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Abstract
A simple model describing pre-failure deformations of granular soils is derived on the basis
of a wide range of experimental data. The model is defined by two incremental equations
describing the volumetric and deviatoric strains. Functions appearing in governing equations
were determined from experiments performed in the triaxial apparatus, with additional mea-
surements of lateral strains for some simple stress paths. These functions are different for
loading and unloading, and have different shapes for contractive and dilative soil samples.
The instability line is built into the structure of the model. The incremental equations were
applied to predict the soil behaviour during anisotropic compression, including determination
of the K0-line. Some basic statistical characteristics of the initial density index of investigated
soils and deformations during isotropic compression are presented.
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1. Introduction

This paper is about strains that develop in granular soils before failure. This prob-
lem is still one of the central points in contemporary soil mechanics and, in spite
of extensive research, has not yet been solved satisfactorily. The main stream of
research is based on the elasto-plastic methodology, which, however, is more and
more a subject of criticism, see Bolton (2000, 2001) or Kolymbas (2000a). The
basic objections deal with intricacy of those models and with the lack of satisfac-
tory agreement with experimental results, see Saada & Bianchini (1989), or more
recently Sawicki (2003).

Even some authors of elasto-plastic models admit that they are mostly useful
as “students models”, due to their “nice structure”, after Wood (1990). Also some
alternatives to elasto-plasticity as, for example, hypoplasticity (Kolymbas 2000b)
are still far from ideal, see Głębowicz (2006). This subject certainly needs further
extensive investigations in order to elaborate effective models describing deforma-
tions of granular media.

Some attempt, differing from those widely applied in geotechnical literature, is
presented in this paper. The starting point to theoretical considerations is a great
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amount of experimental data, obtained for a model sand “Skarpa”, investigated in
a modern triaxial apparatus that enables a measurement of both vertical and lateral
strains developing for various stress paths. These data have been analysed within the
framework of the most simple theoretical structure, i.e. the system of incremental
equations describing increments of volumetric and deviatoric strains as functions
of given stress histories. Theoretical model takes into account the initial structure
of granular medium, that is defined either as contractive or dilative. Considerations
presented in the present paper relate to either dry or saturated soils but with free
drainage of pore water allowed (zero pore pressure). This means that the global
stresses are equal to effective stresses in this case. The undrained behaviour of
“Skarpa” sand will be analysed in a separate paper.

In the second section of this paper, the program of experimental research is
briefly described. The third section deals with the theoretical model of soil deforma-
tions, which is defined by a system of incremental equations, formulated separately
for loading and unloading. In traditional plasticity, the definition of loading and
unloading depends on the orientation of the stress increment with respect to the
yield/loading surface in the stress space, which leads to misunderstandings, as the
same stress increment may be considered as loading or unloading, depending on
the shape of yield surface assumed. In this paper, we propose a new definition
of loading and unloading which is more objective. Subsequent sections deal with
the isotropic compression and shearing at constant mean stress of soil samples.
These tests allow for calibration of incremental equations, i.e. for determination
of some material parameters. Then, predictions of the model are compared with
experimental data for a loading path different from those used in calibration of the
model, designated as the anisotropic compression path. The problem of K0 line is
discussed on the basis of the results obtained. Finally, some statistical considerations
regarding accuracy of experimental calibration/verification are presented.

2. Experimental Programme

An extensive experimental program has been performed in the geotechnical lab-
oratory of the Institute of Hydro-Engineering in order to study the pre-failure
behaviour of granular soils. The experiments were performed in a computer con-
trolled hydraulic triaxial testing system from GDS Instruments, see Menzies (1988),
Świdziński & Mierczyński (2002). The system has additionally been equipped with
special gauges enabling the local measurement of both lateral and vertical strains
which are more precise than traditional techniques.

The experiments were performed mainly on the model sand “Skarpa”, composed
of quartz grains of a median size 420 µm and uniformity coefficient of 2.5. The
specific gravity is 2.65. This sand has a maximum void ratio of 0.677 and minimum
void ratio of 0.432. The angles of internal friction for loose (ID = density index =
0.15) and dense sand (ID = 0.87) are 34◦ and 41◦ respectively. The soil samples
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Fig. 1. Steady state line for “Skarpa” sand, after Świdziński & Mierczyński (2005)

were prepared in a membrane-lined split moulder either by moist tampling or by
water pluviation methods. The first method assured an achievement of relatively
uniform, very loose samples which revealed contractive behaviour when sheared,
and the second one, uniformity of denser samples exhibiting a dilative character,
see Świdziński & Mierczyński (2005).

