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Abstract
The paper is concerned with the problem of gravitational wave propagation in water of
variable depth. The problem is formulated in the Lagrangian description, and the ensuing
equations are solved numerically by a finite element method. In computations a convecting
mesh that follows the material fluid particles is used. As illustrations, results of numerical
simulations carried out for plane gravity waves propagating over bottoms of simple geometry
are presented. For parameters typical of a laboratory flume, the transformation of a transient
wave, generated by a single movement of a piston-like wave maker, is investigated. The
results show the evolution of the free-surface elevation, displaying steepening of the wave
over sloping beds and its gradual attenuation in regions of uniform depth.

Key words: Gravity water wave, variable water depth, transient problem, Lagrangian for-
mulation, finite element method.

Notation

b – body force vector,
c – speed of sound,
D – strain-rate tensor,
D0 – wave-maker horizontal displacement amplitude,
F – referential deformation gradient tensor,
g – gravity acceleration,
G – spatial deformation gradient tensor,
H – still water depth,
I – unit tensor,
J – deformation Jacobian,
K – water compressibility modulus,
n – unit normal vector in spatial coordinates,
p – hydrostatic pressure,
s – unit tangential vector in spatial coordinates,
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t – time,
u – velocity vector,
x, X – spatial and referential position vectors,
∇2 – Laplace operator,
µ – water viscosity,
%, %0 – current and referential fluid densities,
σ – Cauchy stress tensor.

1. Introduction

The problem of propagation of free-surface gravitational waves in shallow water
of variable depth is the one which has been extensively analysed by employing the
methods of classical fluid mechanics. Examples of successful treatments can be
found in fundamental treatises by Stoker (1957) and Wehausen and Laitone (1960),
and more recently in two volumes of the book by Dingemans (1997).

The application of classical analytical solutions, though, especially of those
based on a small parameter expansions, is usually restricted to the cases of
small-amplitude waves, and to the water domains with beds of small slopes. In
more challenging situations, that is for large-amplitude waves or/and the beds of
significantly varying geometry, one has to resort to discrete methods. In these meth-
ods, approximate solutions of fluid flow problems are conventionally constructed by
adopting the Eulerian (spatial) formulation of the flow governing equations. Such
an approach has been proved successful in solving a wide variety of fluid mechanics
problems, especially those involving domains with fixed boundaries. However, the
numerical methods based on the Euler description fail in the cases in which the
geometry of the flow domain changes rapidly in time. For instance, in fluid flows
with free surfaces, or when the solid-liquid interaction, with a changing shape of
the interface, takes place. The failure of the Eulerian-type methods is largely due
to numerical difficulties associated with the sufficiently accurate tracing of moving
boundaries enclosing a fluid domain. For this reason, over the past two decades, the
methods based on the Lagrangian (material) description have gained in popularity,
since the formulation of boundary conditions, which are specified on material sur-
faces (that is, on the surfaces which do not move in the Lagrangian coordinates) is
straightforward. Further, the convective terms which enter the momentum equations
cast in the spatial coordinates, do not appear in the material description, and there-
fore increased stability of numerical schemes can be achieved. The price of these
computational gains, however, is the appearance in the governing equations of terms
involving deformation gradient components and Jacobians. Several examples of the
implementation of the Lagrangian formulation, using the finite element method,
can be found in the papers by Ramaswamy and Kawahara (1987), Radovitzky and
Ortiz (1998) and Parrinello and Borino (2007).
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A characteristic feature of the conventional numerical Lagrangian method, in
which fixed in space discrete meshes are used, is the problem with a proper treat-
ment of large deformations, since the latter cause progressive accumulation of
numerical errors as the material particles considerably depart from their initial
positions (that is, the deformation gradient components reach large magnitudes). In
order to reduce the above errors, a number of variants of the Lagrangian method
have been devised in the recent years. These improved methods include, among oth-
ers: the Arbitrary Lagrangian-Eulerian (ALE) method, used by Braess and Wriggers
(2000), Souli and Zolesio (2001) and Rabier and Medale (2003), the Finite Point
Method (FPM) employed by Oñate et al (1996), Löhner et al (2002) and Ortega
et al (2007), and the Particle Finite Element Method (PFEM) applied by Idelsohn
et al (2004), Aubry et al (2005) and Idelsohn et al (2006). Some aspects of the
Lagrangian-type approaches are discussed in the book by Zienkiewicz and Taylor
(2000a).

