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Abstract. In this paper the problem of transient gravitational wave propagation in a viscous
compressible fluid is investigated. The problem is formulated in the Lagrangian description
and is solved numerically by a finite element method. In computations either fixed in space or
moving meshes that follow the material fluid particles are used with the purpose to compare
their numerical performance. As illustrations, results of numerical simulations carried out
for plane flows in a domain of simple geometry are presented. First, the finite element
results are compared with available experimental data for the case of small-amplitude waves
in order to validate the numerical model. Then, the problem of large-amplitude transient
water wave propagation over a horizontal bottom, involving the wave reflection at a rigid
wall, is considered. For the flow parameters typical of a laboratory flume, the evolution of
the free-surface elevation and the time variations of the surface displacements at chosen
locations are shown for a range of different moving wall amplitudes and excitation times.

Key words: Newtonian viscous fluid, gravitational wave, transient problem, Lagrangian for-
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Notations

b – body force vector;
c – speed of sound;
d∗ – wave-maker horizontal displacement amplitude;
D – strain-rate tensor;
F – referential deformation gradient tensor;
G – spatial deformation gradient tensor;
g – acceleration due to gravity;
H – still water depth;
I – unit tensor;
J – deformation Jacobian;
K – compressibility modulus;
L – water flume length;
L – spatial velocity gradient;
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n,N – unit normal vector in spatial and referential coordinates;
p – hydrostatic pressure;
s, S – unit tangent vector in spatial and referential coordinates;
t – time;
t∗ – characteristic time scale;
u – fluid velocity vector;
x, X – spatial and referential position vectors;
∇2 – Laplacian operator;
Φ j ( j = 1, 2, 3) – interpolation functions;
κ, µ – fluid viscosities;
%, %0 – current and referential fluid densities;
σ – Cauchy stress tensor.

1. Introduction

Numerical simulations of fluid flows are traditionally based on the Eulerian (or
spatial) formulation of the governing equations. This approach has been successful
in solving a large variety of problems in fluid mechanics, in particular the flow
problems involving domains with fixed boundaries. The method has also been
successful in dealing with certain problems in which part of the fluid domain
boundary moves, and a classical example of such a problem is the gravitational
water wave propagation phenomenon (Idelsohn et al 1999, Van Brummelen et al
2001). However, in problems in which the flow domain geometry changes rapidly
in time, as, for instance, the shape of the liquid free surface or the shape of the
liquid–engineering structure interface, and when complex non-linear phenomena
occur, the Eulerian description encounters serious limitations and often turns out
inadequate. The latter is largely due to difficulties associated with the sufficiently
accurate tracing of the fluid domain moving boundaries, which is required for
maintaining the stability of numerical schemes applied. For this reason, a natural
way of solving fluid flow problems in which changing spatial domains occur is to
apply the Lagrangian description, in which individual fluid particles are followed
during an analysis. Compared to the spatial description, the Lagrange method has
a potential of increased numerical stability due to the lack of convective terms
appearing in the momentum equations in the Eulerian schemes. Additionally, the
treatment of boundary conditions is much easier in the Lagrangian formulation, as
they are imposed on material surfaces, that is the surfaces which do not move in
fixed referential coordinates. With an idea to exploit the above advantages of the
Lagrangian method, more and more attempts to employ this approach have been
made over the past two decades, usually within the framework of the finite element
method (Ramaswamy and Kawahara 1987, Radovitzky and Ortiz 1998, Feng and
Perić 2000, Parrinello and Borino 2007). However, the numerical implementation
of the Lagrangian approach encounters serious difficulties. These are due to very
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large deformations and their rates that typically occur in liquid flows. Such large
deformations are very hard to capture in any method in which a discrete mesh of
a fixed (that is unchanged through computations) topology is used. Thus, to improve
the numerical performance of the conventional Lagrangian method, one can modify
it by either introducing a deformable mesh whose nodes move together with selected
material particles, or by applying a technique of adaptive remeshing. This, however,
usually gives rise to large distortions of the mesh (with highly degenerated cells)
in the former case, or increases significantly computational costs in the latter case.

In order to overcome the afore-mentioned numerical problems occurring in
the methods based on the Lagrangian description, a number of new promising
variants of the method have been recently developed. Among them is the Arbitrary
Lagrangian-Eulerian (ALE) method used by Braess and Wriggers (2000), Souli and
Zolesio (2001) and Rabier and Medale (2003), in which the numerical grid imposed
on the fluid domain moves in some arbitrary (that is unphysical) way to ensure that
the distortion of individual grid cells is minimized. In this way the numerical sta-
bility is improved, allowing longer time steps to be applied. A qualitatively distinct
Lagrangian approach is that based on so-called Particle Methods, in which all the
physical properties of the continuum are represented by a discrete collection of
material particles that are followed during a computation. To this group of methods
belong, in particular, the Finite Point Method (FPM) applied in fluid mechanics
by Oñate et al (1996a, b), Löhner et al (2002) and Ortega et al (2007), and the
Particle Finite Element Method (PFEM) employed by Idelsohn et al (2003, 2004),
Aubry et al (2005) and Idelsohn et al (2006) to analyse incompressible viscous
fluid flows. While the FPM represents a fully meshless approach, the PFEM is
a mesh-based approach in which, in order to evaluate interaction forces between
individual particles, a new mesh is generated at each time step to connect those
particles.

