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Abstract
Discrete cluster microforms, or simply clusters, in gravel streams result from organization
of particles found in the surface layer of the gravel bed into disconnected patches. Clusters
are the outcome of feedback interaction between flow, sediment and stream planform geom-
etry. The complexity of this interaction results in several different cluster shapes, i.e. line,
rhomboid and triangular. The objective of this research is to provide a quantitative character-
ization of cluster shape. To achieve this, we employed a novel method based on fractal theory
and used for the shape description of clusters. Our novel method utilized the cell-counting
method for the estimation of the areal fractal dimension, DA for two major datasets, namely
fabricated clusters with well-defined shapes, and clusters developed in the laboratory. The
principal finding of this research is that the proposed method successfully characterized
cluster shape in quantitative terms. Specifically, it was shown that the new approach could
identify clusters of different shapes 84% of the time, under different arrangements. This
finding is of great importance for bed pattern recognition studies of stream reaches with
superimposed roughness elements such as clusters. The findings of the current work could
also assist numerical modellers in the development of more representative models of flows
over roughness features such as clusters and in the interpretation of results from such models.
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List of symbols

Ac – cluster area,
bA – ordinate intercept term,
D – fractal dimension,
DA – areal fractal dimension,
DAL – area-perimeter fractal dimension,
DL – outline fractal dimension,
DTOP – topological dimension,
E.R. – cluster elongation ratio,

1 Principal author.
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Lmax – length of the greater side of a cluster bounding rectangle,
Lmin – length of the smaller side of a cluster bounding rectangle,
Lob j – characteristic cluster length,
Mmax – length of the major axis of the cluster best fitting ellipse,
Mmin – length of the minor axis of the cluster best fitting ellipse,
N(µ) – number of cells of size µ required to cover the cluster,
Pc – cluster perimeter,
µ – cell size.

1. Introduction

Discrete cluster microforms, or simply clusters, are one type of small-scale rough-
ness feature typically observed in high-gradient gravel streams with limited sed-
iment supply. Clusters have traditionally (Teisseyre 1977, Brayshaw 1984, Strom
and Papanicolaou 2007) been differentiated from other small-scale bedforms, such
as transverse ribs and clast dams (Bluck 1987), and macroforms, e.g. step-pool
sequences (Whittaker and Jaeggi 1982) based on two common characteristics of
clusters. These two characteristics are, namely: (1) the size of clusters is of similar
order of magnitude with the bed material, i.e. the grain scale and (2) the patches
of grouped individual particles are situated atop the gravel bed. Therefore, the
term “cluster” is employed to describe these unique microroughness features that
arise from the organization of particles found in the stream bed surface layer into
disconnected patches (Laronne and Carson 1976, Brayshaw 1984, Reid et al 1992,
Papanicolaou et al 2003).

Once developed, clusters have significant effects on bedload transport patterns
within a gravel stream reach, which can be distinguished into three phases (Strom
et al 2004). First, there is a sink phase coinciding with cluster formation, where
clusters absorb incoming sediment from upstream. Second comes a neutral phase,
where cluster effects on bedload are minimal. Third, there is a source phase, when
clusters begin to disintegrate and thus release sediment. In all three phases clusters
contribute to the pulsating nature of the bedload by increasing the amplitude of
the fluctuations in the bedload rates. In addition, clusters have a well-documented
influence on the near bed turbulence characteristics, which is related to cluster
spacing (Buffin-Bélanger and Roy 1998, Papanicolaou et al 2001, Lacey and Roy
2007). It has been suggested that cluster spacing is determined such that clusters
induce the maximum resistance to the flow (Hassan and Reid 1990).

