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Abstract
The paper describes investigations on transformation of long gravitational waves in water of
variable depth with reflection of the waves from a shelf barrier. In the model considered,
a long water wave arrives from an area of constant water depth to an area of constant,
smaller water depth, where it reflects at a vertical wall. The analysis is confined to a finite
fluid domain, relevant to experimental investigations in a laboratory flume. In theoretical
analysis of the phenomenon, we follow a non-linear shallow water approximation to the
problem considered. The fundamental equations of fluid motion are derived with the help of
a standard variational procedure in a material system of coordinates. The equations proved
to be a reasonable approximation to a description of the long waves propagating in fluid
with small variation of its depth. In the discussed case of reflection of such waves from a
vertical barrier, however, the motion of the fluid is more complicated and therefore the long
water wave theory does not deliver as good results as in the case of pure propagation of
the waves. The primary objective of this paper is thus to compare the theoretical solution
proposed with data obtained in experiments, and to answer the question about accuracy and
applicability of the theoretical model in the description of the problem investigated.

Key words: shallow water, non-linear wave, non-uniform water depth, unsteady motion,
wave reflection

1. Introduction

In theoretical description of long water waves, i.e. when their wave-length is much
greater than the water depth, a vertical momentum equation is usually assumed in
such a form that the equation may be integrated independently from equations cor-
responding to horizontal variables. In this way, the three-dimensional flow problem
is reduced to a two-dimensional one. In the case of a plane problem, considered
in this paper, the reduction leads to one-dimensional in space problem of the fluid
flow. A particular assumption in a description of the vertical acceleration term in the
vertical momentum equation leads to specific equations describing the waves. For
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example, the assumption that the fluid pressure is hydrostatic leads to the so-called
Airy theory of simple wave (Stoker 1948). Another important formulation of the
shallow water theory belongs to Boussinesq, and Korteweg and de Vries (Mei
1983, Whitham 1974). Following the assumption on the potential motion of the
fluid, the authors derived equations describing evolution of solitary waves (Ursell
1953). In the case of a non-uniform bottom, a derivation of the relevant shallow
water equations becomes more complicated. In the case of a constant bottom slope
however, Stoker (1948) obtained a closed form solution to a simple non-linear wave
on a sloping beach. Carrier and Greenspan (1958) gave an exact solution to a time
dependent non-linear problem of waves of finite amplitude climbing on a sloping
beach, by means of a modified hodograph transformation (Whitham 1979). A review
of the Boussinesq-type equations for surface waves may be found in Madsen and
Schäffer (1999). In particular, it has been found that the Boussinesq-type equations
considered have led to solutions of acceptable accuracy of the problem of waves
propagating in water with slow variation of its depth. All the above formulations
have been based on the Eulerian approach with space coordinates as independent
variables. With this formulation it is relatively easier to derive fundamental equa-
tions of the fluid motion. A certain drawback of the approach is a solution to
boundary conditions, especially conditions on the free surface. On the other hand,
the formulation of the problem within material coordinates, as independent vari-
ables, ease the description of boundary conditions, but, at the same time, it results in
a more complicated structure of equations of conservation of mass and momentum.
As concerns the material approach, Shuto (1967) applied the Lagrangian description
to the problem of run-up of long waves on a sloping beach. The discussion was
confined to the first order approximation of basic equations, for which a vertical
acceleration term does not appear in momentum equations. Theoretical results ob-
tained were compared with experimental data. A non-linear long water theory in the
Lagrangian description has been developed by Goto (1979). The basic equations, for
the uniform and non-uniform water depth, have been derived under assumption of
hydrostatic pressure. A detailed discussion of a number of problems associated with
the long water waves propagating over uneven bottoms together with an extensive
bibliography of the subject may be found in the Dingemans monograph (1997). In
most of the classical theories, the continuity and momentum equations correspond
to an average, over the water depth, horizontal component of the velocity field. This
means that all fluid particles distributed along the water depth above a chosen point
of the bottom, at a given instant of time, are subject to a common infinitesimal
displacement within an infinitesimal change of time. This kinematical assumption
has been taken as the starting point in description of shallow water waves prop-
agating in water of constant depth developed by Wilde and Chybicki (2004). The
authors assumed that vertical material lines of fluid particles remain vertical during
the entire motion of the fluid. An extension of the latter formulation to the case
of small variation of the water depth (partially sloping bottom) may be found in
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Chybicki (2006) and Szmidt (2006). It has been found (Chybicki 2006) that the
theoretical formulation is good enough for description of long waves propagating
in fluid of non-uniform depth (the difference between theoretical and experimental
results for the long waves considered was less than 5%). With respect to the above,
in the present paper the problem of reflection of long water waves from a vertical
barrier is investigated. In the model considered, a long wave arrives at the area of
non-uniform water depth where it reflects from a vertical barrier. Before reaching
the barrier, the wave undergoes changes resulting from variation of the water depth.
The main objective of the present paper is to examine accuracy of the theoretical
approach to the problem of transformation and reflection of long waves. In accor-
dance with this objective, we will consider a motion of a finite fluid domain, as part
of a laboratory flume, with linear variation of its depth. The fluid motion is induced
by a piston-type wave maker starting to move at a certain moment of time. After
a finite elapse of time from the starting point, the generated waves will reflect at
a rigid vertical wall installed a certain distance from the wave-maker, in the area of
a smaller water depth. The problem considered corresponds to real conditions when
long water waves arrive from the sea to the area of diminishing water depth, where
they reflect at a vertical barrier. One may expect that the formulation presented in
this paper may be good enough for some waves while, at the same time, it may
fail to deliver results of acceptable accuracy for other waves. The investigations
are assumed to allow us to answer the question about the range of application
of the formulation in description of the afore-mentioned problems. The analysis
is performed with the help of the material description of the phenomenon, and,
in a sense, it is a continuation of the problem discussed in Szmidt (2006). To
make the discussion clear, some of the results obtained in that earlier work will be
summarized below.