Very recently, Del Pin et al (2007) have proposed a method in which the PFEM
and the ALE approaches are combined in such a way that the first, particle method,
is used to describe fluid particles on the free surface and the fluid–structure interface,
while the latter, ALE method, is applied to the rest of the fluid domain, on which
a moving grid is imposed. This hybrid method has enabled the solving of such
numerically challenging problems as water sloshing in a tank, dam collapse, wave
breaking on a beach due to shoaling, and falling of solid bodies into a water
container.

In the present work, the Lagrangian formulation is used to analyse the tran-
sient problem of non-linear free-surface waves propagating in a viscous fluid by
applying a mesh-based finite element method. The fluid is treated as a Newtonian,
compressible, barotropic liquid, the properties of which are described by two vis-
cosity parameters. The surface waves are assumed to be generated by the motion of
one of rigid boundaries enclosing the fluid domain, on which the displacements are
prescribed. Numerical simulations are conducted for plane flows in a finite domain
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of simple geometry. Time integration of the ensuing semi-discrete system of equa-
tions is carried out by applying the weighted residual θ-method, with the Picard
iterative method used to ensure the solution convergence. For illustration purposes,
an idealized case of the transient water wave propagation over a horizontal bed, with
the liquid initially occupying a rectangular domain, is investigated. The initially still
liquid is set in motion by moving a vertical rigid wall situated at one of the ends of
the water domain. In the numerical method developed, two different mesh strategies
are explored in order to examine their numerical performance. In the first approach,
the discrete mesh, once generated for the initial material configuration, is kept fixed
in space throughout the computations. In the second approach, the mesh is updated
after each discrete time step, by attaching the discrete nodes to a set of selected
fluid material particles, and moving these nodes accordingly as the particles change
their spatial positions in time.

The outline of the paper is as follows. In Section 2 the governing equations,
describing the behaviour of a general class of two-viscosity Newtonian compressible
fluids, and formulated in the Eulerian description, are summarized. These equations
are subsequently transformed into the Lagrangian forms in Section 3. The following
Section 4 is devoted to the finite element formulation of the problem, including
the spatial discretization and time integration methods. Then, in Section 5, a few
numerical examples for the transient water wave propagation problem are presented,
starting from a comparison between experimental data and FE results, and finally
some conclusions are given in Section 6.

2. Problem Statement

Let introduce rectangular Cartesian coordinate system with origin O and coordinate
axes xi (i = 1, 2, 3), and let t denote time. A fluid particle position at time t relative
to the chosen coordinate frame is defined by a vector x with components xi(t),
and the current particle velocity is given by a vector u with components v j (xi, t),
(i, j = 1, 2, 3).

The law of mass conservation expressed in the adopted current (spatial, or
Eulerian) reference frame Oxi is given by the continuity equation

D %
D t
+ % div u = 0, (1)

where % is the fluid density, D /D t denotes the material (convected) time derivative,
and div denotes the spatial divergence operator.

Linear momentum conservation balance, in the presence of body forces, yields
the Cauchy equation of motion

%
D u
D t
= divσ + %b, (2)

in which σ is the Cauchy stress tensor and b denotes the body force vector.
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The fluid under consideration is assumed to be isotropic, viscous and compress-
ible. The present analysis is restricted to the class of Newtonian viscous fluids, the
physical behaviour of which is described by the following constitutive law (Chad-
wick 1999):

σ =
[
−p +

(
κ − 2

3µ
)
tr D

]
I + 2µD. (3)

In the above relation, p is the hydrostatic pressure, κ and µ are, respectively, the
bulk and shear viscosities, I is the unit tensor, tr denotes the trace of a tensor, and
D denotes the strain-rate tensor. The latter is defined as a symmetric part of the
spatial velocity gradient, L, by means of

L = grad u, D = 1
2

(
L + LT

)
, (4)

where the superscript T denotes the tensor transpose, and grad stands for the spatial
gradient operator. In components, equations (4) read

Li j =
∂vi
∂x j
, Di j =

1
2

(
∂vi
∂x j
+
∂v j

∂xi

)
, (i, j = 1, 2, 3). (5)

Substitution of the stress expression (3) into the equation of motion (2) yields
the Navier-Stokes equation in the form:

%
D u
D t
= −grad p + µ∇2u +

(
κ + 1

3µ
)
grad div u + %b, (6)

where ∇2(·) = div [grad (·)T ] is the vector Laplacian operator in the spacial descrip-
tion.

In general, the pressure p and the viscosities κ and µ can depend on the fluid
density and temperature, as well as on invariants of D. In this work, however, only
isothermal flows are considered; that is, the effects of temperature are neglected.
Further, the fluid viscosities are supposed to be constant (independent on % and
D), and the fluid motion is assumed to be barotropic, in which case the pressure is
entirely determined by the fluid density. The pressure dependence on the density is
adopted in the form commonly employed in water flow problems, namely,

D %
D t
=

1
c2

D p
D t
, (7)

with c being the speed of sound. On substituting the latter relation into (1), the
mass conservation equation becomes

D p
D t
+ K div u = 0, (8)

where K = %c2 is the fluid compressibility modulus.
In order to complete the problem statement, initial and boundary conditions

must be specified. It is supposed that the fluid motion starts at time t = 0, and
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at t ≤ 0 the fluid velocities are zero, u = 0, and the stress in fluid is that of the
hydrostatic pressure, σ = −pI. The boundary condition are adopted in the standard
forms:

n · (σn) = tn and s · (σn) = ts on Γσ ,
u · n = vn and u · s = vs on Γv ,

(9)

where tn and ts are prescribed traction vector components normal and tangential to
the boundary Γσ, vn and vs are prescribed velocity components normal and tangential
to the boundary Γv, and n and s denote unit vectors normal and tangential to the
respective boundaries. In most common situations, the boundary Γσ is identical
to the fluid free surface on which the traction forces are due to the action of
atmosphere, while Γv defines all solid (usually treated as rigid and impermeable)
boundaries on which the fluid velocity components are determined by kinematical
conditions imposed on the fluid–solid system.