Świdziński & Mierczyński (2005) have determined the steady state line for
“Skarpa” sand, by performing a large number of drained and undrained experi-
ments. Recall that Poulos (1981) defined the steady state of deformation of granular
medium as the state when the soil is continuously deforming at constant volume,
constant mean and shear stresses, as well as constant velocity. We do not discuss, in
the present paper, some shortcomings of the Poulos definition which contradicts the
Newtonian mechanics (for example, the material body moves with constant velocity
only when the resultant force acting on this body is equal to zero), but accept at
present a general concept of the steady state. The steady state line divides the plane
e, p′ (p′ in logarithmic scale), where e = void ratio, p′ = effective mean pressure,
into two parts as shown in Fig. 1 in semi-logarithmic scale. The region above the
steady state line (SSL) represents the states of granular medium corresponding to
contractive behaviour during shearing, whilst the states below this line correspond
to dilative behaviour. These behaviours will be described in detail in subsequent
sections. SSL for “Skarpa” sand is defined by the following equation:

e = 0.746 − 0.0635 log
(
p′
)
, (1)

where p′ is expressed in kPa.
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Fig. 2. Instability line (IL) and compaction/dilation zones in the stress space

Świdziński & Mierczyński (2005) have also determined experimentally the in-
stability line (IL) for “Skarpa” sand, which is a very important characteristic of
granular media, see also Sladen et al (1985), Lade (1992). This importance is
manifested in experiments performed on both, dry and water saturated soils. In the
case of dry sands, or water saturated but with free drainage of pore water allowed,
IL divides the region, in the admissible effective stress space, onto the regions of
contractive and dilative behaviours (for dilative soils) as shown in Fig. 2.

In the case of triaxial compression tests, considered in this paper, the stress
invariants are defined as follows:

p′ = p =
1
3

(σ1 + 2σ3) , (2)

q = σ1 − σ3, (3)

where: p′ = effective mean pressure = p = total mean pressure; q = deviatoric
stress; σ1 = vertical stress = σ′1 = effective vertical stress; σ3 = lateral stress = σ′3
= effective lateral stress.

Instability line is given by the following equation:

q = Ψp′, (4)

where the average value of Ψ = 0.98, but this parameter varies from 0.8 to 1.05.
Dilative sand during shearing first compacts (paths AB or AB′ in Fig. 2) and

then dilates (paths BC or BC′ in Fig. 2). In the case of undrained conditions, not
discussed in the present paper, IL corresponds to the maximum shear stress that can
be supported by the saturated sand. Note that IL is located inside a region bounded
by the Coulomb-Mohr failure line, that is given by the following equation, for the
triaxial compression tests:



A Study on Pre-Failure Deformations of Granular Soils 187

q =
6 sin ϕ

3 − sin ϕ
p′ = Φp′, (5)

where ϕ = angle of internal friction.
The experimental program included investigation of various samples of “Skarpa”

sand, characterized by different initial states, loaded along various stress paths, as
schematically shown in Fig. 2. We have used the results obtained for the stress path
OABC for calibration of the incremental model. Results obtained for other stress
paths (as OD) served for verification of the model. The data presented in subsequent
sections correspond to mean values of respective quantities. Some statistical analysis
of experimental data is presented in Section 7.

3. Incremental Model of Soil Deformations

Basic Definitions

The stresses have already been defined in Section 2, as well as some basic char-
acteristics of granular soils as the Coulomb-Mohr failure condition and instability
line. During the experiments, the local strains were measured, defined as follows:
ε1 = vertical strain; ε3 = horizontal strain. The soil mechanics sign convention is
used, which means that compression is positive. The following strain invariants are
introduced:

εv = ε1 + 2ε3, (6)

εq =
2
3

(ε1 − ε3) . (7)

Note that εv = tr ε; ε = Cauchy strain tensor, denotes volumetric deformation
of soil sample, that is also the first invariant of the strain tensor. The quantity
εq denotes the deviatoric strain, which is related to the second invariant of strain
deviator, defined as follows:

K2 =
1
3

tr
(
εdev
)2

; εdev = ε −
1
3

trε · 1. (8)

There is:

εq =

√
4
3

K2. (9)

Also note that the quantities p and q, introduced in the previous section, are
directly related to respective invariants of the stress tensor σ (which is equal to the
effective stress tensor in the case analysed), i.e.

q =
√

3J2, (10)
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J2 =
1
2

tr
(
σdev
)2
= second invariant of the stress deviator, (11)

σdev = σ −
1
3

trσ · 1, (12)

p = I1=
1
3

trσ= first invariant of the stress tensor = mean or spherical stress. (13)

An important problem is the definition of loading and unloading, cf. Życzkowski
(1973). Recall that, according to classical knowledge, during loading, both the elas-
tic and plastic strains develop in the material, whilst during unloading the elastic
strains are recovered. In elasto-plasticity, the process of loading/unloading is defined
by the orientation of the stress increment dσ with respect to the assumed yield sur-
face. If this increment is directed outwards to the current yield surface, the process
of loading takes place. If it is directed inwards, the process of unloading takes
place. If it is directed inwards, the process of unloading occurs. Such a definition
may lead to some inconsistencies, as the definition of loading/unloading depends
on details of particular elasto-plastic model. Therefore, the same stress increment
may be associated with loading in the case of a certain model, whilst for another
model, this increment may be associated with unloading, see Sawicki (2003).

