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Abstract
In this paper, the conservative properties of the Muskingum equation, commonly applied to
solve river flood routing, are analysed. The aim of this analysis is to explain the causes of
the mass balance error, which is observed in the numerical solutions of its non-linear form.
The linear Muskingum model has been considered as a semi-discrete form of the kinematic
wave equation and therefore it was possible to derive its two non-linear forms. Both forms
were derived directly from the kinematic wave equation. It appeared, that depending on the
assumed conservative form of the Muskingum equation, this model satisfies either the global
mass conservation law or the global momentum conservation law. Both laws are satisfied
simultaneously by the linear equation only. The mass balance error can be eliminated from
the numerical solution on condition that the non-linear Muskingum equation is written in
the proper conservative form.

Key words: flood routing, non-linear Muskingum equation, mass and momentum balance,
conservative form

1. Introduction

Unsteady open-channel flow equations describe the principles of mass and mo-
mentum conservation. These equations can be expressed in differential or integral
form and their solution should be consistent with conservation laws. Indeed, the
integral form of equation guarantees the conservation of fundamental principles.
However, in the case of non-linear differential equations, the results of numerical
solutions show that this condition can be not satisfied if the equations are written
in improper form. As a consequence, mass and momentum balance errors may
be observed. Non-linear differential equations can be used in a variety of forms
– conservative or non-conservative, and with different dependent variables. Vari-
ous aspects of the conservative and non-conservative forms of non-linear transport
equations are presented comprehensively by Gresho and Sani (1998). The adequate
conservative form of differential equation and numerical algorithm lead to the so-
lution without balance errors, whereas solution of the same equation written in the
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non-conservative form (or in an inappropriate conservative form) is usually inac-
curate. This effect is especially significant if discontinuities, such as shock waves,
are present in the solution (Toro 1997, LeVeque 2002, Lai et al 2002).

To solve the flood routing problem, the system of Saint-Venant equations, which
comprises continuity and dynamic equations, is usually used. This system can be
written in the following conservative form (Cunge et al 1980):

∂A
∂t
+
∂Q
∂x
= 0, (1)

∂Q
∂t
+
∂

∂x

(
Q2

A

)
+ gA

∂h
∂x
− gAs + gAS = 0, (2)

where:

t – time,
x – longitudinal coordinate,
h – flow depth,
Q – flow discharge,
A – cross-sectional area of flow,
g – gravitational acceleration,
s – channel bottom slope,
S – slope of energy line.

The friction slope S is usually expressed using the Manning formula:

S =
n2|Q|Q
R4/3A2 , (3)

where:

n – Manning roughness coefficient,
R – hydraulics radius.

For practical reasons, hydrologists are still interested in using simplified flood
routing models, such as the kinematic and diffusive ones derived from Eqs. (1, 2).
Both models can be presented in common general formula taking the form of an
advection-diffusion transport equation (Chow et al 1988):

∂Q
∂t
+C (Q)

∂Q
∂x
− ν (Q)

∂2Q
∂x2 = 0, (4)

where:

C(Q) – advective velocity,
ν(Q) – hydraulic diffusivity.



Flood Routing by the Non-Linear Muskingum Model . . . 123

For a wide, rectangular channel with a slope in the energy line equal to the
slope of the channel bottom, the kinematic wave speed and hydraulic diffusivity
can be expressed as follows:

C =
1

mαQm−1 =
1
m

U, (5)

ν =
Q

2Bs
, (6)

with

α =

(
np2/3

s1/2

)m

, (7)

where:

m – kinematic wave ratio (= 3/5 for the Manning law friction),
p – wetted perimeter,
U – cross-sectional average flow velocity,
B – channel width at water surface.

Eq. (4) with ν = 0 becomes a kinematic wave model. The theory of kinematic
and diffusive waves is well known and widely disseminated.

Flood routing is very often carried out using the hydrological lumped model.
They are derived from the storage equation, which is obtained by integration of the
continuity equation (Eq. (1)) with respect to x:

dV
dt
= Q j−1 − Q j , (8)

where:

V – storage of the channel reach of length ∆x,
Q j−1 – inflow,
Q j – outflow,
j – index of cross-section.