3. Lagrangian Description of the Problem

In conventional fluid mechanics approach, the system of the Navier-Stokes and
continuity equations, (6) and either (1) or (8), with relevant boundary conditions
specified in (9), is solved in the spatial coordinate frame Oxi, describing thus the
motion of a fluid in its current (deformed) configuration. In order to follow the
motion of individual material particles of a fluid, a fixed in space reference frame
is introduced, which defines the positions of material particles at a reference time
t = 0. Hence, a fixed rectangular Cartesian coordinate frame with the origin O
is adopted. Let X denote the position vector, with components Xi (i = 1, 2, 3),
describing a fluid particle position relative to O at the reference time; that is, x = X
at t = 0. As the flow proceeds, at a subsequent time t > 0 the particle moves to a new
position x = x(X, t). The way the particle moves in relation to its neighbourhood,
measured in the referential (material, or Lagrangian) coordinates Xi, is described
by the deformation gradient tensor, F, defined by

F(X, t) = Grad x(X, t), Fi j =
∂xi

∂X j
, (i, j = 1, 2, 3), (10)

where Grad denotes the referential (material) gradient operator. We also introduce
an inverse tensor

G(x, t) = F−1(x, t) = grad X(x, t), Gi j =
∂Xi

∂x j
, (11)

defining the spatial deformation gradient tensor. Necessarily, due to smoothness
conditions imposed on the functions x(X, t) and X(x, t) (Chadwick 1999),

J = det F = (det G)−1 > 0, (12)
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with J = 1 at the initial, undeformed configuration, in which F = G = I.
In principle, all the equations set in the spatial coordinates xi in the previous

section can be derived in the referential coordinates Xi by using the mapping x =
x(X, t) and the definitions (10) and (11). In particular, the gradient and divergence
operators expressed in both coordinate systems are connected through the following
identities (Chadwick 1999, Liu 2002):

Grad φ = FTgrad φ, Grad a = (grad a)F,

Div a = J div
(
J−1Fa

)
, Div A = J div

(
J−1FA

)
,

(13)

where grad and div refer to the current, and Grad and Div to the reference
configurations, respectively. In Eq. (13), φ, a and A denote, in order, arbitrary
scalar, vector and second-order tensor fields. Further, the unit normal and tangent
vectors, n and s, appearing in the boundary conditions (9) specified in the spatial
description, are related to their respective referential counterparts N and S by the
formulae

n =
GT N∣∣∣GT N

∣∣∣ , s =
GT S∣∣∣GT S

∣∣∣ . (14)

The application of the above transformation relations is the most consistent
method of transferring the spatial forms of the flow equations into the respec-
tive referential forms. However, proceeding it this way gives rise to equations of
a complicated structure. For this reason, an alternative approach is pursued here,
in which the Navier-Stokes and continuity equations are expressed in components,
instead of in tensorial forms (6) and (8), and then all the spatial derivatives are
transformed into the corresponding referential derivatives by applying the chain
rule of partial differentiation (or, equivalently, by employing Eq. (l3)1), and making
use of the definition (11). Accordingly, for any scalar quantity φ, including a vector
component, the required transformation formula is given by

∂φ

∂xi
=
∂φ

∂X j

∂X j

∂xi
= G ji

∂φ

∂X j
, (i, j = 1, 2, 3), (15)

where the summation convention for a repeated subscript is adopted.
Material time derivatives D /D t in the spatial description become the partial

time derivatives ∂/∂t at fixed X in the referential description. Hence, on using the
relations (15) in (6) and (8), the Navier-Stokes equation expressed in components
becomes

J−1%0
∂vi
∂t
=−G ji

∂p
∂X j
+ µG jmGkm

∂2vi
∂X j ∂Xk

+

+
(
κ + 1

3µ
)

G jmGki
∂2vm
∂X j ∂Xk

+ J−1%0bi ,

(16)
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and the continuity equation takes the form

K−1J
∂p
∂t
+G jk

∂vk
∂X j
= 0, (17)

where it has been assumed that the compressibility modulus K is independent of
the fluid density. In derivation of the above two expressions, use has been made of
the identity

J =
%0

%
, (18)

with %0 denoting the fluid density in the referential configuration. Obviously, J ≡ 1
in the case of an incompressible fluid. The equations (16) and (17) are supplemented
by the boundary conditions expressed in the referential coordinates Xi in terms of
the unit vectors N and S, replacing the vectors n and s in the conditions (9).

The relations (16) and (17) express the momentum and mass balances in terms
of the current components of the deformation tensor G, the inverse of F. In view
of the definition (10), since in the referential description the gradient and the time
derivative commute, the following relation holds

∂Fi j

∂t
=
∂

∂t

(
∂xi

∂X j

)
=
∂ẋi

∂X j
=
∂vi
∂X j
, (19)

where the superimposed dot denotes the time derivative. The latter equation de-
scribes the evolution of F, and hence of G, in terms of the referential velocity
gradient Grad u, and is used here to calculate, by time integration, the changes in
the deformation gradient components as the deformation (flow) proceeds, starting
from the initial configuration in which F = G = I.