In this work, the Lagrangian formulation is employed to analyse the problem
of non-linear surface gravity waves propagating in water of variable depth. The
water is assumed to be a Newtonian viscous, compressible, and barotropic liquid.
In the finite element implementation, an evolving mesh is used, the nodes of which
are attached to a set of selected material fluid particles. Accordingly, the mesh is
updated after each discrete time step, by convecting the mesh nodes as the corre-
sponding fluid particles change their spatial positions during the flow. In this way,
the material coordinates are changed every time step, so that the referential config-
uration at the start of a new time step coincides with the deformed configuration
at the end of a preceding time step. By doing so, the numerical errors associated
with the evaluation of the deformation gradient components are minimized, since
the magnitudes of these components are always close to those of a unit tensor.
The proposed numerical model has been used to simulate the plane problems of
water wave propagation for several cases of simple bed profiles, idealizing the con-
ditions encountered in natural surf zones. The simulations have been carried out
for parameters pertaining to a laboratory wave flume, with the bottom consisting
of segments of horizontal and uniformly sloping planes. Assuming that water is
set in motion by a piston-type wave-maker, the behaviour of a transient surface
wave generated by a single translational movement of the maker vertical wall is
investigated. Hence, the transformation of the wave, including its steepening over
inclined bottoms and progressive attenuation due to dispersion in regions of uniform
depth, is examined. The results of numerical simulations illustrate the evolution of
the water free surface, depending on a particular bed geometry and the slopes of
the inclined parts of the bottom.

This paper is a sequel to an earlier work by the author (Staroszczyk 2007), in
which a general Lagrangian framework for the treatment of Newtonian compressible
fluids with two viscosity parameters was formulated, and which contains the details
concerning the construction a finite element scheme, used later for the numerical
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analysis of surface waves propagating over horizontal beds. Now the model is
modified, by first formulating it in dimensionless variables, and then by extending
it so that it can be applied to fluid flows over uneven beds. Also, some new features
of a numerical nature have been added to the model to improve its robustness and
computational performance.

The paper is structured as follows. In Section 2 the water flow governing equa-
tions are first formulated in the Eulerian coordinates, then re-scaled into dimension-
less expressions, and finally transformed into the Lagrangian forms. The ensuing
Navier-Stokes and continuity equations are solved by the finite element method, the
main features of which are outlined in Section 3. The following Section 4 contains
the results of the model applications to the wave propagation problems, involving
three specific cases of the bottom profiles. Finally, some concluding remarks are
given in Section 5.

2. Governing Equations

A plane wave propagation problem, depicted in Fig. 1, is considered, in which
free-surface gravity waves propagate over an uneven bottom. The problem is anal-
ysed in Cartesian coordinates. Two coordinate frames are adopted: the spatial (Eu-
lerian) frame Ox1x2 describing the motion of the fluid in the current (deformed)
configuration, and the referential (Lagrangian) frame OX1X2 defining the positions
of material particles at the reference time. The axes x1 and X1 are directed hor-
izontally, and the vertical axes x2 and X2 are directed upwards. The bottom is
treated as rigid and impermeable, and its, fixed in time, geometry is defined by the
function x2 = f (x1). The current position of the free water surface is described by
the function x2 = h(x1, t).

