ZL)

SRBR − SLBL
, (5)

f ∗2 =
SR f L

2 − SL f R
2 + SLSR (QR − QL)
SR − SL

,

where f ∗1 and f ∗2 are two components of the flux F∗; B is the width of channel at
water surface elevation. The wave speeds SL and SR are estimated according to the
following equations:

SL = min
(
VL −

√
gh̄L,V ∗ −

√
gh̄∗

)
, (6)

SR = max
(
VR +

√
gh̄R,V ∗ +

√
gh̄∗

)
, (7)

where VL and VR are velocities of the left and right states, respectively; h̄L and h̄R
are averaged water depth of the left and right states, which is defined according to
h̄ = A/B.

V ∗ =
1
2

(VL + VR) +
√
gh̄L −

√
gh̄R, (8)

√
gh∗ =

1
2

(√
gh̄L +

√
gh̄R

)
+

1
4

(VL − VR) . (9)

Note that for a dry bed problem the wave speeds SL and SR are estimated
according to the following expressions:

SL = VL −

√
gh̄L, SR = VL + 2

√
gh̄L for right dry bed, (10)

SL = VR − 2
√
gh̄R, SR = VR +

√
gh̄R for left dry bed. (11)
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The HLL approximate Riemann solver discussed above is a 1st-order scheme.
The 2nd-order spatial accuracy can be obtained through a piecewise linear recon-
struction of primitive variables in each cell, which leads to

UL
i+ 1

2
= Ui +

∆xi

2

(
∂U
∂x

)
i
, (12)

UR
i+ 1

2
= Ui+1 −

∆xi+1

2

(
∂U
∂x

)
i+1
. (13)

In order to avoid numerical oscillations, proper slope limiters must be used
in estimating the slope ∂U/∂x. Here, the minmod limiter is adopted due to its
robustness. Therefore, the slope in the ith cell can be expressed by(

∂U
∂x

)
i
= minmod

(
Ui − Ui−1

xi − xi−1
,
Ui+1 − Ui

xi+1 − xi

)
. (14)

The minmod function is defined as the argument with smaller value if all argu-
ments have the same sign and otherwise it is zero.

The source terms in Eq. (3) include the water surface gradient term and the
friction term. The simplest and most commonly used approach for estimating the
water surface gradient is the centered difference scheme, that is,(

∂Z
∂x

)
i
=

Zi+1 − Zi−1

xi+1 − xi−1
. (15)

For the 2nd-order scheme, using Eq. (15) may produce non-monotone solutions
near shocks in some cases such as the idealized dam-break problem with wet bed.
Therefore, we propose a new method to estimate the water surface gradient for the
2nd-order scheme, as expressed by(

∂Z
∂x

)
i
=

Z̄i+1/2 − Z̄i−1/2

∆xi
, (16)

where Z̄i+1/2 =
(
ZL

i+1/2 + ZR
i+1/2

)/
2 and Z̄i−1/2 =

(
ZL

i−1/2 + ZR
i−1/2

)/
2 are respectively

the average water surface levels at the right and the left interface of ith cell.
The friction term is explicitly evaluated based on the pointwise method. There-

fore, the values of Z and Q at next time can be obtained by solving Eq. (3) explicitly.
Such a method is often referred to as the cell centered scheme as both variables Z
and Q are defined at cell centers. However, the solution of the discharge from such
a numerical scheme is not accurate in the event that there is a hydraulic jump, as
shown in many numerical tests (e.g. Delis 2002, Ying and Wang 2008). To eliminate
this problem, we choose the values of flux f1 as the solution of discharge, while
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the values of Qi calculated by Eq. (3) are only used to define the constant states of
the Riemann problems.

Like most explicit schemes, the schemes discussed above are subject to the
Courant-Friedrichs-Lewy stability condition, that is

NCFL = max
 ∆t
∆xi

|Vi | +

√
gAi

Bi

 ≤ 1 (1 ≤ i ≤ N). (17)

4. Numerical Tests

The resulting numerical scheme has been validated and tested by means of var-
ious open channel flows with rectangular cross-sections (Ying and Wang 2008).
Herein, two test examples with analytic solutions or measured data are selected
to examine the performance of the proposed scheme in the case of channels with
non-rectangular cross-sections. Example 1 is the dam-break problem in a channel
with triangular cross-section. Example 2 is a real-life dam-break flow problem with
complex topography. In both test examples, the 2nd-order scheme was used.

4.1. Idealized Dam-Break Problem in a Channel with Triangular
Cross-Section

In this test example, the channel has a triangular cross-section with side slope 1:1.
The channel is 2000 m long and is assumed to be horizontal and frictionless. A dam
is located at 500 m from the upstream end of the channel. Initially, water depth
is 10 m at the upstream side of the dam, and the downstream channel is dry. The
domain is discretized into 1000 cells.