The set of partial differential equations (16) and (17), complemented by bound-
ary conditions defined in the referential coordinates, describes the flow problem
in terms of the pressure p and the velocity components vi (i = 1, 2, 3). This set of
equations is solved numerically by applying a finite element method.

4. Finite Element Formulation

The present analysis is restricted to two-dimensional flows. Hence, plane spatial and
referential rectangular coordinate systems Ox1x2 and OX1X2 are adopted, in which
the axes x1 and X1 are directed horizontally, and the vertical axes x2 and X2 are
directed upwards, see Figure 1. Accordingly, all the subscripts (i, j, k and m) in the
problem equations take the values 1 and 2. It is assumed that the only body force
acting in the system is that due to gravity, so the vector b has the components b1 = 0
and b2 = −g, with g being the gravitational acceleration. The stress state in the fluid
is measured here relative to the atmospheric pressure (treated as constant), and it is
assumed that there are no forces acting tangentially to the free surface. Therefore,
the fluid free surface boundary Γσ is treated as traction-free; that is, both tn and
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Fig. 1. Plane free-surface fluid flow problem definition

ts are zero in (9). The solid boundary Γv enclosing the fluid domain is assumed
rigid and impermeable. Hence, the velocity component vn, normal to the boundary,
is either zero on motionless parts of Γv, or is a prescribed time-dependent quantity
on moving parts of Γv. Slip conditions are assumed along the whole boundary Γv,
therefore no constraints are imposed there on the tangential velocity component vs.

In the plane flow case, the components of the deformation gradient tensors F
and G = F−1 are related by

G = J−1
(

F22 −F12
−F21 F11

)
, J = det F = F11F22 − F12F21 . (20)

The finite element solution of three differential equations (16) and (17) for p,
v1 and v2 is based on a weak formulation of the latter equations, and the method
of weighted residuals, or the Galerkin, method is applied in which the governing
equations are satisfied in an integral mean sense (Zienkiewicz and Taylor 1989).
The details concerning the problem discretization and the time integration method
are described below.

4.1. Spatial Discretization

The problem is discretized in space by using a mesh of triangular elements. Since
in the momentum balance differential equations (16) the spatial derivatives of the
velocity components are by one order higher than the spatial derivatives of the
pressure, the velocity field is approximated by polynomial functions that are by one
order higher than the polynomials approximating the pressure field. The simplest
triangular finite elements allowing such approximations are adopted, in which the
unknown discrete values of the velocity components are defined in the three triangle
vertices, whereas the discrete value of the pressure is defined in one node, located
at the triangle barycentre, as depicted in Figure 2. Thus, in each element there are
seven discrete quantities to be calculated, six velocity components and one pressure
value. Linear variation of the velocity field u(X, t) within the element is assumed,
while the fluid pressure p(X, t) is assumed to be constant throughout an element
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Fig. 2. Triangular element with three velocity nodes and one pressure node

area (in consequence, the velocity field is continuous at the element boundaries,
whereas the pressure field is discontinuous there). In terms of the nodal parameters
U j , W j ( j = 1, 2, 3) and P4 (shown in Fig. 2), the velocity and pressure fields within
an element are approximated by means of the formulae

v1(X1, X2, t) = Φ j(X1, X2) U j(t) ,

v2(X1, X2, t) = Φ j(X1, X2) W j(t) , ( j = 1, 2, 3),

p(X1, X2, t) = P4(t),

(21)

where Φ j ( j = 1, 2, 3) are linear interpolation (shape) functions, for which standard
representations are adopted here, in which simply Φ j = L j , with L j ( j = 1, 2, 3)
being dimensionless triangular area coordinates (Zienkiewicz and Taylor 1989).

By applying the typical finite element routine, the variables v1, v2 and p en-
tering the momentum and mass balance equations, (16) and (17), are replaced by
the corresponding expansions (21), and the equations are multiplied by a set of
continuous and sufficiently smooth weighting functions. In the Galerkin method,
the latter functions are identical to the element interpolation functions, Φ j in our
case. The resulting relations are then integrated over the whole fluid domain; during
this process Green’s theorem is used to decrease by one the order of differentiation
of the shape functions. As a result, the problem transforms to the solution of a set
of algebraic equations which, in matrix notation, is expressed by

Cu̇(t) + Ku(t) = f (t), u(0) = u0 . (22)

The vector u comprises unknown nodal values of the velocities Ul and Wl and the
pressures Pl at all discrete points l of the system. This vector is composed of single
element vectors ue, each of them including seven nodal parameters:

ue = (U1,W1,U2,W2,U3,W3,P4)T . (23)
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The initial solution vector u0, defining the velocity and pressure fields in the fluid
at rest, is assembled from the element vectors ue

0 of the form:

ue
0 =

(
0, 0, 0, 0, 0, 0,P0

4

)T
, (24)

where P0
4 is the initial hydrostatic pressure p at the barycentre of a given element.