Clusters are considered to be the outcome of feedback interaction between
the near bed turbulence structure, the available entrainable sediment and stream
planform geometry such as sinuosity (Papanicolaou 1999, Strom and Papanicolaou
2007). The stochastic nature of this feedback interaction leads to different cluster
shapes. In the field, cluster shapes such as pebble clusters, in-line and ring clus-
ters (Brayshaw 1984, de Jong 1995, Kozlowski and Ergenzinger 1999, Wittenberg
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Fig. 1. Characteristic shapes of clusters (A) in the field (Strom and Papanicolaou 2007) and
(B) in the laboratory (Papanicolaou et al 2003)

2002, Strom and Papanicolaou 2007) have been documented (Fig. 1A). Several
cluster shapes (e.g. in-line, rhomboid and pebble clusters) (Fig. 1B) have also been
identified in laboratory investigations (Papanicolaou et al 2003, Papanicolaou and
Kramer 2005). Furthermore, in the laboratory study of Papanicolaou et al (2003),
where the effects of sediment gradation were eliminated via the use of unisize sed-
iment, cluster shape was observed to change with increasing bed shear stress under
conditions of limited sediment availability (Fig. 1B). This indicates that cluster
shape reflects the prevailing flow conditions. Cluster shape is also dependant on
the available entrainable sediment. In natural streams, in-line clusters are formed
when sediment of similar size nest together (Strom and Papanicolaou 2007) (Fig.
1A). Formation of cluster shapes, such as the pebble cluster, requires availability of
anchor particles and poorly sorted entrainable sediment (Brayshaw 1984, Reid et al
1992, Strom and Papanicolaou 2007). Therefore, characterization of cluster shape
could, in turn, provide insight to the underlying flow conditions and to the sediment
transport patterns in gravel streams. However, what is lacking is a method that can
characterize cluster shape in quantitative terms and relate it with the characteristic
cluster shapes of the cluster evolutionary cycle.

Shape description of natural objects in quantitative terms has been achieved
with fractal geometry. Fractal geometry (Mandelbrot 1977) was introduced for the
study of irregular, non-Euclidean objects or fractals. The irregularity of a fractal
is quantified via the fractal dimension, D, a positive non-integer number, which
strictly exceeds the topological dimension, DTOP of the fractal. DTOP always as-
sumes integer values and is equal to zero, one and two for objects represented as
points, lines and surfaces, respectively. For example, the fractal dimension, D, of an
irregular coastline is in the range 1 < D < 2, whereas DTOP = 1. D attains values
closer to two as the irregularity of the line increases.
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Most of the previous studies employing fractal shape descriptors (Orford and
Whalley 1983, Longley and Batty 1989, Andrle 1996) have focused on the fractal di-
mension of the outline, DL, of the examined objects. Some studies (Woronow 1981,
Lovejoy 1982) have utilized DAL, which is a fractal dimension different from DL, to
describe the shape of an object. DAL essentially expresses the scaling relationship
between the perimeter and the area of the same object observed at different levels
of detail (resolutions). A recent study (Cheng 1995) considered the areal fractal
dimension, DA, which corresponds to the areal projection (both the outline and the
included area) of the object. DA combines both DL and DAL of an object (Cheng
1995) and may provide a unique quantitative characterization of the object shape.
However, the potential of DA to characterize the shape of an object was obscured by
the complexity of the method for the DA estimation (Cheng 1995), which required
the prior estimation of both DL and DAL.

The goal of this research is to address the shortcomings of the Cheng (1995)
method. Specifically, the two objectives of the present study are: (1) to introduce
a practical method for the estimation of DA and (2) to utilize DA, in order to provide
a quantitative criterion suitable for the discrimination of the cluster shapes.

2. Methodology

2.1. Method and Data Selection

The methodological contribution of this study is that cluster DA is estimated by
applying the cell-counting method (CCM) (Dubuc et al 1989, Klinkenberg 1994,
Buczkowski et al 1998) to the areal projection of the clusters. The latter circumvents
the prerequisite estimation of DAL, which would require multiple area and perimeter
estimates of the same cluster at different levels of detail. Therefore, with the method
considered herein cluster DA is estimated in a simple and practical manner. The
functionality of the adopted method for the estimation of DA is further enhanced
by taking into account two advantages that the CCM has to offer. These are: (1),
the plethora of established and well-documented image analysis software packages
(e.g. ImageJ) that include a CCM algorithm, and (2) the simplicity of the CCM.
CCM only requires a binary (black and white) image, where the object of interest
is isolated (thresholded) from the background.