The numerical result at 30 s after the dam failure is compared with an exact
solution (Henderson 1966) in Fig. 3. It is observed that both predicted water depth
and discharge are in very good agreement with the exact solutions.

Fig. 3. Numerical solutions of dam-break problem in an open channel with triangular
cross-section at t = 30 s
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4.2. Propagation of Flood Wave in the Toce River Valley

This test example, which was used as a benchmark test case in the CADAM project
(Soares Frazao et al 2000), is selected to demonstrate the numerical model’s capabil-
ity to deal with a real-life problem with irregular cross-sections and a non-uniform
grid. The topography of the Toce River is shown in Fig. 4. The computational
domain was divided into 61 non-uniform cells, with lengths varied from 0.25 to
1.94 m, as shown in Fig. 5. Fig. 6 shows the discharge-time hydrograph of inflow.
A free outflow boundary condition was imposed in the computation. The value of
the Manning’s coefficient was 0.02 s/m1/3, as used in most of previous 1D simula-
tions of this test case (e.g. Soares Frazao and Zech 1999, Rosu and Ahmed 1999).
The entire domain was assumed to be dry at initial time. In the computation, the
initial water depth in the domain was set to 0.01 m. The time step was 0.1 s and the
corresponding maximum value of NCFL was 0.7. The total number of time steps was
1800. The computational time was 0.33 s on a PC with AMD Athlon processor
(1.46 GHz). The topographic data and inflow discharge hydrograph used in the
computation were the same as those in the physical model to allow the numerical
results to be directly compared with the experimental data.

Fig. 4. Topography of Toce River Valley and locations of measurement points

Fig. 5. Locations of computational cross-sections for Toce River test case

Computational results of water surface level and discharges at t = 30, 60, and
120 s are presented in Figs. 7 and 8, respectively. These figures provide a general
idea about flood propagation in the river valley. In Fig. 7, a variation of water surface
level, due to uneven topography and formation of hydraulic jumps, is observed.
The presence of hydraulic jumps can be confirmed from Fig. 8, which displays the
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Fig. 6. Discharge-time hydrograph at inflow boundary for Toce River test case

Froude number as a function of distance x clearly revealing that there are several
transitions between supercritical flow and subcritical flow. The predicted discharge
as a function of distance x is presented in Fig. 9. Therein, the conventional and
the newly proposed HLL schemes are referred to as HLL-A and HLL-B schemes,
respectively. The former defines discharge at cell center and calculates it based on
the momentum equation. The latter defines discharge at interface and evaluates it
according to the flux obtained by the HLL Riemann solver. It is observed that the
HLL-B scheme produces reasonable solutions, whereas the HLL-A scheme fails to
correctly predict the discharges at the locations where hydraulic jumps take place.
To further demonstrate the conservation property of the HLL-B scheme, a steady
flow test case is performed in which a constant discharge of 0.1 m3/s is imposed
at the inlet boundary and no distinguishable difference between predicted discharge
and the exact value over the entire domain is observed.

Fig. 7. Computed water surface elevations at t = 30, 60, and 120 s for Toce River test case

Fig. 10 shows that the computed stage-time hydrographs at four selected obser-
vation points are in good agreement with the measured data. Note that the numerical
result represents the average value over a cross-section, while the experimental result
represents the value at an observation point. This is a probable cause for the discrep-
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Fig. 8. Froude number Fr as a function of x at t = 120 s for Toce River test case

Fig. 9. Computed discharges at t = 30, 60, and 120 s for Toce River test case

Fig. 10. Comparisons of computed stage-time hydrographs (solid line) with measured data
(dot) at four observation points for Toce River test case

ancy between predicted and measured results in certain regions. Fig. 11 shows that
the computed results of maximum water level are in reasonable agreement with the
measured data from the physical model, except for the observation point P9 where
the predicted maximum water level is lower than the measured value because the
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Fig. 11. Comparisons of maximum water level among numerical results and measured data
for Toce River test case

local water surface rise due to the influence of reservoir embankment can not be
correctly reproduced by a 1D model.

5. Conclusions

A numerical model for 1D dam-break flows has been developed based on the
finite volume method. The HLL approximate Riemann solver is used to calculate
intercell fluxes. To overcome numerical imbalance as well as inaccurate discharge
solution near a hydraulic jump, we proposed a new approach to implement the
HLL Riemann solver for open channel flows, including: (1) adopting the form of
the Saint Venant equations which have only one source term representing driving
forces; (2) defining discharge at interface and evaluating it according to the flux
obtained by the HLL Riemann solver. The performance of this new method is
evaluated by means of dam-break flows over a channel with triangular cross-section
and a natural river valley with complex topography, respectively. The comparisons
of computed results with analytical solutions and experimental data demonstrate
that the proposed scheme is capable of correctly depicting 1D dam-break flows
over complex topography that may include discontinuities and transcritical flows.
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