Fig. 1. Plane free-surface water wave propagation problem definition
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Denote the current fluid particle velocity by the vector u, with components
v j (xi, t), (i, j = 1, 2). Then the mass conservation law, expressed in the spatial co-
ordinates Oxi, is given by the continuity equation

D%
Dt
+ % div u = 0, (1)

in which % is the fluid density, D/Dt denotes the material time derivative, and div
denotes the spatial divergence operator. The linear momentum conservation balance,
in the presence of body forces, yields the equation of motion in the form

%
Du
Dt
= div σ + %b, (2)

where σ is the Cauchy stress tensor and b denotes the body force vector. In the
problem investigated, the only body force is that due to gravity; hence, the vector
b has the components b1 = 0 and b2 = −g, with g being the gravity acceleration.

Water is assumed here to be an isotropic, viscous and compressible fluid, the
behaviour of which is defined by the following constitutive relation (Chadwick
1999):

σ = −

(
p +

2
3
µ tr D

)
I + 2µD. (3)

In the above expression, p is the hydrostatic pressure, D is the strain-rate tensor, µ
denotes the fluid viscosity, I is the unit tensor, and tr denotes the trace of a tensor.
Substitution of the stress relation (3) into the motion equation (2) results in the
Navier-Stokes equation expressed by

%
Du
Dt
= −grad p + µ∇2u +

1
3
µ grad div u + %b, (4)

where grad denotes the spatial gradient operator, and ∇2(·) = div [grad(·)T ] stands
for the vector Laplacian operator in the spacial description.

A common approximation is to treat water as a barotropic fluid, for which the
pressure is entirely determined by the fluid density. Adopting the pressure depen-
dence on the density to be expressed by

D%
Dt
=

1
c2

Dp
Dt
, (5)

in which c is the speed of sound, and inserting the latter expression into Eq. (1),
transforms the continuity equation into the form

Dp
Dt
+ K div u = 0, (6)

where K = %c2 is the fluid elastic compressibility modulus.
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Boundary conditions, which must be satisfied by the solutions of differential
equations (5) and (6), are adopted in the standard forms. The free water surface at
x2 = h(x1, t) is supposed to be traction-free, which follows from the tacit assumption
that the stresses within the fluid are measured relative to the atmospheric pressure,
treated here as constant. Thus, at the upper boundary Γσ (see Fig. 1), the following
conditions are imposed:

x2 = h(x1, t) : n · (σn) = 0 and s · (σn) = 0, (7)

where n and s denote, respectively, the unit vectors normal and tangential to the Γσ
boundary. At the rigid bottom, at x2 = f (x1), the fluid velocity component normal
to the boundary Γv is zero, and free-slip conditions are assumed at the bottom. The
latter assumption implies that the effects of the boundary layer along the rigid bed
are not accounted for, but it is supposed here that such viscous flow effects are
negligibly small in the case of water waves propagating in a flume. Accordingly,
the kinematic boundary condition at the bottom is expressed by

x2 = f (x1) : u · n = 0, (8)

that is, the tangential velocity components is unconstrained. Additional kinematic
conditions must be specified for moving parts of the solid boundaries, for instance
for a wave-maker wall, etc.

Equations (4) and (6) formulate the flow problem in the current configura-
tion, that is, in the spatial coordinates Ox1x2. In order to describe the problem
in the referential (material) coordinates OX1X2, the deformation gradient tensors
are introduced into the analysis. Hence, the referential gradient, F, and its spatial
counterpart, G, defined by

F(X, t) = Grad x(X, t), G(x, t) = F−1(x, t) = grad X(x, t), (9)

are used. In the above expressions, x and X denote the fluid particle position vectors
in the deformed and the referential coordinates, respectively, and Grad denotes the
referential gradient operator. By applying some general relations that connect the
differential operators grad and div in the current, and Grad and Div in the refer-
ential coordinates (Chadwick 1999), one can transform equations (4) and (6) into
equivalent referential forms, see Staroszczyk (2007). The resulting Navier-Stokes
equation, expressed in components, has the form