To meet the two objectives stated earlier, fabricated (synthetic) and laboratory
cluster datasets were employed. The analysis of the synthetic clusters with the CCM
would establish benchmark values of DA for each shape. The role of the laboratory
dataset is to illustrate the applicability of the CCM on quantitative cluster shape
characterization using the benchmark values as a reference.

The synthetic clusters were constructed via a drawing software package with
their shape corresponding to the characteristic cluster shapes observed by Papanico-
laou et al (2003) (Fig. 1B), i.e. triangle, rhomboid, comet and line shapes. Clusters
with triangle, rhomboid and comet shapes are hereafter collectively referred to as
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Fig. 2. Synthetic cluster shapes and the used coordinate system (A) rhomboid, (B) triangle
(C), (D), (E) comet clusters, (F), (G), (H) one, two and three particle wide line clusters,
respectively. Cluster “width” is measured along the Y-direction, (I) elimination of the inter-

stices between the circles

2-D or non-linear (in the sense of not being linear) clusters, because the clusters
having these shapes are of comparable dimensions along their two directions. Clus-
ters having linear shape are also referred to as 1-D clusters, because one of their
dimensions (width) is much smaller than the other (length).

The clusters of the laboratory dataset were formed during the experiments con-
ducted by Strom et al (2004), a continuation of the Papanicolaou et al (2003) study.
The laboratory clusters consisted of unisize spherical glass beads 8 mm in diameter
and were formed atop a planar bed, consisting of identical spherical glass beads.
This laboratory setting eliminated the variability of the clusters in the vertical di-
rection and allowed the study of the horizontal projection of the laboratory clusters

2.2. Development of the Fabricated (Synthetic) and Laboratory Cluster
Images

Multiple solid circles, 8 mm in diameter, were drawn via the CorelDraw software
to fabricate different cluster shapes based on the experiments of Papanicolaou et
al (2003). The multiple solid circles were aligned so as to form synthetic clusters
having rhomboid shape (Fig. 2A), triangular shape (Fig. 2B), comet shape (Fig. 2C,
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2D and 2E) and linear shape. The linear synthetic clusters could have a width (along
the Y direction) of one, two or three particles (Fig. 2F, 2G and 2H, respectively). The
complete synthetic cluster dataset consisted of five rhomboid clusters, five triangle
clusters, nine comet clusters and 16 line clusters, giving a total of 35 clusters. The
synthetic clusters of each shape were constructed so as to have similar sizes to the
laboratory clusters. The drawing of each synthetic cluster was exported as a black
and white image with resolution of 1000 dpi, in which clusters were represented
by black pixels and the background with white pixels. The image dimensions were
adjusted such that 1 pixel in the cluster images would represent a physical length
of 1 mm in every direction of the cluster image. The interstices between the beads
were colored black (Fig. 2I) to ensure that the cluster is treated by the software
as one single object. The synthetic cluster properties including cluster area, Ac,
lengths of the sides of the cluster bounding rectangle, Lmax and Lmin and lengths
of the major and minor axes of the best fitting ellipse (denoted as Mmax and Mmin,
respectively) were determined via image analysis. An elongation ratio, E.R., for the
synthetic linear clusters was calculated as the ratio Lmax/Lmin.

The laboratory clusters considered herein were produced at the final stage of
six test runs from the flume experiments of Strom et al (2004), when the bedload
rate had stabilized. This way clusters represent a condition of bed equilibrium.
Grayscale plan view images depicting the clustered flume bed were used as raw
data (Fig. 3A). The images were imported to the public domain software ImageJ
(Rasband 1997), where the images were converted to physical length dimensions
by specifying the pixel to physical length ratio on the image. The coordinates of
the center of each bead in the default coordinate system of the software (Fig. 3A)
were manually determined. The clustered beds were plotted as graphs (Fig. 3B).
The centers of all the cluster beads were converted to solid circular marks with
diameter of 8 pixel units (Fig. 3C). The graphs of the clustered beds were exported
as black and white images with a resolution of 1000 dpi and their final dimensions
were adjusted so that 1 mm of the laboratory clusters would be represented by 1
pixel (Fig. 3D). In these images, pixels corresponding to particles were of black
color, while pixels corresponding to the flume bed were of white color.