2. Theoretical Solution to the Initial Value Problem of Waves in Water of
Non-Uniform Depth

We consider a plane problem of fluid motion in the finite domain as shown schemat-
ically in Fig. 1. The motion is induced by the piston-type generator placed on the
left hand side of the domain (the vertical wall AF in the figure). The generator starts
to move at a certain moment of time. Our aim is to solve the initial value problem
of the fluid flow and find the free surface elevation at chosen space points of the
domain as functions of time. The motion of the generator is assumed in advance
as approaching the harmonic motion within a finite elapse of time, measured from
the starting point. In order to describe the generator motion, we apply here the
results developed in Wilde and Wilde (2001). Accordingly, the displacement of the
piston-type generator is described by the formula

u0(t) = G[A(τ) cos(ωt) + D(τ) sin(ωt)], (1)
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Fig. 1. A finite fluid domain with experimental equipment

where G is the amplitude of the generation, ω is the angular frequency, and

A(τ) =
1
4!
τ4 exp(−τ),

D(τ) = 1 −
(
1 + τ +

1
2!
τ2 +

1
3!
τ3 +

1
4!
τ4

)
exp(−τ), τ = ηt,

(2)

where η[s−1] is a parameter describing a growth in time of the generator displace-
ment, and τ is the non-dimensional time factor.

One can check that, with increasing time, the generation will approach a sim-
ple harmonic motion with the prescribed frequency and amplitude. The generated
waves will reflect from the right boundary. In order to describe the fluid mo-
tion, we introduce the Cartesian system of co-ordinates in an actual configuration
(zr , r = 1, 2), and a similar system in a reference configuration denoted by capital
letters (Zγ , λ = 1, 2). The co-ordinates of the latter system define names of the fluid
particles (positions of the particles at the initial moment of time). Moreover, it is
convenient to introduce a common Cartesian system of co-ordinates. The motion of
the fluid is described as the mapping of the names into actual positions occupied
by the material points

z1(Zα, t) = Z1 + u(Z1, t),

z2(Zα, t) = Z2 + v(Zα, t),
(3)

where α = 1, 2, and u
(
Z1, t

)
and v (Zα, t) are horizontal and vertical components of

a displacement vector, respectively.
For the case of an uneven bottom, it is assumed that the vertical component of

the displacement field is described by the formula:
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v (Zα, t) = h
(
Z1 + u