In order to avoid such controversy, we propose a simple definition of load-
ing/unloading, which is independent on the choice of particular yield surface, related
to a specific elasto-plastic model. This definition follows from the decomposition
of the stress and strain tensors onto spherical and deviatoric parts. Therefore, we
can define separately the spherical and deviatoric loading/unloading in a simple
manner, depending on the sign of stress increments dp and dq. Recall that positive
sign denotes compression. According to the above considerations, we have:

• spherical loading when dp > 0;
• spherical unloading when dp < 0;
• deviatoric loading when dq > 0;
• deviatoric unloading when dq < 0.

Incremental Equations

A general form of incremental equations describing the spherical and deviatoric
strain increments is the following:

dεv = Mdp + Ndq, (14)

dεq = Pdp + Qdq, (15)

where M, N , P, Q are functions which may depend on the stress and strain in-
variants. At present, we do not impose any other restrictions on these functions.
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According to the definition of loading/unloading, the above functions should have
different shapes for loading and unloading. Therefore, the following definitions are
assumed:

• if dp > 0 then M = Ml and P = Pl;
• if dp < 0 then M = Mu and P = Pu;
• if dq > 0 then N = Nl and Q = Ql;
• if dq < 0 then N = Nu and Q = Qu;

where the subscript “l” denotes the shape of respective function during loading, and
the subscript “u” respective shape for unloading. We assume that specific shapes of
functions ( )l and ( )u, where ( ) = M, N , P, Q, should be determined experimentally
for the loading and unloading along the stress paths OABC, see Fig. 2. The results
of experiments performed for other stress paths should serve for verification of the
most simple incremental model proposed in this paper.

In elasto-plasticity, equations describing the increments of plastic strains are
determined by differentiation of the function designated as the plastic potential,
and increments of elastic strains are given by respective physical law as, for exam-
ple, Hooke’s law. The total strain increment is a sum of elastic and plastic strain
increments. In the present paper, the development of total strains is studied, although
some comparisons with elasto-plastic interpretation of these strains are sometimes
made.

Note that in most engineering models isotropy of material is assumed. For
example, in the case of isotropic elastic material (linear or non-linear), the functions
N and P in Eqs. (14) and (15) should be assumed zero, as the volumetric strain
may be caused only by the mean stress and the deviatoric strain only by the shear
stress. Granular media display features which cannot occur in other materials as,
for example, volumetric changes due to shearing. Therefore, it should be N , 0
in Eq. (14). The function P was introduced in Eq. (15) as some deviatoric strains
caused purely by the mean stress were observed in experiments. This means that
the samples investigated display some anisotropic features, in spite of very careful
preparation of them before the experiment.

Stress and Strain Units

During analysis of experimental data, presented in subsequent sections, we have
introduced very convenient stress and strain units, namely:

• stress unit = 105 N/m2 = 0.1 MPa;
• strain unit = 10−3 (non-dimensional).

This means that the stress invariants p and q will be expressed in unit 105

N/m2, and respective strains εv and εq in unit 10−3. For example, if p = 3 × 105

N/m2 we substitute into respective equation just p = 3, etc. This is equivalent to
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the introduction of non-dimensional quantities as p = real mean stress/stress unit,
εv = real volumetric strain/strain unit, etc.

4. Isotropic Compression

During the isotropic compression (path OA in Fig. 2) only the mean stress increases,
whilst the stress deviator’s equal to zero. Fig. 3a shows εv, p curves for loading
(path OA) and unloading (path AO). This is an idealized diagram, illustrating the
qualitative behaviour of investigated sand during a single cycle of virgin compres-
sion and subsequent unloading. Such a behaviour does not depend on the initial
state of soil, i.e. is similar to initially loose and dense samples.

Fig. 3. Development of volumetric (a) and deviatoric (b) strains during a single cycle of
isotropic loading and unloading

During isotropic compression, the deviatoric strains also develop, which is
a characteristic feature of anisotropic materials, see Fig. 3b. Recall, that for initially
isotropic soil there should be εq = 0. It is very difficult to prepare isotropic samples
for laboratory investigations.