The matrices C and K are assembled from respective individual element ma-
trices, ce and ke respectively, in a way characteristic of the finite element method.
For the adopted elements, with seven degrees of freedom, the matrices ce and ke

have the dimensions 7 × 7 each. The non-zero entries in the element mass matrix
ce are defined by

ce
αβ = %0δi j

∫
A

J−1ΦrΦsdA (α, β = 1, . . . , 6), ce
77 = −K−1

∫
A

JdA, (25)

where

α = 2(r − 1) + i, β = 2(s − 1) + j, r, s = 1, 2, 3; i, j = 1, 2; (26)

δi j is the Kronecker symbol, and A denotes the plane domain of integration. The
non-vanishing components of the element damping matrix ke are given by

ke
αβ =

∫
A

∂Φr

∂Xk

∂Φs

∂Xm

[ (
κ − 2

3µ
)
GkiGmj + µ

(
δi jGknGmn +Gk jGmi

) ]
dA,

ke
α7 = −

∫
A

Gki
∂Φr

∂Xk
dA, ke

7β = −

∫
A

Gk j
∂Φs

∂Xk
dA (α, β = 1, . . . , 6),

(27)

with the index relations (26) applying again, and additionally m = 1, 2. The non-zero
components of the element forcing vector f e, of length 7, are

f e
α = %0

∫
A

J−1biΦrdA (α = 1, . . . , 6). (28)

Since in the above matrix definitions (25) and (27) ce
αβ = ce

βα and ke
αβ = ke

βα, and fur-
ther ke

α7 = ke
7β, all for α, β = 1, . . . , 6, the element matrices ce and ke are symmetric,

and therefore such are also the global matrices C and K.

4.2. Time Integration Scheme

Matrix equation (22) expresses a system of first-order differential equations in which
the matrices C and K and the loading vector f all depend on current deformation;
hence they depend, implicitly, on the unknown solution vector u. In order to in-
tegrate the equations, a number of standard algorithms, such as the single-step
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Newmark and Wilson θ methods, the multi-step Houbolt method (Bathe 1982),
or a family of so-called SSpj methods (Zienkiewicz and Taylor 1991) can be em-
ployed (the latter acronym stands for Single-Step with approximation of degree p for
equation of order j). All these schemes have been developed for dynamic systems
described by second-order differential equations. Even though they can be used
for solving first-order equations, such as (22), it is more straightforward to use
a numerical time-integration method that has been designed specifically for solving
first-order equations.

Accordingly, a single-step algorithm, known as the weighted average θ method
(which is different from the above Wilson θ method) has been applied to solve
equation (22). This algorithm is numerically identical to the SS11 method, the
simplest member of the SSpj family of methods. Depending on the value of the
parameter θ, the adopted method comprises a number of cases: the fully explicit
Euler scheme (when θ = 0), the Crank-Nicolson scheme (θ = 1/2), the Galerkin
scheme (θ = 2/3), and the fully implicit backward scheme (θ = 1). Application of
the θ-method to equation (22) results in the following relation that connects the
solution vectors un and un+1 on two consecutive time levels, tn and tn+1 ,

(C + ∆t θK) un+1 = [C − ∆t (1 − θ)K] un + ∆t f̄ n (n = 0, 1, 2, . . .), (29)

where ∆t = tn+1 − tn denotes the time step length. The vector f̄ n is the time-averaged
forcing vector which, assuming its linear variation from t = tn to t = tn+1, is given
by

f̄ n = (1 − θ) f n + θ f n+1 . (30)

Due to the variation of the C and K matrices as we proceed from the old time
level tn to the new level tn+1, the solution of (29) does not yield, in general, the
vector un+1 which satisfies the motion equation (22) at t = tn+1. Hence, (29) gives
only some prediction of the solution vector un+1 that needs further correction to
satisfy (22) as accurately as possible. Several methods are available to perform the
correction, that is to solve the non-linear set of equations represented by (29). The
most robust is the Newton-Raphson method which, as long as the initial solution
is sufficiently close to the actual solution, ensures quadratic rate of convergence.
However, this is achieved at the expense of an additional computational effort re-
quired to calculate a new jacobian (or tangent) matrix at each iteration. Here an
alternative method is employed in which the correct solution is sought by using the
direct (Picard) iteration method. This method converges at a slightly slower rate
(Zienkiewicz and Taylor 1991), but in return reduces the computer memory storage
and the overall computational cost. In the direct method the current approximation
to the solution vector ui

n+1 in (29) is immediately used to modify the matrices C and
K and the loading vector f̄ (dependent on current deformation) before proceeding
to the next iteration i + 1 (i = 0, 1, 2, . . .). By writing equation (29) in a form

Anwn+1 = qn, (31)
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where qn can be viewed as an effective loading vector acting during the
n-th time-step, the Picard method is described by the recurrence formula

Ai
n+1 w

i+1
n+1 = qi

n+1 (i, n = 0, 1, 2, . . .), (32)

where the starting values at the beginning of each time-increment are

A0
n+1 = An , q0

n+1 = qn ,

with analogous relations for C0
n+1, K0

n+1 and f 0
n+1. C0, K0, f 0 and w0 are the

initial values at the start of calculations, at t = 0. Having determined from (32) the
approximation wi+1

n+1, a current residual vector ri+1
n+1 can be evaluated from

ri+1
n+1 = Ai+1

n+1 w
i+1
n+1 − qi+1

n+1 . (33)

The iteration process is continued until some convergence condition is satisfied.
The latter has been adopted in the form

‖ri+1
n+1‖ 6 ε ‖q

i+1
n+1‖, (34)

where ‖r‖ = (rT r)1/2 and ‖q‖ = (qT q)1/2, and ε is a tolerance parameter. In the
computations the value ε = 10−7 was applied (which is considerably smaller than
the value of 10−4 suggested by (Zienkiewicz and Taylor 1991)), but usually a much
better convergence, with the relative error ‖r‖ / ‖q‖ of the order 10−9 to 10−10, was
achieved after four or five iterations.