)
− h

(
Z1

)
+
w

(
Z1, t

)
H − h

(
Z1) [Z2 − h

(
Z1

)]
. (4)

In the equation w(Z1, t) denotes the vertical displacement of material points of
the free surface, H is the water depth, and and h(Z1) describes the bottom (see
Fig. 1). In what follows we confine our attention to the approximation

f
(
Z1, t

)
= h

(
Z1 + u

)
− h

(
Z1

)
� u

(
Z1, t

)
h′

(
Z1

)
+

1
2

u2h′′
(
Z1

)
, (5)

where the primes denote differentiation with respect to Z1. For example, the deriva-
tive h′(Z1) = dh

/
dZ1 defines the slope of the bottom. Having components of the

displacement field for the incompressible fluid, we can calculate the Jacobian of
the transformation (1)

J = det
[
zi
,α

]
= (1 + u′)

(
1 +

w

H − h

)
= 1. (6)

From the equation it follows that

w(Z1, t) = −(H − h)
u′

1 + u′
, (7)

and finally

v(Zα, t) = f (Z1, t) −
u′

1 + u′
(Z2 − h). (8)

Having the displacement field, it is a simple task to calculate the vertical velocity

v̇ (Zα, t) = ḟ
(
Z1, t

)
−

u̇′

(1 + u′)2

(
Z2 − h

)
, (9)

where the dots denote differentiation with respect to time.
In a similar way, the vertical acceleration of fluid particles is obtained

v̈ = ü
(
h′ + uh′′

)
+ (u̇)2 h′′ −

1
(1 + u′)2

[
ü′ − 2

(u̇′)2

(1 + u′)

] (
Z2 − h

)
. (10)

Knowing the acceleration, one may calculate the fluid pressure from the momentum
equation

∂p
∂z2 = −ρ

[
g + v̈(Zα, t)

]
. (11)

Following the displacement field, we can calculate the potential energy of the
fluid
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Epot. = ρg

L∫
0

H∫
h

z2(Zα, t)JdZ2dZ1 =

=
1
2
ρgH

L∫
0

[
H(1 − α2) + 2h′(1 − α) − H(1 − α)2 u′

1 + u′

]
dZ1,

(12)

where

α = α
(
Z1

)
=

h
(
Z1

)
H

(13)

describes the bottom change. At the same time, the kinetic energy of the fluid is
described by the formula

Ekin. =
1
2
ρ

L∫
0

H∫
h

[
(u̇)2 + (v̇)2

]
JdZ2dZ1. (14)

By substituting of the velocity component (8) into the last equation, the follow-
ing relation results

Ekin. =
1
2
ρH

L∫
0

[(
1 + h′2

)
(1 − α) (u̇)2 − Hh′ (1 − α)2 u̇u̇′

(1 + u′)2 +

+
1
3

H2 (1 − α)3 (u̇′)2

(1 + u′)4

]
dZ1.

(15)

Fundamental equations of the problem are derived by means of a standard
variational procedure. For the conservative system considered, the variation of the
action integral reads

δI = δ

tk∫
0

(
Ekin. − Epot.

)
dt. (16)

Substitution of equations (12) and (15) into the last relation gives

δI =
1
2
ρH

tk∫
0

L∫
0

[
R1δu̇ + R2δu′ + R3δu̇′

]
dZ1dt+

+
1
2
ρgH2

tk∫
0

L∫
0

[
G7δu′ −

2h′

H
(1 − α)δu

]
dZ1dt = 0,

(17)
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where

R1 = 2(1 + h′2)G1 − Hh′G3, R2 = 2Hh′G2 −
4
3

H2G6,

R3 =
2
3

H2G5 − Hh′G4,

(18)

and

G1 = (1 − α)u̇, G2 = (1 − α)2 u̇u̇′

(1 + u′)3 , G3 = (1 − α)2 u̇′

(1 + u′)2 ,

G4 = (1 − α)2 u̇
(1 + u′)2 , G5 = (1 − α)3 u̇′

(1 + u′)4 , G6 = (1 − α)3 (u̇′)2

(1 + u′)5 ,

G7 = (1 − α)2 1
(1 + u′)2 .