The loading curve OA shown in Fig. 3a, can be approximated by various math-
ematical formulae. We have found that a good approximation gives the following
formula:

εv = Av
√

p, (16)

where Av = coefficient that characterizes compressibility of sand, that depends on
the initial density of soil. Formula (16) is convenient for two reasons. First, there
appears a single coefficient only. Secondly, it can be rewritten as:

p =
√

p
Av
εv = K (p) εv, (17)
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where K (p) = coefficient of compressibility which depends on the mean effective
pressure, in the form commonly used in soil mechanics. Differentiation of Eq. (16)
leads to the following formula:

dεv =
Av

2
√

p
dp = Mldp. (18)

The unloading curve (A0′ in Fig. 3a) can be approximated by a similar formula,
namely:

εv = ε
o
v + Au

v

√
p, (19)

where εo
v = permanent (plastic) strain after unloading to p = 0. Differentiation of

the above equation leads to the following formula:

dεv =
Au
v

2
√

p
dp = Mudp. (20)

Similar technique can be applied to describe the deviatoric strains that develop
during a single cycle of isotropic loading and unloading, see Fig. 3b. The final
results are the following:

dεq =
Aq

2
√

p
dp = Pldp during loading; (21)

dεq =
Au

q

2
√

p
dp = Pudp during unloading. (22)

Table 1 shows average coefficients Av and Aq for “Skarpa” sand determined
experimentally for initially loose and dense samples. Some statistical analysis of
these coefficients will be presented in Section 7.

Table 1. Average material parameters describing isotropic compression of “Skarpa” sand,
for initially loose and dense samples

Initial ID Av Au
v Aq Au

q

Loose 0.02–0.44 6.01 4.41 –0.905 –0.447
Dense 0.71–0.86 3.47 2.91 –0.47 –0.205

Recall that these coefficients correspond to stress and strain units, already intro-
duced in Section 3. For example, if p = 3 × 105 N/m2, we introduce into Eq. (16)
the multiplier 3 and obtain for loose sand εv = Av

√
p = 6.01

√
3 = 10.41, expressed

in strain unit. This means that the real volumetric strain is 10.41 × 10−3 � 0.0104.
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5. Shearing at Constant Mean Stress

Shearing at constant mean stress is realized on the stress path ABC, see Fig. 2.
Experiments were performed at various values of p = pA = const, and for this reason
a special method of interpretation of empirical data should be found, that would
enable a common interpretation of the whole set of these data. We have found that
interpretation of experimental data on the εv

/√
p − η = q/p and εq

/√
p − η planes is

quite useful, as it enables presentation of different experimental curves (obtained for
various values of p) as roughly single curves. Obviously, it is not the only method
of presentation of experimental data, but for working purposes such a method seems
to be sufficiently good.

In the case of shearing of granular media, it is important to distinguish between
contractive or dilative behaviours. According to the present state of knowledge, the
granular soils characterized by the initial state lying above the steady state line
(see Fig. 1) display contractive behaviour, whilst the initial states below this line
characterize the dilative soils. At present, there is no experimental evidence or
strong theoretical arguments to reject this important division. Therefore, we shall
present the experimental data separately for initially dilative and contractive soils.

Dilative Soils – Volumetric Changes Due to Shearing

Fig. 4 shows a typical diagram illustrating the volumetric changes due to shearing
in the dilative sand. This diagram may be treated as averaged common curve for
various experimental data, obtained for different values of p. Obviously, the re-
sults of particular experiments differ quantitatively from this “model curve”, which
is a characteristic feature of granular media. Some statistical considerations are
presented in Section 7.

During the first stage of shearing (path AB), the volumetric strain increases
(compaction), and approximately at point B corresponding to the instability line (η =
η′), the process of dilation begins. The stress-strain curve approaches the vertical
line η = η′′, that corresponds to the Coulomb-Mohr failure criterion (η′′ = Φ, see
Eq. 5). A good approximation of experimental results is given by the following
polynomials:

εv =
√

p
(
a1η

2 + a2η
)

for η ∈
〈
0, η′
〉
, (23)

εv =
√

p
(
a3η

2 + a4η + a5

)
for η ∈

〈
η′, η′′

〉
, (24)

where ai are certain coefficients, which should ensure the continuity of this approx-
imation at point η = η′ (the same volumetric strain and the same first derivative).
For the averaged experimental data we have: a1 = −1.458; a2 = 2.39; a3 = −42.215;
a4 = 69.232; a5 = −27.405. Recall respective units! The path ABC corresponds to
loading, according to the definition adapted in this paper, as dq > 0, see Fig. 2.
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Fig. 4. Volumetric changes due to shearing for dilative “Skarpa” sand. See stress path ABC
in Fig. 2