“Loose particles” were deposited in the wake regions of existing clusters, due to
sheltering effects provided by the existing clusters. Based on the Reid et al (1992)
definition, it was reasonable to consider that the “loose particles” are part of the
clusters. In the laboratory cluster images, the black pixels representing the “loose
particles” were separated from the black pixels representing the existing clusters
by white areas. In order to ensure that the “loose particles” were treated as part
of the cluster by the software, the white areas were manually colored black (Fig.
3E). Attention was taken not to eliminate the detail of the cluster outline and alter
the overall cluster shape. The laboratory cluster geometric properties (Ac, Lmax,
Lmin, Mmax, Mmin) were determined via image analysis. The E.R. for the laboratory
clusters was calculated as the ratio Mmax/Mmin. The laboratory clusters were each
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Fig. 3. Laboratory cluster methodological steps (A) reconstructed plan view image of a clus-
tered flume bed. Flow is from right to left, (B) graph of the clustered flume bed, (C) conver-
sion and redimensioning of the markers representing the bead centers of two clusters, (D)
binary image of the clustered flume bed (E) elimination of the white space corresponding

to the cluster wake regions

classified by, means of visual comparison with the characteristic cluster shapes
identified by Papanicolaou et al (2003) (Fig. 1B), into one of the four characteristic
cluster shape categories. Visual characterization of cluster shape was not feasible
for 30 of the 123 laboratory clusters.

2.3. Application of the Methodology to the Dataset

The laboratory and the synthetic cluster images were imported to the public domain
software FracLac (Karperien 1999–2007) for cell counting analysis. The number
of cells, N(µ), of varying size µ required to cover the cluster is recorded (Fig. 4).
The minimum cell size used was equal to 2 pixel units to account for the cluster
boundary crenellation having a characteristic size of 8 pixels. The maximum cell
size was set equal to 50% of the object size, Lob j (Klinkenberg 1994, Karperien
1999–2007). Lob j is defined herein as the length of the greater side of the cluster
bounding rectangle and is, thus, equal to Lmax. A linear progression of cell sizes
to span between the minimum and the maximum cell sizes was used (Dubuc et al
1989, Buczkowski et al 1998). The cell counting was repeated four times for each
synthetic and laboratory cluster with a different origin point of the cell grid in order
to eliminate the dependence of N(µ) on the grid starting point (Buczkowski et al
1998).
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Fig. 4. Cell counting method for (A) a rhomboid cluster and (B) a linear cluster, one particle
wide. For better visualization, the cell grid is drawn slightly larger than the largest side of

the cluster

Fig. 5. Representative plot of Log(N(µ)) vs. Log(µ) (A) before the removal of the horizontal
band and (B) after the removal

The logarithm of N(µ) is plotted against the logarithm of µ. A first application
of the method revealed that the Log(N(µ)) vs. Log(µ) datapoints form a horizontal
region for larger cell sizes (Fig. 5A). The latter observation suggests that cell sizes
within the horizontal region are too large to detect the irregularity of the cluster and
thus the cluster is perceived as a smooth Euclidean object (Kaye 1986, Whalley and
Orford 1989). Therefore, the Log(N(µ)) vs. Log(µ) datapoints within the horizontal
region should not be considered for the estimation of DA. The horizontal region
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is visually identified and removed from the plots (Fig. 5B). DA is calculated as
negative the slope of the best linear fit to the remaining datapoints calculated via
least squares regression (Fig. 5B). The ordinate intercept terms, bA, of the regression
line are also recorded.