J−1%0
∂vi
∂t
= −G ji

∂p
∂X j
+ µG jmGkm

∂2vi
∂X j

Xk +
1
3
µG jmGki

∂2vm
∂X j

Xk + J−1%0bi , (10)

where the summation convention for repeated subscripts (i, j, k,m = 1, 2) applies,
and the continuity equation becomes

JK−1 ∂p
∂t
+G jk

∂vk
∂X j
= 0. (11)
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In the latter two relations,

Gi j =
∂Xi

∂x j
(i, j = 1, 2), J = det F = (det G)−1 =

%0

%
, (12)

where J denotes the Jacobian of the deformation, and %0 is the fluid density in the
referential configuration. Similarly, the boundary conditions, defined by Eq. (7) and
(8), need to be expressed in the material coordinates. This is achieved by relating,
via the deformation gradient components Gi j , the components of the unit vectors n
and s in the Ox1x2 frame to their counterparts in the OX1X2 frame — for details
see Staroszczyk (2007).

The above governing equations, (10) and (11), before solving them by a nu-
merical method, are transformed into dimensionless forms so that the magnitudes
of all unknown variables are of order unity. Accordingly, characteristic scales for
the quantities involved in the flow description are introduced. From among many
possible alternatives, the following scalings are employed in this analysis:(

xi, X i

)
=

(xi, Xi)
H∗

, vi =
vi
v∗
, t =

t
t∗
,

(
σ, p

)
=

(σ, p)
p∗
, D =

D
D∗
, µ =

µ

µ∗
,

(13)

where an over-bar indicates a dimensionless variable, and an asterisk denotes a scal-
ing magnitude. Hence, H∗ is a typical depth of water, and is used as a length unit,
v∗ =

√
gH∗ is a velocity unit, t∗ = H∗/v∗ is a time unit, p∗ = %0gH∗ = %0(v∗)2 is

a stress unit, D∗ = v∗/H∗ is a strain-rate unit, and µ∗ = %0v
∗H∗ is a viscosity unit.

By using the relations (13) to re-scale the spatial and temporal derivatives
in Eq. (10) and (11), one arrives at the following non-dimensional forms of the
Navier-Stokes and the continuity equations:

J−1∂vi

∂t
= −G ji

∂p

∂X j
+ µG jmGkm

∂2vi

∂X j ∂Xk
+

1
3
µG jmGki

∂2vm

∂X j ∂Xk
+ J−1bi , (14)

JK
−1 ∂p
∂t
+G jk

∂vk

∂X j
= 0, (15)

where K = K /p∗, b1 = 0, and b2 = −1. Note that the deformation gradient com-
ponents Gi j , and hence the Jacobian J , are left unaltered since the same length
unit, H∗, is used to normalize the horizontal as well as the vertical coordinates;
otherwise, they should be re-scaled appropriately as well.

3. Finite Element Method Description

The water flow governing equations for the unknown velocity and pressure fields, in
their dimensionless forms expressed by Eq. (14) and (15), have been solved numeri-
cally by a finite element method. The solution has been based on a weak formulation
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of the problem equations, by applying the Galerkin method (Zienkiewicz and Taylor
2000b). The water flow domain is discretized by imposing a mesh consisting of
triangular elements, see Fig. 2. The mesh, for the referential configuration at time
t = 0, is generated in such a way that first a structured mesh of triangles with their
vertices uniformly distributed along the X1 and X2 axes is created for a rectangular
domain, and then, to account for the bed geometry and the initial free surface
elevation at a given X1, the vertices are moved along the X2 axis so that they
remain uniformly distributed along the verticals.