Differentiation of Eqs. (23) and (24) with respect to q leads to the following
incremental equations:

dεv =
1
√

p
(2a1η + a2) dq = Nldq for η ∈

〈
0, η′
〉
, (25)

dεv =
1
√

p
(2a3η + a4) dq = Nldq for η ∈

〈
η′, η′′

〉
. (26)

During unloading, for example path CA′, the stress-volumetric strain path can
be treated as approximately linear, see Fig. 4:

εv
√

p
= ad

v η + β
d
v , (27)

where βd
v = permanent (plastic) volumetric strain divided by the square root of mean

stress after deviatoric unloading. Differentiation of Eq. (27) with respect to q gives
the following incremental equation:

dεv =
1
√

p
ad
v dq = Nudq, (28)
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where ad
v = −0.376 for the “Skarpa” sand.

Note that during deviatoric unloading the dilative sand densifies.

Dilative Soils – Deviatoric Deformation Due to Shearing

The averaged deviatoric deformation of dilative soil due to shearing along path
ABC (see Fig. 2) is shown in Fig. 5. This deformation increases up to η = η′′

corresponding to the Coulomb-Mohr failure criterion, and the role of instability
line is not displayed in this case, in contrast to volumetric deformation (Fig. 4).

Fig. 5. Deviatoric deformation of dilative sand “Skarpa” due to shearing (stress path ABC
in Fig. 2). Similar curves are obtained for contractive sand

The behaviour shown in Fig. 5 can be approximated by the following function:

εq
√

p
= b1
[
exp (b2η) − 1

]
, (29)

where b1 = 2.671 × 10−3 and b2 = 5.248 (recall respective units!). Differentiation
of this equation with respect to q leads to the following incremental equation:
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dεq =
b1b2
√

p
exp (b2q) dq = Qldq. (30)

During unloading (path CBA in Fig. 2), the stress-strain characteristic is almost
linear, and can be approximated by the following equation:

εq
√

p
= bqη + β

d
q , (31)

where bq = 0.399 and bd
q = permanent normalized deviatoric strain (see Fig. 5).

Differentiation of Eq. (30) with respect to q leads to the following incremental
equation:

dεq =
1
√

p
bqdq = Qudq. (32)

Contractive Soils – Volumetric Changes Due to Shearing

Fig. 6 illustrates the volumetric changes of contractive “Skarpa” sand. Note that
this behaviour is different from that characteristic of dilative samples, cf. Fig. 4, as
the contractive sample continuously densifies when sheared.

A good approximation of the behaviour shown in Fig. 6 gives the following
equation:

εv
√

p
= c1η

4, (33)

where c1 = 3.4 for our experimental data. Differentiation of Eq. (33) with respect
to q gives:

dεv =
4c1
√

p
η3dq = Nldq. (34)

During the unloading, the stress-strain curve is almost linear, and can be ap-
proximated by the following formula:

εv
√

p
= ac

vη + β
c
v , dεv =

ac
v
√

p
dq = Nudq, (35)

where ac
v = –0.87 and βc

v is a normalized plastic volumetric strain, shown in Fig. 6.
Note, that during unloading the contractive sample densifies as during loading.

Contractive Soils – Deviatoric Deformation Due to Shearing

The qualitative character of deviatoric deformation of contractive soil due to shear-
ing is similar to that shown in Fig. 5. We assume the stress-strain approximation
also similar to Eq. (29), but with different coefficients:
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Fig. 6. Volumetric changes of contractive “Skarpa” sand due to shearing

εq
√

p
= g1
[
exp (g2η) − 1

]
, (36)

where g1 = 0.0206 and g2 = 4.587. Respective incremental equation is the following:

dεq =
g1g2
√

p
exp (g2η) dq = Qldq. (37)

Respective incremental equation for unloading is similar to Eq. (32):

dεq =
1
√

p
gqdq = Qudq, (38)

where gq = 0.76.
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6. Anisotropic Compression and K0-Line

In this section, we shall predict the soil deformations for anisotropic compression
(path OD in Fig. 2) using previously derived incremental equations. Their general
form is given in Eqs. (14) and (15), and the shape of respective function appearing
in these equations (M, N , P, Q) depends on the initial state of soil sample (i.e.
dilative or contractive), and on whether the respective stress increment corresponds
to loading or unloading.