An additional formula relating storage, inflow and outflow (Chow et al 1988):

V = K
[
XQ j−1 + (1 − X) Q j

]
, (9)

introduced into Eq. (8) leads to the Muskingum model:

X
dQ j−1

dt
+ (1 − X)

dQ j

dt
=

1
K

(
Q j−1 − Q j

)
, (10)

where X and K are empirical constants to be found by trial and error for a given
reach (Miller and Cunge 1975). Eq. (10) is obtained with the assumption that both
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afore-mentioned parameters are constant. For X = 0 Eq. (10) becomes the linear
reservoir model.

The Muskingum model is commonly used in hydrological applications for its
simplicity. Although this model has been known for tens years, its properties are
not exactly recognized. For example, there are some difficulties involved in inter-
preting both the K and X parameters from a physical point of view. Consequently,
it seems that Eq. (9) does not represent any physical rule. It is probably for this
reason that some undertaken attempts to improve the Muskingum model have ap-
peared unsuccessful. Since the linear model represents a significant simplification
of the real flood propagation process, some authors have proposed its refinement
by introducing variable parameters. Such an approach was applied, for instance, by
Ponce and Yevjevich (1978), Ponce and Chaganti (1994) and Tang et al (1999a,
1999b). Unfortunately, when the variable parameters K = K(Q) and X = X(Q) were
taken into account, considerable mass balance errors occurred. Similar results were
obtained when a non-linear equation relating storage, inflow and outflow was used
(Tung (1984) and Mohan (1997)). In contrast, the computations carried out for
constant parameters show that the Muskingum model perfectly satisfies the mass
balance. This fact suggests that the mass balance errors are related to the form
(conservative or non-conservative) in which the Muskingum non-linear equation is
written. Therefore, the attempts to improve the Muskingum model by introducing
non-linearity, without an analysis of its conservation properties, result in failure.

2. Kinematic Wave Model vs Muskingum Equation

The kinematic character of the Muskingum model, as well as the numerical nature
of the wave attenuation process in its solution was discovered by Cunge (1969).
While approximating the linear kinematic wave equation through the difference box
scheme and the Muskingum model, employing the implicit trapezoidal rule, Cunge
noticed their similarity on condition that:

K =
∆x
C
, (11)

which means that in this case, K represents time taken by the wave to travel, with
kinematic celerity C, from cross-section j–1 to j. The accuracy analysis carried
out for the applied approximation of the kinematic wave equation showed that it
modifies the advection equation to an advection-diffusion one, similar to Eq. (4):

∂Q
∂t
+C
∂Q
∂x
− νn
∂2Q
∂x2 = 0, (12)

where νn is the coefficient of numerical diffusion, defined as follows:
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νn =

(
1
2
− X

)
C · ∆x. (13)

Cunge (1969) suggested accepting such a value of the parameter X, as to ensure
a numerical diffusivity (Eq. (13)) equal to the hydraulic one given by Eq. (6), i.e.
ν = νn. This condition is satisfied for

X =
1
2
−

Q
2B · s ·C · ∆x

. (14)

Consequently, the Muskingum model can reproduce a solution of the linear
diffusive wave equation. This version of the Muskingum model is known as the
Muskingum-Cunge version (Chow et al 1988). Thus Cunge’s approach related the
Muskingum model with a diffusive wave one in a particular way. Namely, the
proposed formulae for K and X ensure equivalent numerical results from both
models. Simply, instead of solving Eq. (4), one can solve Eq. (10) with the values
of K and X defined by Cunge (1969). Sometimes this fact is a basis to consider the
Muskingum model as an approximation of the diffusive wave. This is true in the
sense of action of both models. However, if the term “approximation” is understood
in the mathematical sense, the Muskingum equation should be regarded rather as
an approximation of the kinematic wave equation. This fact, resulting from the
consistency condition, is discussed below.

Taking into account Cunge’s experiences, the supposition that the Muskingum
model should be regarded as a semi-discrete form of the kinematic wave equation
seems to be well founded. In order to prove this statement, let us consider the
kinematic wave equation, i.e. Eq. (4) with ν = 0 and C = const. The considered
channel reach of length L is divided by N+1 nodes into N space intervals of length
∆x. Approximation of the spatial derivative, carried out at point P, located between
nodes j–1 and j (Fig. 1), gives:

dQp

dt
+C

Q j − Q j−1

∆x
= 0, (15)

where Qp represents the discharge at point P.