Fig. 2. Finite element mesh in the initial fluid configuration

The triangular elements with four nodes are used. Three nodes are located at
the triangle vertices, and the fourth node is at the triangle barycentre. At the vertex
nodes the discrete values of the unknown velocity components are defined, while
at the middle node the pressure is defined. Thus, at each element there are seven
discrete values to be calculated, six velocity components and one pressure value.
The above implies that the linear approximation of the velocity field u(X, t) within
an element is assumed, while the pressure field p(X, t) is supposed to be constant
therein. More details on the discretization method, and the formulae for calculating
the element matrices, can be found in the previous work of the author (Staroszczyk
2007). Aggregation of the global matrices and vectors from the respective individual
element matrices and vectors in a manner typical of the finite element method leads
to a set of equations that can be expressed, in matrix notation, in the form

Cu̇(t) + Ku(t) = f (t), u(0) = u0 . (16)

In the above relation, u is the vector of unknown discrete values of velocities and
pressures in all nodal points of the discrete system, f is the loading vector, and
u0 represents the initial solution vector (nodal values of the velocity and pressure
fields at time t = 0).

Matrix equation (16) forms a system of first-order differential equations in which
the matrices C and K and the vector f all depend on the components of the
deformation gradient tensor G. Hence, C, K and f are all functions of the solution
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vector u. In order to integrate this non-linear system of equations, a single-step
scheme, known as the weighted average θ-method, has been used. Application of
this method to Eq. (16) yields the following system of algebraic equations:

(C + ∆t θK) un+1 = [C − ∆t (1 − θ)K] un + ∆t f n (n = 0, 1, 2, . . .), (17)

which connects the solution vectors un and un+1 at two consecutive time levels,
tn and tn+1 = tn + ∆t, with ∆t denoting the time step length. The vector f n is the
time-averaged loading vector which, assuming its linear variation between t = tn
and t = tn+1, is expressed by

f n = (1 − θ) f n + θ f n+1 . (18)

In the calculations, the value of the weighting parameter θ was adopted to be close
to unity, which means that nearly the fully implicit backward scheme was employed,
ensuring thus good numerical stability of the algorithm, at the cost, however, of
some loss of computational accuracy (the best accuracy would be achieved for
θ = 0.5, but in this case the scheme is less stable than for θ ∼ 1).

Since the matrices C(u) and K(u) appearing in Eq. (17) change as we progress
from the old time level tn to the new level tn+1, the solution vector un+1 does not
satisfy, in general, the equation (17). For this reason, correction of the solution
is required in order to reach equilibrium before to proceed to the next time step.
From among a few possible approaches, the direct (Picard) iteration method has
been applied, in which the current approximation to the solution vector ui

n+1 (i =
0, 1, 2, . . .) is immediately used to modify the matrices C and K and the forcing
vector f in Eq. (17), before moving on to the next iteration i + 1. Usually, depending
on the time interval length ∆t, four to six iterations were needed to compute the
solution vector un+1 with the relative error (of the solution vector norms) between
two successive iterations not exceeding 10−8.

The solution of the system of algebraic equations (17) requires a special treat-
ment, since the matrix (C + ∆t θK) on the left-hand side of Eq. (17) is ill-condition-
ed, reflecting the fact that we deal with the problem of nearly-incompressible fluid
flow. For this reason, the calculation of an accurate solution of Eq. (17) encounters
certain difficulties, and an application of some stabilization method is usually nec-
essary to avoid numerical oscillations to appear in the results obtained. From among
a number of available methods, an approach known as the augmented Lagrangian
technique (Zienkiewicz and Taylor 2000b) is employed here. To outline this method,
let us express the system of equations (17) in the following form:[

A B
BT E

] {
un+1
pn+1

}
=

{
q(1)

n

q(2)
n

}
, (19)

where A and E are square matrices, and the solution vector u is split into two
parts: u containing all discrete velocities, and p containing all discrete pressures.
Similarly, the right-hand side vector is split into two parts, q(1) and q(2), as well.
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In the scaled variables, in which the flow equations are solved, the typical
non-zero entries in A turn out to be by several orders of magnitude larger than
the non-zero entries in E (in the case of a fully incompressible fluid, for which
K → ∞, the latter matrix would be singular). Such considerable differences between
the magnitudes of elements of A and E, including the diagonal elements, are an
undesirable feature which leads to large numerical errors to accumulate during the
solution process. Therefore, to reduce this near-singular behaviour of the system,
the matrix E is augmented, by subtracting the term αp from each side of the second
matrix equation in Eq. (19), and then solving the resulting equations by iterations.
Hence, the modified system of equations is expressed in the form A B