5. Numerical Model and Simulations

5.1. FEM Model Description

The general-purpose FEM model constructed for solving two-dimensional problems
involving a class of viscous and compressible fluids, as described in the preceding
text, has been applied to simulate the phenomenon of transient free-surface wave
propagation in water. The numerical model has been implemented on a typical PC
with a single 2 GHz processor. One run of the program, for the input data detailed
below, required about six to eight hours of computation time.

The following material parameters, pertaining to water, have been adopted in the
simulations: the density %0 = 103 kg m−3, the shear viscosity µ = 1.01 × 10−3 Ns m−2,
the bulk viscosity κ = 0 (signifying the Stokes liquid), and the compressibility mod-
ulus K = 2.04 × 109 Pa.

The flow problem has been solved in a domain of a simple geometry, sketched
in Fig. 3, in which the liquid at rest occupies a rectangle of height H and length L.
The wall AB can move to generate the water flow, and the walls CD and AD are
fixed. Hence, the water horizontal velocity has been prescribed on the wall AB as
a function of time, while the horizontal velocity on the wall CD and the vertical



274 R. Staroszczyk

Fig. 3. Initial fluid domain geometry for a flow over the horizontal bottom

velocity on the wall AD are zero. The dimensions of the flow domain have been
assumed as those corresponding to a laboratory flume. Hence, H = 60 cm and L =
15 m have been adopted. The latter length parameter has been set to such a relatively
small value in order to analyse the problem of wave reflection at a vertical wall
CD at X = L occurring at times of the order of a few seconds, rather than tens
of seconds, so that the computational effort needed for the time integration of the
equations involved can be spared.

The fluid domain has been covered by a regular mesh of finite elements (see
Fig. 3). Several methods of discretization have been explored, with uniform as well
non-uniform spacings of nodal points in both, horizontal and vertical, directions,
and with different initial dimensions of the elements. The test simulations have
shown that, with the number of nodes along the vertical kept constant, making
the mesh denser near the free surface does not improve noticeably the accuracy
of numerical results. Also increasing the mesh density towards the maker, where
the largest changes in the velocity and acceleration fields take place, does not yield
any significant effect. Therefore, a mesh with uniform spacings in both the X and
Z-directions has been used. The results presented below (except a test case discussed
in Section 5.2) have been obtained with a mesh consisting of 10 ‘layers’ of elements
along the Z-axis, and 250 ‘columns’ of elements along the X-axis. Hence, the FE
mesh consisted of 5000 elements (each of the initial horizontal and vertical sides
equal to 6 cm), with the total number of 7761 nodes and 10522 degrees of freedom.
This particular mesh, in terms of its X-spacing, has been chosen on the basis of
numerical experiments conducted for a number of uniform grids. It has turned out
that making the grid denser does not practically affect the results; for instance, in the
case of 500 elements along the X-axis the maximum surface elevations, at chosen
times, differ by less than 0.3% from the respective results for 250 elements. On the
other hand, with the X-spacing decreasing, the accuracy of the results significantly
deteriorates. For instance, for the grid with 125 elements in the horizontal direction,
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the maximum surface elevations differ by more than 5% compared to the grid with
250 elements.

The time integration was performed by applying a constant-length time step
size ∆t = 10−3 s. The latter, assuming that the waves propagate with the velocity
∼ 3 m s−1 (which will be seen in subsequent illustrations), gives, for the undistorted
mesh, the value of the Courant number equal to about 0.05. This is a relatively small
number, but was required to maintain the numerical stability of the method applied
(a comparable magnitude of the Courant number was used by Radovitzky and
Ortiz (1998) in their numerical simulations of solitary waves). The time integration
was carried out until the time of 10 seconds (usually wave reflection occurred at
t ∼ 5 s), so 10000 time steps in total were required in the simulations, with three
or five iterations needed within each time step to attain a convergent solution. The
calculations were run with the weighting parameter θ in (29) of the values ranging
from 0.8 to 1.0. Smaller values of θ (approaching 0.5) resulted, in some cases, in
numerical oscillations to appear in the solutions obtained.

5.2. Model Validation

In order to validate the numerical model, its predictions have been compared with
the results of laboratory experiments conducted by Szmidt and Hedzielski (2007).
For comparisons, a set of measurements of the free-surface elevation variation
at a distance of 3 m from the wave-maker has been used. In that experiment, the
movement of water, of an initial depth of H = 0.6 m, was induced by an oscillatory,
piston-like translations of a vertical wall, carried out with an angular frequency of
2.90 s−1 (equivalent to a period of 2.17 s), generating a surface wave of a length
of 4.80 m = 8H , propagating with a velocity of 2.22 m s−1.