(19)

Finally, simple manipulations of the integrands in equation (17) lead to the
equation

−

tk∫
0

L∫
0

[
Ṙ1 + R′2 − Ṙ′3 + gHG′7 + 2gh′(1 − α)

]
δudZ1dt + R3δu|

tk
0

∣∣∣L
0+

+

L∫
0

[
R1 − R′3

]
δu|tk0 dZ1 +

tk∫
0

[
R2 − Ṙ3 + gHG7

]∣∣∣∣L
0
δudt = 0.

(20)

For the discussed case of fluid motion starting from rest, the arbitrary variation
δu vanishes at the end time points, i.e. for t = 0 and t = tk , and the variation
disappears at the end points of the domain i.e. for Z1 = 0 and Z1 = L (point D in
Fig. 1), respectively. At the same time, we require (20) to vanish for all δu(Z1, t),
which implies

−R0 + Ṙ1 + R′2 − Ṙ′3 + gHG′7 + 2g(1 − α)
(
h′ + h′′u

)
= 0. (21)

The equation obtained is the horizontal momentum equation for the water mo-
tion within the finite domain. Substitution of the descriptions (18) and (19) into the
equation provides a relatively complex non-linear partial differential equation with
respect to the material variable and time.

3. Approximate Solutions to the Momentum Equation

In order to find a solution of the momentum equation (21) we resort to approximate
formulation in which it is assumed that the displacement u(Z1, t) possesses the power
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series expansion with respect to a parameter ε (Stoker 1957, Wehausen and Laitone
1960)

u = εu1 + ε
2u2 + . . . . (22)

Substituting (22) into equation (21) and collecting terms with the same power
of the parameter, a system of linear equations is obtained. In order to simplify the
analysis we limit our consideration to the two lowest powers of the expansion. The
first order approximation of the equation reads[

1 +
1
2

Hh′′(1 − α)
]
ü1 −

1
3

H2(1 − α)2ü′′1 + Hh′(1 − α)ü′1+

− gH(1 − α)u′′1 + 2gh′u′1 + gh
′′u1 = 0.

(23)

For h = 0 the equation reduces to the case of constant water depth (Wilde 1999).
Similarly, the second power terms in the expansion lead to the following equation[

1 +
1
2

Hh′′(1 − α)
]
ü2 −

1
3

H2(1 − α)2ü′′2 + Hh′(1 − α)ü′2+

− gH(1 − α)u′′2 + 2gh′u′2 + gh
′′u2 + NL = 0,

(24)

where the non-linear term (NL term) in the equation depends on the first order
solution:

NL �
1
3

H2(1 − α)2[−ü′′1 u′1 + 4ü′1u
′′
1 + 4u̇′1u̇

′′
1
]
+

+ Hh′(1 − α)
[
ü′1 − (u̇′1)

2 − ü1u′′1
]
+

+
[
5 + 2(h′)2 + 2Hh′′(1 − α)

]
ü1u′1+

+ Hh′′(1 − α)u̇1u̇′1 + h′h′′u1ü1+

+7gh′(u′1)
2 − 2gH(1 − α)u1

′′u1
′ + 5gh′′u1u1

′.

(25)

Although the equations (23) and (24) are linear, they have variable coefficients
and, thus, they are still difficult to solve analytically. Therefore, in order to get
solutions of the equations we resort to a discrete formulation by means of the finite
difference method. With the discrete approach, the space derivatives with respect
to the independent variable Z1 are substituted by finite difference quotients. The
equations differ by the NL term, and therefore, it is convenient to omit the lower
indices of the dependent variables in the further discussion. For the assumed spacing
a = const. of nodal points within the fluid domain, a finite difference analogue of
equation (23) is written for all the points k = 1, 2, . . . ,N as continuous in time and
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discrete in space system of differential equations. For a typical point k (Z1 = ka)
within the fluid domain, the differential equation is written in the form

−W1ük−1 +W2ük −W3ük−1 − S1uk−1 + S2uk − S3uk+1 = 0, (26)

where:

W1 =
1
3

(
H
a

)2

(1 − α)2 +
1
2

h′
H
a

(1 − α),

W2 = 1 +
1
2
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2
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H
a

)2

(1 − α)2,

W3 =
1
3

(
H
a

)2

(1 − α)2 −
1
2

h′
H
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(1 − α),

(27)

and

S1 =
1
a

[
gH
a

(1 − α) + gh′
]
,

S2 = 2
gH
a2 (1 − α), S3 =

1
a

[
gH
a

(1 − α) − gh′
]
.