Loading of Dilative Soil

In the case of loading of the dilative soil, the respective functions are given in
Eqs. (18, 21, 25) or (26) and (30). Consider the case then the slope of stress path
OD (see Fig. 2) is smaller than the slope of instability line, therefore respective
functions are given by Eqs. (18, 21, 25) and (30). Substitution of these functions
into Eqs. (14) and (15) leads to the following specific form of incremental equations
describing deformations of the soil sample:

dεv =
Av

2
√

p
dp +

1
√

p
(
2a1η + a2

)
dq, (39)

dεq =
Aq

2
√

p
dp +

b1b2
√

p
exp (b2η) dq, (40)

where average values of the coefficients have already been presented after respective
formulae. The anisotropic compression is defined by the following stress path:

q = αp, (41)

where 0 < α ≤ η′ is the case considered. Because η = α and dq = αdp, Eqs. (39)
and (40) simplify:

dεv =
1
√

p

[
Av
2
+ (2a1α + a2)α

]
dp =

Cv
√

p
dp, (42)

dεq =
1
√

p

[
Aq

2
+ αb1b2 exp (b2α)

]
dp =

Cq
√

p
dp, (43)

where: Av = 3.47; Aq = –0.47; a1 = –1.458; a2 = 2.39; b1 = 0.00267; b2 = 5.248.
For the case considered, we have:

Cv = −2.916α2 + 2.39α + 1.735, (44)

Cq = −0.235 + 0.014α exp (5.248α) . (45)
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Integration of Eqs. (42) and (43), with zero initial conditions, leads to the
following formulae for the volumetric and deviatoric strains that develop during
anisotropic compression:

εv = 2Cv
√

p, (46)

εq = 2Cq
√

p. (47)

For example, for α = 0.727 one obtains εv = 3.863
√

p and εq = 0.8
√

p.

Loading of Contractive Soil

Consider the volumetric changes of contractive soil. From Eqs. (18) and (34) one
obtains the following incremental equation:

dεv =
1
√

p

[
Av
2
+ 4c1α

4
]
dp =

1
√

p
C′vdp, (48)

where Av = 6.01 and c1 = 3.4. For α = 0.39 one obtains εv = 6.64
√

p. The experi-
ment performed for contractive soil gives εv = 7.34

√
p. Note that in this case, the

difference between theoretical prediction and experimental results is 9.5% . But also
note that we have used the average values of Av and c1 for predicting the results of a
single experiment performed on a sample which might have different characteristics
Av and c1. Many realistic combinations of the coefficients, close to their averages,
may give “ideal agreement” between analytical prediction and experimental result
as, for example, Av = 6.71 and c1 = 3.4.

The above exercise illustrates the basic problem that appears in soil mechanics,
namely a proper experimental verification of theoretical models. All the coefficients
(sometimes designated as “material constants”) characterising these various models
are of statistical nature. There still do not exist rational criteria enabling assess-
ment of conformity of various theoretical predictions with empirical data. Some
considerations about this matter will be presented in Section 7.

K0-Line

The coefficient of earth pressure at rest K0 corresponds to a very important practical
case when the horizontal strain equals zero, as appears, for example, in a half-space
built of granular soil where lateral displacements are prevented. In the case of
triaxial tests, this coefficient is defined as:

K0 =
σ3

σ1
for ε3 = 0. (49)

From Eqs. (6) and (7) it follows:
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ε1 =
1
3
εv + εq, (50)

ε3 =
1
3
εv −

1
2
εq. (51)

It follows from Eqs. (49) and (51) that, on the K0-line in the stress space, there
should be:

2Cv − 3Cq = 0, (52)

where, for example, Cv and Cq are given by Eqs. (45) and (46) for dilative soil.
Substitution of these relations into Eq. (52) leads to an equation for determination of
the coefficient α corresponding to K0 conditions. The solution is following α = α0 =

0.884 = K0. The above result means that the K0-line can be determined analytically,
just knowing the volumetric and deviatoric deformations caused by the stress paths
OA and ABC (see Fig. 2). It is believed that this is an original result, quite different
from the Jaky formula commonly used in soil mechanics (see Craig 1987):

K0 � 1 − sin ϕ. (53)

Note that Eq. (53) relates directly the coefficient K0 to the strength characteristics
as the angle of internal friction, whilst the approach presented in this Section shows
the links of K0 with deformation characteristics. This latter case is based on more
solid physical ground as the definition of K0 is based on the deformation criterion,
see Eq. (49). Obviously, the problem of K0 is more complex as this coefficient also
depends on the loading history but more extensive discussion on this problem is
beyond the scope of the present paper (see Sawicki 1994).

Also note that the obtained value of K0 is close to the value of η′ describing
the instability line. Available experimental data, although quite rich, do not allow
for deeper analysis on this problem, particularly as they have a statistical nature.