3. Results

The distribution of DA for each characteristic shape of the synthetic clusters, is
given in Fig. 6. Only one particle wide clusters (Fig. 2F) are considered for the
DA distributions depicted in Fig. 6, since one particle wide clusters align with
the linear cluster shape observed by Papanicolaou et al (2003) (Fig. 1B). Triangle
and rhomboid clusters have different ranges of DA values. Comet clusters have
greater variability of DA values than triangle and rhomboid clusters. Although the
higher DA values of comet clusters overlap with DA values of rhomboid clusters,
the comet and the rhomboid clusters have different median values. Line clusters
have DA values between 1.44 and 1.58, which do not overlap with the DA values of
the other cluster shapes. Therefore, DA can quantitatively discriminate between the
different cluster shapes. In addition, the non-linear clusters (i.e. rhomboid, triangle
and comet) have similar DA values, which are differentiated from the DA values
of the linear clusters. This suggests that similar processes are responsible for the
formation of the non-linear clusters as opposed to the linear clusters. However, the
high median DA value of the linear clusters, which approaches the DA values of the
non-linear shapes, indicates that DA can also capture the succession of the cluster
shapes, which is in agreement with the evolutionary cycle of laboratory clusters, as
observed by Papanicolaou et al (2003). Linear clusters, which have the lowest values
of DA, are the cluster shape formed for the lowest bed shear stress. As shear stress
increases, line clusters capture incoming sediment and evolve into comet clusters,
which have the next higher values of DA. With further increase in bed shear stress,
the triangle clusters, with the highest DA values, are formed. As the bed shear stress
increases further, the triangle clusters turn into rhomboid clusters, which present
the most stable shape with slightly lower DA values prior to the disintegration of
clusters (Papanicolaou et al 2003). It is, thus, suggested that DA can also delineate
changes in the prevailing flow conditions, which are reflected with the different
cluster shapes.

The DA values for the complete line cluster dataset plotted against the line
cluster E.R. are presented in Fig. 7. Fig. 7 reveals that when E.R. is less than
roughly five, the DA of linear clusters is initially comparable with the DA of the
non-linear clusters, but decreases with increasing line cluster E.R. Above the E.R.
threshold value of five, the DA of linear clusters does not change substantially. This
indicates that linear clusters with E.R. less than five behave more like non-linear
(2-D) clusters. Only line clusters with E.R. larger than five may be considered to
have sufficiently larger length than width to be characterized as linear (or 1-D)
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Fig. 6. Distribution of DA per cluster shape considering only one particle wide line clusters.
The bottom, middle and top box lines are the 25th, 50th and 75th percentiles, respectively.

Bottom and top whiskers are the 5th and 95th, respectively

Fig. 7. Variation of DA for linear clusters with cluster E.R.
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clusters. This finding also implies that cluster E.R. values should be reported along
with DA, when DA is used to characterize cluster shape.

The distributions of the ordinate intercept terms bA for each characteristic shape
are given in Fig. 8. Rhomboid clusters have a very narrow distribution of bA values,
which are also the lowest among the 2-D cluster shapes. Triangle clusters have
the highest values of bA. Comet clusters are the 2-D cluster shape with largest
variability in bA values. The bA median value is between bA values of rhomboid
and triangle shapes, while the distribution shows a tail which overlaps with the
bA values of triangle clusters. The line clusters have the lowest values of bA and
the greatest variability of bA values. Therefore Fig. 8 shows that bA values are
dictated by cluster shape. It could be argued that bA captures a scale-independent
aspect of the roughness length magnitude of each cluster shape. A similar finding
was reported by Klinkenberg (1992), when investigating landscape roughness. The
triangle shape has the greatest irregularity and hence the largest values of bA among
the 2-D shapes. The most “aerodynamic” 2-D shape is the rhomboidal, which has
the lowest bA values of the 2-D shapes. The comet shape is in-between the triangular
and the rhomboid shapes and thus has bA values between the values of the triangle
and rhomboid shapes.

Fig. 8. Distribution of bA per cluster shape. The bottom, middle and top box lines are the
25th, 50th and 75th percentiles, respectively. Bottom and top whiskers are the 5th and 95th

percentiles, respectively

Line clusters have bA values which span from values comparable to ones of
non-linear clusters to much lower values. A plot of bA with the E.R. of linear clusters
(Fig. 9) shows that bA is correlated with the E.R in the case of line clusters. When
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Fig. 9. Variation of bA with cluster elongation ratio, E.R., for linear clusters only

E.R. is roughly equal to one, cluster shape resembles the square shape, which is
less “aerodynamic” than the triangle shape. Therefore, line clusters with E.R. close
to one present greater bA values than 2-D clusters. As line clusters become more
elongated, their roughness decreases until E.R. becomes greater than roughly five.
Beyond the threshold value of E.R. equal to five, DA shows very small variation.