Fig. 1. The discretization along x-axis applied to the kinematic wave equation
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Let us assume that QP is calculated by linear interpolation between the nodes
j–1 and j:

Qp = XQ j−1 + (1 − X) Q j , (16)

where X is the weighting parameter, which ranges from 0 to 1. This is defined as
follows:

X =
x j − x

x j − x j−1
for x j−1 ≤ x ≤ x j . (17)

Substituting Eq. (16) into Eq. (15) and taking into account Eq. (11), one obtains
the Muskingum model in the form of Eq. (10). Note that in the proposed approach,
the parameter X is interpreted clearly: it has numerical sense. As a weighting param-
eter, it determines the accuracy of applied spatial approximation of the kinematic
wave equation.

Spatial discretization introduces numerical error caused by the truncation of the
Taylor series. This error can be estimated directly from Eq. (10) by an analysis of
accuracy using the modified equation approach (Fletcher 1991). To this order, the
nodal values of Q and dQ/dt in Eq. (10) are replaced by a Taylor series expansion
around point P (Fig. 1) including the terms of 2nd order. Finally, one obtains the
following modified equation (Szymkiewicz 2002):

∂Q
∂t
+
∆x
K
∂Q
∂x
−

(
1
2
− X

)
∆x2

K
∂2Q
∂x2 = 0. (18)

According to the condition of consistency, the modified equation must tend to
the governing one if space interval length tends to zero. Note that for ∆x → 0 Eq.
(18) tends to the kinematic wave equation (Szymkiewicz 2002). This fact proves
explicitly that the Muskingum model is an approximation of the kinematic wave.

However, this approximation introduces an error, which is observed as an ar-
tificial flood wave’s attenuation. This process, controlled by the term representing
so-called numerical diffusion, depends on the following coefficient:

νn =

(
1
2
− X

)
∆x2

K
. (19)

This expression coincides with Eq. (13) proposed by Cunge (1969). It should
be remembered that the numerical diffusion is caused by the spatial approximation
only. An additional diffusion can be generated while integrating Eq. (10) over time,
by a method of 1st order of accuracy. Usually the implicit trapezoidal rule is applied,
which, ensure an accuracy of 2nd order with regard to t, is dissipation free.

In summary, one can say that in fact the numerical solution of the Muskingum
model is the numerical solution of the kinematic wave model through a method of
lines. In this approach, a solution of the partial differential equation is realized in
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two stages (Fletcher 1991). Firstly, by spatial discretization, the partial differential
equation is reduced to a system of ordinary differential equations in time. Next, this
system is integrated using any method for the numerical solution of an initial value
problem, for ordinary differential equations.

Since the Muskingum model appeared to be the kinematic wave equation ex-
pressed in a particular semi-discrete form, it seems that this model can be derived
directly from continuity and simplified momentum equations as in the case of the
kinematic wave. This way of derivation, without using the storage equation com-
pleted by an additional formula relating storage, inflow and outflow, can be regarded
as an alternative one.

Approximation of Eq. (1) with regard to x yields:

dAp

dt
+

Q j − Q j−1

∆x
= 0 ( j = 1, 2, ...,N), (20)

where Ap, being a cross-sectional area at the point P (Fig. 1), can be expressed as
a function of Qp using the Manning (or Chézy) formula written in the following
form:

Ap = α(Qp)m. (21)

Introducing of Eq. (21) into Eq. (20) leads to the following equation:

d
[
α

(
Qp

)m]
dt

=
Q j−1 − Q j

∆x
( j = 1, 2, ...,N). (22)

After differentiating with α = const, one obtains:

αm(Qp)m−1 dQp

dt
=

Q j−1 − Q j

∆x
. (23)

According to Eq. (5), the kinematic wave celerity at point P is as follows:

Cp =
1

αm(Qp)m−1 . (24)

Assuming C = const, which implies that K = const, and taking into account the
relations (11) and (16), Eq. (22) takes the well known form of the Muskingum
model (Eq. (10)):