7. Some Statistical Considerations

Experimental data presented in previous sections illustrate the pre-failure behaviour
of granular soils, mainly from the qualitative point of view. Respective parameters
(“material constants”), which appear in incremental equations, are some averages
calculated from available empirical data. Therefore, already presented results de-
scribe some “model sand Skarpa” using deterministic methods, as commonly ac-
cepted in soil mechanics. In fact, all the parameters appearing in soil mechanics
models are of statistical nature, and not much attention is devoted to this important
problem in geotechnical literature. Probably, it is the main reason of so extensive
a production of various models, which continuously fail to pass empirical verifica-
tions, whatsoever that means (cf. literature quoted in Introduction).
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In this Section, we would like to draw attention just only to a couple of problems,
which are of fundamental importance for the proper description of mechanical
behaviour of granular soils. The first one deals with the statistical character of the
initial state of soil sample. The second deals with deformation characteristics of
granular soils during isotropic compression.

Initial State of Soil

Initial state of granular soils is traditionally classified using a single parameter,
designated as the density index ID (or relative density Dr which means the same),
cf. Lambe & Whitman (1969). The value of ID is contained within the interval 〈0, 1〉,
where ID = 0 corresponds to the most loose packing of grains, and ID = 1 denotes
the densest structure. It should be mentioned that the designation of loosest/densest
packing of grains is not precise. Experimental procedures, suggested in geotechnical
textbooks and guidelines, devoted to the determination of these extreme cases (i.e.
emax and emin) are rather rough. This problem is also difficult from the theoretical
point of view, as it is possible to describe theoretically only the granular structure
consisting of uniform spherical grains. Such a description is impossible in the case
of actual soils.

More recent investigations, cf. Section 2, show that this traditional classification
is insufficient because it is more important to define the initial state of granular soil
either as contractive or dilative. This is a rather new and important classification
which cannot be found in traditional soil mechanics textbooks, cf. Craig (1987)
or Das (2000). In this paper, we shall not discuss this basic problem, as it needs
separate treatments. Attention will be focused only on some basic statistical features
of the density index, characterising investigated “Skarpa” sand.

We have divided the investigated sand into just two major groups, designated as
“loose” (L) and “dense” (D) samples. Additionally, loose samples were divided onto
two groups, namely very loose (L1) and loose (L2). Some statistical characteristics
of the initial density index of investigated samples are shown in Table 2.

Table 2. Basic statistical characteristics of the initial density index of “Skarpa” sand samples

Number of Variance Standard
samples

Range of Mean value
s2 deviation

N
ID ID (× 10−3) s

L1 13 0.016–0.217 0.1447 1.4914 0.03862
L2 10 0.258–0.445 0.3457 2.464 0.04964

L1 + L2 23 0.016–0.445 0.2321 1.914 0.04375
D 26 0.707–0.859 0.7786 1.7934 0.00424

Respective statistical characteristics, presented in Table 2, were calculated using
well known formulae:
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ID =
1
N

N∑
i=1

(ID)i, (54)

s2 =
1
N

N∑
i=1

[
ID − (ID)i

]2
, (55)

s =
√

s2. (56)

Fig. 7a shows the histogram, illustrating the distribution of ID for loose samples
(L1 + L2), and Figs. 7b and c show respective histograms of the distribution of ID
for soils from the groups L1 and L2. Fig. 7d shows the histogram of ID for dense
samples (designated as D).

The results shown in Fig. 7 can be summarized as follows:
a) The number of investigated samples was too small to perform a proper statistical

analysis. However, in spite of this shortcoming, some basic conclusions can be
drawn, which can help in formulating some hypotheses regarding the probability
distribution of ID. It is hard to find papers reporting statistical analyses of the
initial state of granular soils. Some results presented in the present paper are
probably the first ones touching this important problem.

b) Figs. 7a, b, c show how the method of sample preparation influences the initial
relative density. The histogram from Fig. 7a has two peaks, but the histograms
from Figs. 7b and c have a different character. In fact these samples were pre-
pared using different methods. For example, very loose samples were prepared
using the moist tampling method, whilst the densest samples using the water
pluviation method, see Świdziński & Mierczyński (2005).

Isotropic Compression

The isotropic compression is described in Section 4. During this process, both the
volumetric and deviatoric deformations develop in the sand. They are characterized
by the parameters Av and Aq, cf. Table 1. Tables 3 and 4 show basic statistical
characteristics of these parameters for different initial relative densities, cf. Table 2.