The FE element code was driven by the horizontal velocities calculated from the
corresponding displacements measured at the wave-maker wall. A uniform mesh
used in these test simulations consisted of 5 ‘layers’ of elements along the vertical
and 100 ‘columns’ of elements along the horizontal axis, so that the discrete system
had in total 1000 elements, 1606 nodes, and 2212 degrees of freedom. The time
integration was performed with the time increment ∆t = 10−2 s, which correspons,
for the initial, undistorted mesh, to the Courant number of about 0.15. The numerical
predictions and the experimental results are compared in Figure 4. The plot (a)
shows the time history of the horizontal displacements of the wave-maker, and the
plots in Fig. 4b, illustrate the evolution of the free-surface elevation at the chosen
space point (i.e., 3 m from the generator), with the solid line representing the FE
results, and the dashed line with the circles showing the experimental data. The
plots indicate a good agreement between the theoretical and experimental results.
The numerically predicted wave length compares well with that measured in the
flume. Some discrepancies between the numerical and actually measured extremal
surface elevations can be observed, but these are small — the maximum relative
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Fig. 4. Comparison of the FE model predictions with experimental data: (a) time variation
of the wave-maker horizontal displacements, (b) time variation of the free-surface elevation

at the distance of 3 m from the wave-maker

differences for the crest elevations are about 2%, and those for the troughs are
about 4%. Thus, on the basis of these results, the FE model has been deemed to
be constructed properly, before using it in more challenging applications than that
represented by the above case of a small-amplitude wave.

The numerical tests have shown that of the two mesh strategies mentioned in
Introduction, the second approach, in which the mesh is changed after each time step
to trace the changing positions of material particles, has proved to be much more
efficient and stable than the first approach, in which the mesh is kept unchanged.
Only in the case of very small waves, with the maximum elevations of the order of
one centimetre, the two methods can be regarded as comparable. For larger wave
heights, and these were by one order of magnitude larger in the cases examined in
the simulations described shortly, the method of evolving mesh turned out to be
much more advantageous. While in the first, fixed mesh, approach the numerical
model typically failed (due to the lack of convergence) within one to two seconds
from the start of flow, even with time steps as short as 10−4 s, the second method
maintained its numerical stability throughout the whole period of simulations. For
this reason, only the second, convecting mesh method was subsequently used in the
simulations.
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5.3. Illustrations

The objective of the numerical simulations was to predict the behaviour of a strongly
non-linear, large-amplitude, transient wave. To generate such a wave, much larger
displacements, and displacement-rates, of the wave-maker are required than those
actually available in the laboratory flume. For this reason, the model has been run
for an assumed motion of the wave generator, rather than using an experimental
input. Accordingly, it has been supposed in the simulations that the fluid is set in
motion by a piston-type wave-maker vertical wall AB situated at X = 0 (Fig. 3),
which performs a single translational movement by a distance of d∗ before it stops.
Hence, the following smooth function, with continuous first and second-order time
derivatives at t = 0, has been adopted for illustrations to describe the maker hori-
zontal displacement d0(t):

d0(t) = d∗
[
1 − exp

(
−τ3

)]
, τ = t/t∗, (35)

where t∗ is a characteristic time scale. The above relation yields the horizontal
velocity v0 and acceleration a0 time-variations expressed by

v0(t) =
d∗

t∗
× 3τ2 exp

(
−τ3

)
,

a0(t) =
d∗

(t∗)2 × 3τ
(
2 − 3τ3

)
exp

(
−τ3

)
.

(36)

The above three functions, in their dimensionless forms d0/d∗, v0 t∗/d∗ and
a0 (t∗)2/d∗, plotted against the normalized time τ, are depicted in Fig. 5.

Fig. 5. Assumed time variations of the normalized horizontal displacement, velocity and
acceleration generated by the wave-maker

Figure 6 illustrates the evolution of the free-surface elevation of a wave induced
by moving the maker wall by a distance of d∗ = 20 cm, with the value of the
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Fig. 6. Evolution of the free-surface elevation along the flume length, for the total
wave-maker horizontal displacement d∗ = 20 cm and the characteristic time t∗ = 0.5 s

characteristic time t∗ = 0.5 s. For such a movement, the maximum horizontal fluid
velocity at the maker surface is equal to ∼ 47 cm/s, and is generated at a time
of ∼ 0.44 s. The resulting wave has the maximum elevation, reached at t = 0.5 s
at the maker wall, equal to about 13.7 cm. The plots in the figure demonstrate
a characteristic pattern: a smooth shape of the front of the wave, followed by a train
of smaller-magnitude troughs and crests, with the surface elevation becoming more
and more irregular with an increase of the distance from the wave maker. This
clearly indicates the dispersive character of the wave generated, with smaller, and
hence slower, waves lagging behind the leading wave. Apart from the above physical
reasons, the irregularities of the free surface elevations near the moving wall can
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be obviously attributed, to some extent, to an insufficient spatial resolution of the
mesh, which is unable to capture the waves of the lengths of the order of a single
finite element size.

As can be seen in Figure 6, the reflection of the wave at the vertical wall
X = L = 15 m starts at a time of about 5 s. After that time, with the reflected
leading wave getting larger, an interaction between the waves travelling in opposite
directions occurs, giving rise to more variable free-surface profiles in the region
adjacent to the wall Z = L. These profiles, however, still retain their smooth shape
until the time when the leading reflected wave meets with the train of short and
irregular waves incoming from the wave-maker direction.

Corresponding to the latter figure are the plots in Figure 7, showing the time
variation of the free-surface profile, for t ≤ 5 s, and enabling better comparisons of
the relative changes in the wave magnitude with increasing time.

Fig. 7. Evolution of the free-surface elevation along the flume length for t ≤ 5 s, for the
total wave-maker horizontal displacement d∗ = 20 cm and the characteristic time t∗ = 0.5 s.