X ·
dQ j−1

dt
+ (1 − X) ·

dQ j

dt
=

1
K

(
Q j−1 − Q j

)
. (25)

Let us remember that the kinematic wave model is based on the same governing
equation, i.e. on the equation of continuity, as the above derived Eq. (25). Moreover,
while deriving both models the same assumptions are applied.
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The kinematic origin of the Muskingum equation presented above is confirmed
by well known results of the numerical solution. First of all, it is known that
the Muskingum equation, integrated in time by the method which does not pro-
duce additional numerical diffusion, ensures pure translation of the flood wave for
X = 1/2. As results from Eq. (19), in this case the numerical diffusion, generated by
approximation of the spatial derivative, disappears. For X = 1/2, this approximation
coincides with the centred difference representing 2nd order of accuracy. Conse-
quently, any attenuation of the flood wave calculated at the downstream end is not
observed. Secondly, for some set of the values of K , X, and ∆t, the Muskingum
equation can produce numerical effects in the form of unphysical oscillations of
the hydrograph at the downstream end. Similar results can be obtained while nu-
merically solving the kinematic wave model by the dissipation free method. These
effects are connected to the numerical solution of the hyperbolic equation using
dispersive methods (Fletcher 1991).

If the kinematic wave equation coincides with the Muskingum one, it is impor-
tant to explain the meaning of the additional relationship (9) used while deriving
the Muskingum model in a standard way, i.e. from the storage equation (8). An
interpretation of the formula (9) can be carried out using the previously assumed
definition of the weighting parameter X and the steady uniform flow equation.

The aim of introducing the relation (9) was to eliminate storage V from Eq. (8).
To obtain the same effect one can calculate the storage approximately, as follows:

V ≈ ∆x · Ap. (26)

Now, let us introduce the Manning formula written in the form of Eq. (21). This
yields:

V = ∆x · α ·
(
Qp

)m
= ∆x · α ·

(
Qp

)m−1
· Qp. (27)

According to Eq. (5) or to the continuity equation Q = A · U, the mean flow
velocity at point P is equal:

UP =
1

α (QP)m−1 . (28)

If we assume a constant flow velocity over the considered channel reach, UP =
const, and we introduce a new constant parameter:

KP =
∆x
UP
, (29)

then with QP (the discharge at point P – Fig. 1) expressed using the linear interpo-
lation formula (16), Eq. (27) will take the form:
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V = KP · QP = KP

[
XQ j−1 + (1 − X)Q j

]
. (30)

Thus, the additional formula relating storage, inflow and outflow is obtained.
Note that it was derived using the steady uniform flow equation and by applying
a numerical estimation of storage. As a result, this relation should be regarded
as having mixed sense: physical and numerical. This feature is reflected by the
parameters KP and X. The first one has physical interpretation, whereas the second
– numerical.

Comparing Eq. (29) with Eq. (11), as proposed by Cunge (1969), one may
notice a difference. Cunge defines the parameter K as time of the flood wave
travelling from the cross-sections j–1 to j with kinematic wave speed C, whereas
Eq. (29) defines K as time of a particle of water travelling with the average flow
velocity U. One can add that this difference has no essential meaning, since in
hydrological practice the proper value of parameter K should be fitted for each case
study considered.

3. Mass and Momentum Balance for Non-Conservative and Conservative
Forms of the Non-Linear Muskingum Equation

Let us consider a channel reach of length L in which the unsteady flow described by
Eqs. (1) and (2) takes place during the time interval T . It is well known that these
equations represent mass and momentum conservation principles respectively. To
obtain the global conservation laws, these equations are integrated over the domain
of solution, i.e. for 0 ≤ x ≤ L and 0 ≤ t ≤ T . Assuming that:

– water density is constant,
– the time interval T is sufficiently long, and after passing of the flood wave the

discharge returns to its initial value,

the mass balance takes the following form:

T∫
0

[Q(0, t) − Q(L, t)] dt = 0. (31)

Introducing:

m0 =

T∫
0

Q (0, t) dt, (32a)
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mL =

T∫
0

Q (L, t) dt, (32b)

the relative mass balance error is defined as follows:

∆Em =
mL − m0

m0
· 100%, (33)

where:

∆Em – the mass balance error expressed in %,
m0, mL – total volume of inflow and outflow respectively within the time

period of T .

