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Abstract
3D formulation of incremental relations, describing pre-failure deformations of granular
soils, is presented. The starting point are respective equations formulated previously for the
axi-symmetrical configuration, as that in the tri-axial apparatus. These relations, proposed
for particular configuration, are generalized in the form of tensor equations for the strain
increments. Similarly, the loading/unloading criterion and the instability line have been
generalized for 3D conditions. A kind of cross-isotropy of granular soil is taken into account.
Then, the incremental stress-strain relations for the plane strain state are re-derived from
general equations, as such conditions are most often used for simulations of practically
important problems. The procedure proposed in this paper is practically oriented, as the soil
parameters can be determined just from the tri-axial tests.
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1. Introduction

The mechanical behaviour of granular soils is still not well understood. There exist
tens of various models, but none of them has become a standard in geotechnical
engineering for many reasons, see Sawicki (2007). Therefore, there is still a need for
a relatively simple model, that would enable an estimation of pre-failure deforma-
tions of granular soils. In order to achieve this goal, respective research programme
has been carried out in the Institute of Hydro-Engineering for many years. This
programme includes extensive experimental investigations, using modern laboratory
equipment as, for example, tri-axial apparatuses enabling measurement of lateral
strains. A large amount of experimental data has been collected, that have enabled
formulation of semi-empirical constitutive equations, valid for tri-axial conditions,
see Sawicki (2007), Sawicki and Świdziński (2007). The aim of this paper is to gen-
eralize these equations for 3D conditions, and then to re-derive respective relations
for the plane strain conditions, as such a state is most often used for simulation of
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practically important geotechnical problems. The method applied in this paper is
based on straightforward generalization of “tri-axial equations” to 3D conditions,
by using techniques of tensor calculus.

2. Summary of Equations for Tri-Axial Conditions

In previous papers, e.g. Sawicki (2007), the following shapes of incremental equa-
tions, for the tri-axial conditions, have been proposed:

dεv = Mdp′ + Ndq, (1)

dεq = Pdp′ + Qdq, (2)

where:

dεv = dε1 + 2dε3 – increment of the volumetric strain,
dεq = 2

3 (dε1 − dε3) – increment of the deviatoric strain,
ε1, ε3 – vertical and horizontal strains respectively, posi-

tive in compression,
dp′ = 1

3 (dσ′1 + 2dσ′3) – increment of the mean effective stress,
dq = dσ′1 − dσ′3 – increment of the stress deviator,
σ′1, σ

′
3 – vertical and horizontal effective stresses respec-

tively, positive in compression,
M,N,P,Q – constitutive functions.

The constitutive functions M,N,P and Q have been determined experimentally
from the tri-axial tests, for specific stress paths: the functions M and P from the
pure compression tests (dq = 0); the functions N and Q from the pure shearing
tests at constant mean effective stress (dp′ = 0). Some of the constitutive functions
(particularly N) have different shapes for the initially dilative and contractive soils.
The constitutive functions have also different shapes for loading and unloading.
These important processes have been defined separately for the changes of spherical
and deviatoric parts of the effective stress tensor, which differs from commonly
accepted definitions, see Sawicki and Świdziński (2008):

dp′ > 0 – spherical loading,
dp′ < 0 – spherical unloading,
dη > 0 – deviatoric loading,
dη < 0 – deviatoric unloading,

where: η = q/p′ is a new non-dimensional shear stress variable.
The basic shape of incremental equations (1) and (2) reflects the experimentally

observed behaviour of granular soils, that takes into account some specific features
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of that behaviour. Firstly, the function N describes the volumetric changes of gran-
ular soils due to shearing, i.e. the phenomena of compaction and dilation, which are
not so pronounced in classical materials. For example, in classical elasticity there
should be N = 0. The other feature deals with anisotropic behaviour of granular
soils. For isotropic materials there should be P = 0, as the mean stress should not
influence the deviatoric strains. In the case of granular soils, it is difficult to prepare
ideally isotropic samples, and the experimental stress-strain relations always display
some kind of anisotropy. Therefore, this effect has been included into the constitutive
relation (2) through the function P. The functions M,N,P and Q are presented in
detail in previous publications, see Sawicki (2007), Sawicki and Świdziński (2007).

The incremental relations (1) and (2) take into account the unstable behaviour
of granular soil before failure. In the case of initially dilative soils, this instability
is characterized by the change of sign of the volumetric strain increments, i.e.
during pure shearing the soil first compacts and then dilates. In the case of initially
contractive soils, fully saturated and tested in undrained conditions, the unstable
behaviour is characterized by rapid generation of pore pressure and reduction of
effective stresses, which leads to liquefaction. These effects are related to a certain
object, designated as the instability line. In the stress space p′ − q, this object is
defined by the following equation:

q = Ψp′, (3)

where Ψ is a number, which should be determined experimentally. For details and
respective literature see Świdziński (2006).