Table 3. Basic statistical characteristics of the coefficient Av

Number of
samples

Mean
Variance

Standard Range of

N
Av deviation Av

L1 13 5.8544 0.709 0.8421 3.73–7.242
L2 10 6.202 0.6423 0.802 5.11–7.323

L1 + L2 23 6.006 0.68 0.825 3.73–7.323
D 26 3.4665 0.3358 0.5795 2.225–4.541
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Fig. 7. Histograms illustrating the distribution of ID of specimens of “Skarpa” sand:
(a) L1 + L2 samples; (b) L1 samples; (c) L2 samples; (d) D samples, see Table 2

Table 4. Basic statistical characteristics of the coefficient Aq

Number of
samples

Mean
Variance

Standard Range of

N
Aq deviation Aq

L1 12 −0.88 0.0808 0.284 −1.216 ÷ −0.36
L2 10 −1.03 0.149 0.386 −1.67 ÷ −0.29

L1 + L2 22 −0.95 0.112 0.334 −1.67 ÷ −0.29
D 27 −0.53 0.062 0.249 −1.02 ÷ −0.12
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Fig. 8. Histograms illustrating the distribution of Av of specimens of “Skarpa” sand:
(a) samples L1 + L2; (b) samples L1; (c) samples L2; (d) samples D, cf. Table 3

Fig. 8a shows the histogram, illustrating the distribution of Av for loose samples
(L1 + L2), and Figs. 8b and c show respective histograms for soils from groups L1
and L2 separately. Fig. 8d shows the histogram of Av for dense samples (D).

As in the previous case of the initial density index, the number of investigated
samples was too small to draw general statistical conclusions, but the data presented
may help in formulation of some hypotheses regarding, for example, probability dis-
tribution functions etc. The results shown in Tables 2–4 illustrate how uncertain may
be the most simple deformation characteristics of granular soils, even determined
in carefully performed experiments.
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8. Discussion and Conclusions

The main results presented in this paper can be summarized as follows:
a) A simple incremental model describing pre-failure deformations of granular

soils is proposed, see Eqs. (14) and (15). Functions M, N , P and Q, appearing
in these equations, were determined from isotropic compression tests and from
shearing at constant mean stress.

b) The above functions were determined separately for loading and unloading, both
spherical and deviatoric, and for contractive and dilative samples. The instability
line was built into the structure of these equations. Table 5 shows the numbers
of equations defining particular functions. It should be noted that a relatively
precise description of pre-failure deformations of granular soils needs a rather
large number of various parameters, which are different from various “moduli”
widely applied in soil mechanics.

Table 5. Numbers of equations defining particular functions appearing in incremental
relations (14) and (15)

Initial state M N P Q

Loading
contractive 18 34 21 37

dilative 18 25, 26 21 30

Unloading
contractive 20 35 22 38

dilative 20 28 22 32

c) Note that a new definition of loading and unloading was introduced which is dif-
ferent from definitions accepted in elasto-plasticity, where the loading (or yield)
surface is introduced. Such a methodology leads to unobjective interpretation
of those processes, as they depend on the shape of assumed yield surface.

d) The incremental equations, proposed in this paper, were applied in order to
predict the soil deformations during anisotropic compression. For average soil
parameters, the agreement between theoretical prediction and experimental re-
sults was satisfactory. A method of determination of K0-line was proposed,
based on the theoretical solution obtained. The direct link of this important
coefficient with deformation characteristics of granular soils was shown, in con-
trast to commonly accepted relation with the strength characteristic, as the angle
of internal friction. The results of investigations suggest that the K0-line may
perhaps be identified with the instability line.

e) Some basic statistical characteristics of the density index and the parameter de-
scribing deformations of the “Skarpa” sand during isotropic compression were
presented. These data, although based on relatively small numbers of exper-
iments from the statistical point of view, provide qualitative and quantitative
information as to the character of pre-failure deformations of sands, and there-
fore can be used for formulating some statistical hypotheses.
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f) The proposed incremental equations can be used either to calculate directly the
pre-failure deformations of granular soils, or can be applied for testing various
theoretical models describing pre-failure deformations of sands, as they are
based on a solid empirical background. We have already used our data for testing
the elasto-plastic and hypoplastic models of soils, see Sawicki (2003), Głębo-
wicz (2006). In general, these models do not predict properly the pre-failure
deformations of sand.

g) The sand investigated displays anisotropic properties as during the isotropic
compression the deviatoric strains develop. Degree of such an anisotropy can
be measured by the ratio εq

/
εv = Aq

/
Av. This ratio is approximately –0.15 for

both initially loose and dense specimens. It is a matter of individual assessment
whether to neglect the deviatoric strains in theoretical modelling or not. Recall
that in most theoretical models of soils the assumption of isotropy are adapted.
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