In the subsequent diagrams, still for the wave excitation defined by the param-
eters d∗ = 20 cm and t∗ = 0.5 s, the plots illustrating the variations of free-surface
displacements with time at a chosen set of locations are presented, corresponding to
the form of results that are usually recorded at laboratory measurements. Hence, for
a set of the positions X/L = 0, 0.2, 0.4 and 0.6, corresponding to X = 0, 3 m, 6 m
and 9 m, respectively, the time variations of the surface elevations are shown in
Figure 8. Similarly, in the following Figure 9, the time changes in the horizontal
free-surface displacements at the same set of X-locations as above are displayed.
One can note in this figure that the model-predicted horizontal movements of the
free surface can be nearly as large as 30 cm, that is equal to nearly half of the water
depth. Again, the same features as in Figures 6 and 7 can be observed, that is the
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Fig. 8. Evolution of the free-surface elevations at chosen locations X, for the total
wave-maker horizontal displacement d∗ = 20 cm and the characteristic time t∗ = 0.5 s

Fig. 9. Evolution of the free-surface horizontal displacements at chosen locations X, for the
total wave-maker horizontal displacement d∗ = 20 cm and the characteristic time t∗ = 0.5 s

smooth variations in the free-surface displacements in the leading part of the wave,
and more irregular variations in the trailing part of the wave.

Finally, in Figures 10 and 11 the evolution of the free-surface elevation along
the flume length is shown for different, than previously considered, combinations
of the d∗ and t∗ parameters. Figure 10 illustrates the case in which the wave-maker
wall AB moves in the negative X-direction, that is away from the water domain,
within the same time period as used in preceding simulations. Hence, the model
parameters have been set to d∗ = −20 cm and t∗ = 0.5 s. The comparison of the
plotted surface profiles with those displayed in Fig. 6 demonstrates that, due to
the strong geometric non-linearity of the phenomenon, the two cases yield surface
profiles which are not, even approximately, mirror images with respect to the still
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Fig. 10. Evolution of the free-surface elevation along the flume length, for the total
wave-maker horizontal displacement d∗ = −20 cm and the characteristic time t∗ = 0.5 s

water line. The two sets of plots also show that the case of the wall moving away
from the water is more difficult to treat numerically. The indication of this feature are
the numerical oscillations that are now more numerous and pronounced (especially
for the times values of 6, 7 and 8 s) than those in the case illustrated in Fig. 6 —
even though the time step length used to obtain the results in Fig. 10 was reduced
to ∆t = 5 × 10−4 s, which is half of the value used in the other examples.

Figure 11 shows the time variation of the free-surface elevation for the case of
the wave excitation time being twice as long as that illustrated in Figure 6, that is
for t∗ = 1 s; the maker horizontal amplitude was again d∗ = 20 cm. One can note
that the overall pattern of the wave propagation, together with its reflection at the
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Fig. 11. Evolution of the free-surface elevation along the flume length, for the total
wave-maker horizontal displacement d∗ = 20 cm and the characteristic time t∗ = 1.0 s

rigid wall CD, is very similar in both cases. However, due to the slower excitation
rate, and in sharp contrast to the case depicted Fig. 10, the surface wave profiles
are now much smoother, with practically no numerical instabilities that could be
discerned on the free-surface profiles obtained from the simulations.

Besides the cases illustrated in the preceding plots, all obtained for the maker
amplitude d∗ = 20 cm, also the cases of smaller and larger excitation displacements
were investigated. The waves generated by the maker wall movement of 10 cm, with
the time scale magnitudes t∗ of the order of 0.5 s, were all treated successfully. On
the other hand, attempts to find stable solutions for the case of d∗ = 30 cm failed.
Simply the waves generated in this case, of the maximum elevation ∼ 20 cm, that
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is about one-third of the still water depth, posed too serious difficulties for the
numerical method developed.

6. Conclusions

A Lagrangian finite element model for the analysis of Newtonian compressible
flows has been constructed. The results of numerical simulations have shown the
model robustness in dealing with strongly non-linear problems involving large de-
formations and moving boundaries, without resorting to complicated algorithms
for adaptive mesh refinements. The numerical experiments have demonstrated that
the approach based on the progressive reposition of the mesh nodes to follow the
movement of material particles is advantageous to the method in which the once
generated mesh is kept fixed in space during the computations. The application
of the convecting mesh approach enabled the solution of water gravitational wave
propagation problems that cannot be satisfactorily solved by using conventional
Euler-based approaches. However, the computational cost necessary for obtaining
numerically stable and convergent solutions to the problems considered in the work
has proved to be substantial. Therefore, the future efforts should concentrate on
refining the present model by implementing higher-order finite elements in order
to improve the spatial approximation of the variables involved, combined with the
application of adaptive time stepping scheme for the temporal integration of the
momentum and continuity equations.
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Aubry R., Idelsohn S. R. and Oñate E. (2005) Particle finite element method in fluid-mechanics

including thermal convection-diffusion, Comput. Struct. 83 (17–18), 1459–1475.
Bathe K. J. (1982) Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood

Cliffs, New Jersey.
Braess H. and Wriggers P. (2000) Arbitrary Lagrangian Eulerian finite element analysis of free surface

flows, Comput. Meth. Appl. Mech. Eng. 190 (1–2), 95–109.
Chadwick P. (1999) Continuum Mechanics: Concise Theory and Problems. Dover, Mineola, New

York, 2nd edn.
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