Global momentum balance can be carried out similarly. The total variation of
momentum over a channel reach of length L, in time interval T , must be equal to
the difference of momentum transported at upstream end x = 0 and downstream
end x = L respectively. If constant water density is assumed, the losses caused
by friction, gravitation and pressure are neglected and the time interval T is long
enough, this statement is expressed as follows:

T∫
0

(
Q2(0, t)
A(0, t)

−
Q2(L, t)
A(L, t)

)
dt = 0. (34)

Introducing the formulae:

M0 =

T∫
0

U (0, t) Q (0, t) dt =

T∫
0

Q2 (0, t)
A (0, t)

dt, (35a)

ML =

T∫
0

U (L, t) Q (L, t) dt =

T∫
0

Q2 (L, t)
A (L, t)

dt, (35b)

representing, divided by water density, the total momentum of inflow and outflow
within the time period of T respectively, the relative momentum balance error can
be calculated as follows:

∆EM =
ML − M0

M0
· 100%, (36)
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where: ∆EM – the momentum balance error expressed in %.
Eq. (34) and Eqs. (35a, b) hold when both functions Q(x, t) and A(x, t) are

known, as in Eqs. (1) and (2). In the case of the Muskingum equation, the momen-
tum balance can be rearranged using the Manning formula expressed by Eq. (21).
Therefore Eq. (34) can be rewritten as follows:

T∫
0

(
Q2−m(0, t) − Q2−m(L, t)

)
dt = 0. (37)

Note that for the linear kinematic wave model with U(x, t) = Q/ A = const,
the momentum balance expressed by Eq. (34) takes the form of Eq. (31), which
represents the mass balance.

It is interesting to know, which law does the Muskingum equation represent?
It appears that this equation can represent both laws depending on its form. This
problem is discussed below.

As shown previously, the linear Muskingum equation (10) can be considered
as a semi-discrete form of a linear kinematic wave equation. Consequently, it was
derived directly from this equation. This way of derivation is very useful, since it
allows us to derive easily other forms of the Muskingum equation. To do this, let us
reconsider the non-linear kinematic wave equation (Eq. (4) with ν = 0), in which,
instead of constant celerity C a variable one C(Q) is taken into account. Then this
equation becomes,

∂Q
∂t
+

1
α · m

· Q1−m∂Q
∂x
= 0. (38)

Semi-discretization of Eq. (38) yields:

X ·
dQ j−1

dt
+ (1 − X) ·

dQ j

dt
+

(
XQ j−1 + (1 − X) Q j

)1−m

∆x · α · m
·
(
Q j − Q j−1

)
= 0. (39)

The above expression is the non-linear Muskingum equation written in the
non-conservative form.

Eq. (38) can be converted into the equivalent one:

∂Q
∂t
+

1
α · m · (2 − m)

·
∂Q2−m

∂x
= 0. (40)

Its semi-discretization yields the first conservative form of the non-linear Musk-
ingum equation:

X ·
dQ j−1

dt
+ (1 − X) ·

dQ j

dt
+

1
∆x · α · m · (2 − m)

·
(
Q2−m

j − Q2−m
j−1

)
= 0. (41)
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Eq. (40) is not the only conservative form of the kinematic wave equation.
Another one can be derived directly from Eqs. (1) and (21). Combining these
equations with the previously accepted assumption that α = const, one obtains:

∂Qm

∂t
+

1
α

∂Q
∂x
= 0. (42)

After semi-discretization with respect to x, Eq. (42) yields the second conser-
vative form of the Muskingum model:

d
dt

[
X · Q j−1 + (1 − X)Q j

]m
+

1
∆x · α

(
Q j − Q j−1

)
= 0. (43)

Having three different forms of the non-linear Muskingum equation, one can
compare their properties. First of all we should explain which conservative quantity
is preserved by them. Since all equations were derived using the continuity and
momentum equations for unsteady open channel flow, it is reasonable to expect that
both conservation laws should be satisfied. To answer these questions, Eq. (39),
Eq. (41) and Eq. (43) must be integrated over the solution domain. In this case
the integration over a channel reach is not needed since the Muskingum model is
actually the kinematic wave integrated in space – over an interval of length equal
to ∆x.