BT Ê


 u

(k+1)
n+1

p(k+1)
n+1

 =
 q(1)

n

q(2)
n − αp(k)

n+1

 (k = 0, 1, . . .), (20)

where the augmented matrix Ê is given by

Ê = E − αI. (21)

Now, the above iterative system is solved, at a given time level tn, by starting
the calculations from p(0)

n+1 = pn. The value of the parameter α which controls the
stabilization process should be selected in such a way that the number of iterations
in Eq. (20) is minimized.

4. Examples of the Model Application

The finite element method, outlined in the preceding section, has been employed to
simulate the gravity wave propagation in water of non-uniform depth. The following
parameters have been adopted to describe the water properties: the density %0 = 103

kg m−3, the viscosity µ = 1.01 × 10−3 Ns m−2, and the compressibility modulus
K = 2.04 × 109 Pa.

The flow problem under investigation has been solved in domains of simple
bottom geometry, sketched in Fig. 3. Three cases of the bottom geometry have
been considered to represent idealized beach profiles: a uniformly inclined beach,
with a slope 1/m, ending at a vertical wall, (a); a uniformly inclined beach followed
by a constant-depth region, (b); and a more complex profile with two inclined parts,
both with the same slope 1/m, separated by a flat horizontal section, (c). In all the
cases, a surface wave is supposed to be generated by a movement of a rigid vertical
wall situated at the left-hand end of the flow domain (that is, at X = 0). The region
adjacent to the moving wall, of a length L1, has a constant depth H. The dimensions
of the flow domain have been assumed as those of a laboratory flume. Hence, the
still water depth is set to H = 60 cm, and the total length of the water domain, in
cases (a) and (b), is L = 15 m; in case (3), depending on the slope 1/m, the length
L can be smaller.
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Fig. 3. Three different bed profiles

In the calculations, the length scale H∗, used to normalize the flow field vari-
ables, has been chosen to be equal to the depth H , that is, H∗ = 60 cm. The latter
value determines, see Eq. (13), the other scaling parameters: v∗ = 2.43 m s−1 for
velocities, p∗ = 5.88 × 103 Pa for pressures, and µ∗ = 1.46 × 193 Ns m−2 for the
viscosity.

The results presented below have been obtained by imposing on the fluid domain
a grid of triangular finite elements consisting of 10 ‘layers’ of elements along the
vertical axis, and 250 ‘columns’ of elements along the horizontal axis. Thus, the
mesh included 5000 elements (each of the initial horizontal side equal to 6 cm,
the latter being also the maximum vertical side of the triangles), with the total
number of 10 522 degrees of freedom. The time integration was conducted by
using a constant-length time increment ∆t = 10−3 s.

It has been assumed that the fluid is at rest at times t < 0, and is set in motion
by the vertical wall which, starting at t = 0, makes a single translational move-
ment in the horizontal direction by a distance D0, and then stops. The following
smooth function, with continuous first and second-order time derivatives at t = 0,
has been adopted for illustrations to describe the horizontal displacement d0(t) of
the generator:
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d0(t) = D0

[
1 − exp

(
−τ3

)]
, τ =

t
T0
, (22)

where T0 is a characteristic time of the wave-maker movement.