3. General Form of Incremental Equations

In the incremental equations (1) and (2), the independent variables are the mean
effective stress p′ and the stress deviator q. These quantities are related directly to
the first invariant of the stress tensor:

I1 = p′ =
1
3

trσ (4)

and the second invariant of the stress deviator:

J2 =
1
2

tr
(
σdev

)2
, (5)

σdev = σ −
1
3

(trσ) 1, (6)

where σ denotes the stress tensor and 1 is the unity tensor. It can be easily checked
that
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q =
√

3J2. (7)

Similarly, one can relate the volumetric strain εv and the deviatoric strain εq to
respective invariants of the strain tensor ε. The first invariant of the strain tensor is
the following:

K1 = tr ε = εv, (8)

and the second invariant of the strain deviator is:

K2 =
1
3

tr
(
εdev

)2
, (9)

εdev = ε −
1
3

(tr ε) 1. (10)

The tri-axial deviatoric strain is related to this invariant by the following relation:

εq =

√
4
3

K2. (11)

The above relations suggest that the incremental equations (1) and (2) can be
generalized formally to the 3D case. Some comments about such generalization
are necessary, before introducing respective equations. There are two distinct ap-
proaches in the mechanics of continuous media. The first one is based on straight-
forward generalization of 1D approaches, as most of experiments can be performed
only in such reduced conditions. The most pronounced example is the Hooke’s law.
Robert Hooke performed his fundamental experiments in uni-axial conditions and,
in subsequent years, his results have been generalized, in an elegant manner, to
3D conditions. The classical elasticity is still the best example of a good theory
that still is applied in many technical problems. The other approach, originated
by the so-called rational mechanics, suggests that the constitutive equations should
be presented in the most general form, and then possibly reduced, according to
circumstances. In this paper, the first approach will be followed.

The starting point to generalization are the incremental equations (1) and (2).
Assume that these equations can be written in the following general form:

dεv = Adp′ + BdJ2, (12)

dεdev = Cdp′ + Ddσdev, (13)

where A, B and D are some scalar functions, which possibly depend on the invariants
of the effective stress tensor. C is a certain tensor, which may depend on the current
stress state and the kind of initial anisotropy of soil. Experimental results indicate
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that the soil samples display a cross-isotropic behaviour, with the vertical axis
indicating the privileged direction. The stresses and strains corresponding to this
direction have customarily been distinguished by the subscript “1”, so this notation
will also be used in the present paper. Also note that soils in the field conditions
probably also display similar behaviour as the gravity influences their structure.
Because this cross-isotropy should be included into the constitutive equations, let
us introduce the following object, designated as the structural tensor:

S =

 1 0 0
0 0 0
0 0 0

. (14)

The above tensor shows that the vertical direction x1 is privileged, and that the
soil behaviour in the horizontal x2 − x3 planes is isotropic. Assume that

C = CSdev, (15)

where C is a scalar function, and

Sdev =

 2/3 0 0
0 −1/3 0
0 0 −1/3

. (16)

The functions A, B,C and D will be determined from the condition that Eqs.
(12) and (13) reduce to Eqs. (1) and (2) in the case of tri-axial compression tests.
Consider first the scalar equation (12). It follows from Eq. (7) that

dq =

√
3

2
√

J2
dJ2. (17)

Substitution of relation (17) into Eq. (1) leads to the following formula:

B =
N
√

3
2
√

J2
. (18)

Obviously, the following identity also holds:

A = M. (19)

In order to derive Eq. (13), consider first the deviators of the effective stress
and strain tensors, which are of the following forms in the case of tri-axial tests:

σdev = q

 2/3 0 0
0 −1/3 0
0 −1/3

, (20)
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εdev =
3
2
εq

 2/3 0 0
0 −1/3 0
0 0 −1/3

. (21)

Comparison of Eqs. (2), (13), (16), (20) and (21) leads to the following formulae:

C =
3P
2
, D =

3Q
2
. (22)

Therefore, Eqs. (18), (19) and (22) relate respective functions, determined from
the tri-axial experiments, to more general functions appearing in general consti-
tutive relations. As already mentioned, the “tri-axial” functions have already been
presented in previous publications, see Sawicki (2007), Sawicki and Świdziński
(2007). In order to include these functions into a general framework presented in
this paper, one should replace respective quantities appearing there by more general
objects. For example, p′ should not be replaced by the other object, as it has already
a general meaning. But a new variable η = q/p′, should be replaced by

√
3J2

/
p′,

according to Eq. (7).

4. Loading, Unloading and the Instability Condition

In the same way, we can generalize the conditions defining loading and unloading,
introduced for tri-axial conditions in Section 2. In the case of spherical loading
and unloading, the definition becomes unchanged as the mean effective stress is
the invariant. In the case of deviatoric loading and unloading, respective equations
should be re-arranged. Simple manipulations lead to the following formulae:

dη =
1
p′

(
dq − ηdp′

)
=

√
3

p′

(
1

2
√

J2
dJ2 −

√
J2

p′
dp′

)
. (23)

Respective conditions, introduced in Section 2, apply for the non-dimensional
deviatoric stress increment (23).