Let us integrate the non-linear Muskingum equation, written for one interval –
reservoir, in the non-conservative form (Eq. (39) over time interval 〈0, T〉:

T∫
0

(
X

dQ j−1

dt
+ (1 − X)

dQ j

dt

)
dt =

=
1

∆x · α · m

T∫
0

[
XQ j−1 + (1 − X) Q j

]1−m (
Q j.−1 − Q j

)
dt.

(44)

Since the Muskingum model is applied for a cascade of Nreservoirs bounded
by cross-section j–1 and j having length of ∆x, the outflow from the preceding
reservoir is the inflow to the next one. Finally, if the time interval T is long enough,
the following integral equation is obtained:

T∫
0

[
(X · Q0 + (1 − X)Q1)1−mQ0 − (X · QN−1 + (1 − X) · QN )1−m · QN

]
dt =

=

T∫
0

RM · dt,

(45)
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in which

RM =

N−1∑
j=1

[(
X · Q j + (1 − X) Q j+1

)1−m
Q j −

(
X · Q j + (1 − X) Q j+1

)1−m
Q j+1

]
, (46)

where:

N – total number of reservoirs,
Q0 – discharge at upstream end,
QN – discharge at downstream end.

The term RM , which appeared in Eq. (45), results from the internal fluxes
between subsequent intervals – reservoirs. They are not equal with one another
and, consequently, the total flux at the internal nodes cannot be cancelled.

Eq. (45) shows, that the Muskingum model written in non-conservative form
(39) preserves neither the mass conservation nor the momentum conservation law.
This fact explains the mass balance error reported by Ponce and Yevjevich (1978)
and Tang et al (1999a, b), which was noticed after introducing variable parameters X
and K into the linear Muskingum equation. Such an approach cannot be successful
because it leads to a non-linear equation written in the non-conservative form.
Consequently, an extra term RM is generated during integration.

In the same way, the global conservation laws for the conservative forms of the
non-linear Muskingum equation can be derived. For Eq. (41) one obtains:

T∫
0

[
(Q0 (t))2−m − (QN (t))2−m

]
dt = 0, (47)

whereas for Eq. (43) the global conservation law is as follows:

T∫
0

(Q0 (t) − QN (t)) dt = 0. (48)

Since the functions Q0(t) and QN (t) denote the hydrographs in the cross-sections
x = 0 and x = L respectively, Eq. (47) coincides with Eq. (37) being the momentum
conservation principle. Therefore Eq. (41) represents the momentum conservation
principle, and it cannot preserve mass conservation, whereas Eq. (43) represents
the mass conservation principle since Eq. (48) coincides with Eq. (31). In this case,
the total volume of the flood wave inflowing by the upstream end (x = 0) should be
equal to the total volume of water outflowing by the downstream end (x = L). Of
course, the linear Muskingum model in form of Eq. (25) represents both mass and
momentum conservation principles. The conservative properties of the Muskingum
model are summarized in Table 1.
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Table 1. Conservative properties of the Muskingum equation

Conservation ConservationForm of equation
of mass of momentum

dQp

dt
+

1
K
·
(
Q j − Q j−1

)
= 0 (K = const)

for j = 1, 2, . . . , N
+ +

dQp

dt
+

Q1−m
p

∆x · α · m
·
(
Q j − Q j−1

)
= 0

for j = 1, 2, ..., N
– –

dQp

dt
+

1
∆x · α · m · (2 − m)

·
(
Q2−m

j − Q2−m
j−1

)
= 0

for j = 1, 2, ..., N
– +

∆x · α
dQm

p

dt
+

(
Q j − Q j−1

)
= 0

for j = 1, 2, ..., N
+ –

In all equations displayed in Table 1, the variable QP is interpreted as in Eq. (16).
To check how the mass and momentum are preserved by the presented forms

of the Muskingum equation, the flow in a rectangular channel of width B = 50
m and of length 100 km is considered. Its bottom slope is s = 0.0005, whereas
the Manning’s coefficient is n = 0.025 m−1/3s. The initial condition corresponds to
a uniform steady flow for discharge q0 with normal depth hn. At the upstream end
the following hydrograph is imposed:

q (t) = q0 + (qmax − q0)
(

t
tmax

)2

exp

1 − (
t

tmax

)2 , (49)

where:

q0 – baseflow discharge of the inflow,
qmax – peak discharge of the inflow,
tmax – time of the peak flow.