Fig. 4. Transformation of the wave propagating along the flume with the bottom profile
shown in Fig. 3a, for the total wave-maker horizontal displacement D0 = 20 cm and the

characteristic time T0 = 1.0 s

Figures 4 and 5 illustrate the transformation of a gravity wave propagating
over the bottom shown in Fig. 3a, with the dimensions L1 = 3 m, L2 = 12 m and
H1 = 40 cm. Hence, the slope of the uniformly inclined part of the bottom is 1/30,
and the minimum still water depth is equal to 20 cm at X = 15 m. The wave
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motion is induced by moving the maker wall by a distance of D0 = 20 cm, with
the characteristic time T0 = 1 s. Such a wall movement produces, in the case of the
horizontal bed, a transient wave which has a maximum elevation of about 6.5 cm.

The plots in Figure 4 show the behaviour of a wave as it travels the whole
length of the flume and then reflects at the rigid wall at X = 15 m, giving rise to
the interaction between the waves propagating in opposite directions. It can be noted
that, due to the very mild bottom slope, equal here to 1/30, the overall behaviour of
the wave is rather little affected by the change of the water depth. This is confirmed
by the plots in Figure 5, comparing the profiles of the waves, both induced by the
same wall movement at X = 0, propagating over the horizontal bottom and that
sketched in Fig. 3a. The plots in Fig. 5a display a small, but steady, decrease in
the height of the wave front with an increasing distance travelled by the wave.
Compared to that, the wave propagating over the shoaling bottom, see Fig. 5b,
retains approximately the same height, which means that (in this particular situa-
tion considered) the shoaling and dispersive effects are roughly counter-balanced.
Evidently, a more significant is the effect of the sloping bed on the wave length, as
the shortening and steepening of the wave profile are clearly noticed in Fig. 5b.

Fig. 5. Evolution of the free-surface elevation for the wave propagating: (a) over the hori-
zontal bed, (b) over the bed defined in Fig. 3a (D0 = 20 cm, T0 = 1.0 s)
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Fig. 6. Transformation of the wave propagating along the flume with the bottom profile
shown in Fig. 3b, for the slope of the inclined section equal to 1/10, for the total wave-maker

horizontal displacement D0 = 10 cm and the characteristic time T0 = 1.0 s

Figures 6 and 7 illustrate the transformation of a wave propagating over the bed
defined in Fig. 3b. The initial horizontal section of the bed has again a length of
L1 = 3 m, and the other horizontal section is raised by H1 = 40 cm above the latter.
Three different slopes of the shoaling part of the bed have been assumed, namely:
1/15, 1/10 and 1/5, in order to investigate their influence on the wave propagation.
The plots show the behaviour of the wave which is excited by the wall moving with
the amplitude D0 = 10 cm, with the characteristic time T0 = 1 s.

Figure 6 shows the evolution of the water surface elevation for the case of the
inclined bottom with the slope of 1/10, extending between the points X = 3 and



A Lagrangian Finite Element Analysis of Gravity Waves in Water of Variable Depth 57

X = 7 m. It can be seen that, referring to the wave depicted in Fig. 4, also in this case
of the bottom geometry no significant changes in the wave front height occur, even
though the water depth has decreased three-fold. Yet again, the bed topography has
a more pronounced effect on the wave shape, reflected by shortening and steepening
of the wave profile once it has passed the sloping section of the bottom. One can
notice some oscillations of a numerical character which appear in the plots for t = 3
and t = 4 s, that is, when the front of the wave is currently propagating over the
inclined bed. These numerical oscillations are subsequently smoothed out, as can
be observed in the plots for the later times.

Fig. 7. Evolution of the free-surface elevation for the wave propagating over the bottom
profile defined in Fig. 3b, for three different slopes (1/15, 1/10 and 1/5) of the inclined

section of the bed (D0 = 10 cm, T0 = 1.0 s)
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Figure 7 demonstrates the influence of the slope of the shoaling part of the
bottom on the wave shape. Hence, the wave profiles, still for the bed geometry
defined in Fig. 3b, are compared for the bed slopes equal to 1/15, 1/10 and 1/5,
respectively. One can observe some increase in the leading wave crest height as
the wave is propagating through the shoaling zone. The most noticeable increase
occurs in the case of the largest slope, when the wave becomes higher by about
20% compared to its height at the beginning of the sloping section.