The instability condition (3) can also be generalized, and after some simple
manipulations, takes the following form:

J2 =
1
3
Ψ2 (

p′
)2 . (24)

5. Plane Strain State

The plane strain conditions are most often analysed in geotechnical engineering for
practical reasons. Assume that x1 denotes the vertical and privileged direction, and
that ε22 = 0. This latter condition is commonly applied in continuum mechanics,
for the plane strain problems, in order to determine the respective stress, i.e. σ22.
Many practical examples can be found in the books devoted to elasticity. The
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other approach is based on the assumption that the intermediate stress, σ22 in the
case considered, does not influence the overall behaviour of the soil. Respective
examples may be found in almost all textbooks dealing with the limit states of
soils. In this paper, this second approach will be adopted for practical reasons.
General equations, derived in the previous sections, will serve only as guidelines.
They are very difficult to be applied in practice for their entangled form. In order to
obtain equations that are useful in practical applications, it is necessary to re-define
respective relations. Therefore, it is assumed that the intermediate stress does not
influence the soil behaviour, and will not be taken into account in the following
relations. This means that the purely 2D problem will be considered. The strain
and effective stress tensors are of the following form:

ε =

[
ε11 ε13
ε13 ε33

]
, (25)

σ′ =

 σ′11 σ
′
13

σ′13 σ
′
33

. (26)

Their deviators are:

εdev = ε −
1
2

(tr ε)1 =
1
2

 ε11 − ε33 2ε13

2ε13 −ε11 + ε33

 = 1
2

[
ε γ
γ −ε

]
, (27)

σ′dev = σ′ −
1
2

tr(σ′)1 =
1
2

 σ′11 − σ
′
33 2σ′13

2σ′13 −σ′11 + σ
′
33

 = 1
2

[
σ 2τ
2τ −σ

]
. (28)

The structural tensor and its deviator are the following:

S =
[

1 0
0 0

]
, (29)

Sdev =
1
2

[
1 0
0 −1

]
. (30)

Note that:

J2 =
1
4
σ2 + τ2, (31)

dJ2 =
∂J2

∂σ
dσ +

∂J2

∂τ
dτ =

1
2
σdσ + 2τdτ. (32)

The volumetric strain is the following in the 2D case:

εv = ε11 + ε33. (33)
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The mean effective stress is defined as:

p′ =
1
2

(
σ′11 + σ

′
33

)
. (34)

The above relations are also valid for the stress and strain increments. Note that
the 2D definition of the mean effective stress differs from Eq. (4) which is valid
for a general 3D state. From the practical point of view, these differences are not
so large, which can be checked by elementary calculations.

In the case considered, the basic constitutive equations (12) and (13) take the
following scalar forms:

dεv = Adp′ + BdJ2, (35)

dε = Cdp′ + Ddσ, (36)

dγ = 2Ddτ. (37)

Note that the strains ε11, ε33 and ε13 can be easily calculated from respective
equations (27) and (33), for a given loading path. The criteria of loading and
unloading, introduced in Section 2, and the definition of non-dimensional shearing
stress (23) remain unchanged. One should substitute into that relation Eqs. (31)
and (32) respectively. The instability surface, given by Eq. (24), takes the following
form:

1
4
σ2 + τ2 =

1
3
Ψ2 (

p′
)2 . (38)

The above equation represents a cone in the space σ, τ, p′.
In the special case of τ = 0 and when σ = σ11 − σ33 > 0, Eq. (38) takes the

following simple form:

σ =
2
√

3
Ψp′, (39)

and the deviatoric loading condition is:

dσ −
σ

p′
dp′ > 0. (40)

6. Discussion

1. The incremental equations, describing pre-failure deformations of granular soils
for tri-axial configuration, have been generalized for the 3D case. The advantage
of such a generalization is that the constitutive functions can be determined



3D and 2D Formulations of Incremental Stress-Strain Relations for Granular Soils 53

from experiments performed in the tri-axial apparatus. One of original features
of such an approach is that the cross-isotropic response of granular soils is
taken into account. Note that most of the models of geomaterials are based on
the assumption of isotropy, which generally is not supported by experimental
data. The instability line and the loading and unloading criteria have also been
generalized.

2. The general equations have been re-derived for the 2D case, see Eqs. (35), (36)
and (37). It was shown, that the instability line for the tri-axial configuration
has been generalized to the cone in this case, see Eq. (38). These results are
also original. Of practical importance is a simple form of re-derived equations.

3. This paper supplements previous publications, see Sawicki (2007), Sawicki and
Świdziński (2007). Experimental verification of the results obtained is planned
as the next step of research, using small scale models.
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