In order to employ the synthetic cluster results for the classification of the
laboratory clusters into the characteristic shape categories, all three parameters, i.e.
DA, bA and E.R. of the laboratory clusters should be considered. Therefore, the DA
and bA values of each laboratory cluster are compared with the benchmark DA and
bA values, respectively (Figs. 6 and 8), of the synthetic clusters having similar E.R.
A laboratory cluster is classified to a characteristic shape category only if both DA
and bA classify the laboratory cluster to the same shape category. Otherwise, the
cluster is considered as unidentified. The outcome of the cluster shape taxonomy
with the proposed areal method is presented in Table 1.

The shape characterization of the majority (84%) of the clusters yielded by
the areal method was confirmed via visual observation. Consequently, the shape of
these clusters is objectively determined. For the remaining 16% of the laboratory
clusters, the areal method did not agree with the visual observation with respect
to the characterization of cluster shape. A more in-depth examination revealed that
87% of the clusters of this category were visually identified as comet clusters, while
the employed areal method classified them either as linear or rhomboid. It is, thus,
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Table 1. Comparison of the areal method (denoted as “A”) and the visual observation
(denoted as “V”) for the laboratory clusters

Visual ID possible No visual ID possible
Category V, A V, A ID with A NO ID

agree disagree
Sum

but not V with V or A
Sum

Cluster No. 78 15 93 13 17 30
Cluster % (of category) 83.87 16.13 100 43.33 56.67 100
Cluster % (of total) 63.41 12.20 75.61 10.57 13.82 24.39

suggested that the comet shape is a transitional stage between linear and non-linear
shapes during cluster evolution (Fig. 6).

Approximately 25% of the 123 laboratory clusters could not be identified visu-
ally. The areal method classified roughly half of these laboratory clusters as linear,
whereas the shape of the remaining half could not be identified. This result implies
that the clusters of this category do not exhibit the characteristics of each charac-
teristic cluster shape at degree that would allow cluster shape classification either
with the areal method or visually. This could be an indication that the laboratory
clusters of this category are in a transitional stage of their shape evolutionary cycle.

4. Conclusions

The present study introduced a method for the characterization of cluster shape
in quantitative terms based on concepts of fractal geometry. The cell counting
technique was utilized for the estimation of the cluster areal fractal dimension, DA,
of fabricated clusters with well-defined shapes and laboratory-generated clusters.

The main contribution of this study is that the proposed method utilizing cluster
DA successfully led to the characterization of laboratory clusters, mimicking natu-
rally occurring clusters. At the same time, the findings of this study highlighted the
importance of the cluster E.R., which has not been considered before for cluster
characterization.

Characterization of cluster shape is of key importance, when modeling flows
over microroughness elements such as clusters. Knowing the characteristic DA,
adjustments to the grid size distribution of numerical models can be performed. Grid
size should be adjusted to represent the geometric attributes of clusters. Quantitative
shape information is also important for the selection of the appropriate model for
each cluster type. For example, a 2-D cluster shape would require a 3-D model
for the resolution of the turbulent flow field around a cluster (Strom et al 2007),
whereas in the case of an 1-D cluster a 2-D model would still give meaningful
results. Furthermore, knowledge of cluster shape could improve the interpretation
of the results from such models, since the shape of roughness elements significantly
affects their surrounding turbulence patterns (Schlichting 1936).
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With that line of thinking, the impact of this research will be broader, with impli-
cations that extend beyond cluster shape characterization. Hence, the cell counting
method as proposed here could be important for pattern recognition studies of
stream reaches with other ubiquitous bedforms (e.g. bifurcate bars) and for per-
forming dynamic surveys of gravel bed rivers throughout of a hydrologic cycle.
Further research will explore the utility of CCM in natural gravel bed streams.
Images of the bed will be reconstructed by the use of a LIDAR system.
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