Fig. 8. Transformation of the wave propagating along the flume with the bottom profile
shown in Fig. 3c, for the slopes of the inclined sections equal to 1/10, for the total wave-maker

horizontal displacement D0 = 10 cm and the characteristic time T0 = 1.0 s
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Fig. 9. Evolution of the free-surface elevation for the wave propagating over the bottom
profile defined in Fig. 3c, for three different slopes (1/15, 1/10 and 1/5) of the inclined

section of the bed (D0 = 10 cm, T0 = 1.0 s)

Figures 8 and 9 illustrate the evolution of a transient wave propagating over the
bed defined in Fig. 3c, with two sloping sections of the bottom. Yet again, the initial
horizontal section of the bed has a length of L1 = 3 m, and the other horizontal
section, at the height of H1 = 30 cm above the latter, has the same length, that is,
L3 = 3 m as well. Both shoaling sections are assumed to have the same slopes. The
plots show the behaviour of the initially the same wave as that in Figs. 6 and 7,
that is, generated with the wave-maker parameters D0 = 10 cm and T0 = 1 s.
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The plots in Figure 8 show the transformation of the wave when the inclined
bottom sections have the slopes equal to 1/10 (hence, L2 = L4 = 3 m). In this
particular bed geometry, the initial total length of the flow domain is 12 m. It is
clearly seen that more significant changes in the wave profile take place over the
second shoaling section of the bed (for X > 9 m), that is in the region of much
shallower water. The discrete model predicts over a two-fold increase in the wave
height near the end of the flow domain, before the simulations break down due
to numerical instabilities which prevent the scheme from calculating a convergent
solution.

Finally, Figure 9 illustrates the transformation of the wave profiles for different
slopes of the inclined sections of the bottom for the geometry defined in Fig. 3c.
Hence, the results for the slopes of 1/15, 1/10 and 1/5 are compared. Note the
distinct horizontal scales in the three plots.

5. Conclusions

A finite element model has been constructed to analyse the plane problem of gravity
waves propagating in water of non-uniform depth. A Lagrangian form of the FE
method has been applied, with a convecting grid of discrete points moving with the
material particles of the fluid. The model has been used to simulate the behaviour
of a transient-type wave travelling over the bottom of a simple shape, with the focus
on the transformation of the wave profile in response to varying bed conditions.
Hence, three cases of bottom configurations, idealizing typical beach profiles, have
been investigated, and the results of numerical simulations, showing the evolution
of the free-surface elevation, have been illustrated.

The numerical analysis has shown that the proposed method is capable of suc-
cessful dealing with non-linear problems involving water waves propagating over
uneven beds with gentle and moderate slopes. In its present formal description, the
model accounts for the phenomena of fluid compressibility and viscosity, introduced
with the hope to enhance the numerical stability of the model. However, the results
of numerical tests, in which the magnitudes of parameters describing the water
compressibility and viscosity were varied to examine their effect on the stability of
calculations, have shown that the presence of extra terms in the equations (com-
pared with the standard approach of an incompressible and inviscid fluid) does not
improve significantly the computational performance of the model. It seems that
before the model can be applied to solving more challenging problems of non-linear
waves propagation over steep beds of an arbitrary geometry, some extensions are
necessary in order to improve its numerical robustness. In first place, it would be
desirable to implement one of the special techniques that have been developed in
recent years for stabilizing the numerical schemes for solving incompressible, or
nearly incompressible, fluid flows, but without introducing any unphysical quanti-
ties into the description (such as introduction of diffusive terms in the equations,
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introduction of artificial viscosity terms, the penalty method, etc.). Also, it seems
that the use of higher-order finite elements, enabling a better spatial approximation
of the variables involved, can help to enhance the model performance.
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