All forms of the Muskingum equation were applied for the same flood wave
described by Eq. (49) with q0 = 100 m3/s, qmax = 1000 m3/s, tmax = 2.5 h and T =
21 h. Numerical integration was carried out using the trapezoidal implicit method
with N = 10 and ∆x = 5000 m. The mass and momentum balance errors were
calculated for constant and variable weighting parameters K and X.

As could be expected, the linear Muskingum equation (with K = const and
X = const), perfectly satisfies both mass and momentum conservation laws. The
calculated mass balance errors ∆Em and ∆EM were practically always equal to zero,
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regardless of the assumed values of both parameters. However, the results obtained
for the non-linear Muskingum equation, i.e. with K = K(Q) and X = X(Q), depend
on the applied conservative or non-conservative form. These are shown in Table 2.

Table 2. Mass and momentum balance errors for the non-linear Muskingum-Cunge model

Equation Mass balance error ∆Em [%] Momentum balance error ∆EM [%]
Eq. (39) 9.2 20.8
Eq. (41) –5.8 0.0
Eq. (43) 0.0 8.2

One can notice that the non-linear Muskingum equation in non-conservative
form (Eq. (39)) satisfies neither the mass conservation law nor the momentum
conservation one. The calculated errors are equal to ∆Em = 9.2% and ∆EM =
20.8% respectively, whereas in the case of Eq. (43) the mass conservation principle
is satisfied perfectly. The error ∆Em is always equal to zero. However, at the same
time the momentum balance suffers. For the second conservative form (Eq. (41))
of the Muskingum model one can observe the opposite situation. The solution of
Eq. (41) generates a mass balance error while the momentum conservation law is
satisfied perfectly. The results given by various forms of the Muskingum equation
coincide completely with those given by the kinematic wave model (Gąsiorowski
and Szymkiewicz 2007). This fact additionally confirms the kinematic origin of the
Muskingum model.

Fig. 2. Numerical solution of the non-linear Muskingum-Cunge model for ∆t = 1000 s

The hydrographs computed at the downstream end by all considered forms
of the Muskingum equation are shown in Fig. 2. The significant attenuation of the
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outflow wave is caused by numerical diffusion introduced into the solution according
to Eq. (18). In this case, both the numerical diffusion and an inappropriate form of
equation result in mass or momentum balance errors. This conclusion has a practical
meaning, since artificial diffusion is often introduced into the numerical solution
to “smooth” the unphysical oscillations or to damp the wave in order to “simulate”
a real flood process, like in the Muskingum-Cunge model. Thus, it seems important
to choose proper conservative form of the non-linear equations, which allows us to
avoid the balance error of the transported quantity. The presented results suggest
that for hydrological applications, the non-linear Muskingum model in the form of
Eq. (43) seems to be most suitable, since it satisfies the mass conservation principle.

4. Conclusions

An analysis of mass and momentum conservation carried out for the Muskingum
model allows us to find out that the linear Muskingum equation satisfies simulta-
neously both mass and momentum conservation laws.

The Muskingum equation can be considered as a semi-discrete form of the
kinematic wave equation, therefore both models have the same conservative prop-
erties. Making use of this fact, various forms of the Muskingum equation can be
derived directly from both continuity and steady uniform flow equation. It was also
shown that similar assumptions to those applied in deriving of the kinematic wave
equation can be found in an additional formula relating storage, inflow and outflow.
This formula, applied to derive the Muskingum equation in a standard way, can be
interpreted as a result of numerical calculation of storage V and application of the
steady uniform flow equation.

The non-linear Muskingum equation can be written in two conservative forms.
Each form satisfies one principle only – either the mass or the momentum one. The
two principles of conservation are not satisfied simultaneously.
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