(28)

The final set of equations (26) is written in the matrix form

[AM]
(
Ü
)
+ [BM](U) + (P) = 0, (29)

where:

(U)T = (u1, u2, . . . , uN ),(
Ü
)T
= (ü1, ü2, · · ·, üN ),

(P)T = (−W1ü0 − S1u0, 0, 0, · · ·, 0) .

(30)

The vector (P)T in the equations depends on the generator motion.
With respect to the notations (27) and (28), the matrix [AM] assumes the

following form

[AM] =



W2 −W3
−W1 W2 −W3

· · ·

· · ·

−W1 W2 −W3
−W1 W2


. (31)
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In a similar way, the matrix [BM] reads

[BM] =



S2 −S3
−S1 S2 −S3

· · ·

· · ·

−S1 S2 −S3
−S1 S2


. (32)

It should be noted that the non-zero elements of the matrices depend on the
independent variable Z1 of the considered point, but do not depend on time. It
may be seen that the first equation of the set (29) contains terms ü0 and u0 which
are known functions of time prescribed by the boundary conditions at Z1 = 0. In
order to perform integration of equation (29) with respect to time, we introduce the
discrete time and make use of the Wilson θ method. In this method, the acceleration
between the subsequent time steps is approximated by a linear function of time. For
a mechanical system, the procedure is unconditionally stable for θ > 1.37 (Bathe
1982). Having the displacement vector (U)T = (u1, u2, . . . , uN ) we can calculate its
approximate derivative with respect to the horizontal variable. Then, with the help
of equation (7), one can calculate the vertical displacements of the free surface.

4. Experiments in a Laboratory Flume

The experimental set-up together with an arrangement of wave gauges is shown
schematically in Fig. 1. The laboratory experiments were conducted in the wave
flume of the Institute of Hydro-Engineering of PAS in Gdańsk. The wave channel
is 64 m long with a cross section of 0.6 m broad and 1.4 m high and is equipped
with a programmable wave-maker. The undisturbed water depth was chosen to be
0.6 m. The water waves were generated by a piston-type wave maker placed at the
beginning of the flume. A rigid, plane inclined ramp was installed at a distance of
6 m from the generator. The ramp was made of waterproof plywood, supported by
a steel structure. Two slopes of the inclined ramp were considered (height to length
ratio of the slope was chosen to be 1:10 or 1:15). The right vertical wall was placed
4 m from the right end of the ramp. The experiments were conducted for chosen
sets of amplitude and frequency of the generator motion. The motion approaches
the case of steady state harmonic motion within a few first periods inherent to an
assumed frequency. The frequency had been calculated from fundamental dispersion
relation for water of constant depth equal to 0.6 m for a set of the assumed wave
lengths. The experiments were performed for the wave length ranging from λ = 2H
(ωg = 7.1494 s−1) up to λ = 16H (ωg = 1.5461 s−1) with the length step ∆λ = 2H ,
where H = 0.6 m is the calm water depth in the generator vicinity. The amplitudes
of the generation changed from 1.2278 cm for the highest frequency up to 4.6413
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cm for the smallest frequency of the generation. The generator stroke was mea-
sured by means of a horizontal displacement gauge. The wave-maker motion was
measured for each run. The measurements of the free surface elevation at chosen
space points have been carried out by means of water wave gauges installed at
chosen distances from the wave-maker (see Fig. 1). The first water wave gauge was
installed at a distance of LS1 = 3 m from the generator. The successive gauges were
installed at points LS2 = L1, LS3 = L1 + L2/2, LS4 = L1 + L2, LS5 = L1 + L2 + L3/2
and LS6 = L1 + L2 + L3. For the slope 1 : 10, L1 = 6 m and L2 = 3 m, while for the
smaller slope L1 = 4.5 m and L2 = 4.5 m, respectively. Segment L3 was the same
for both slopes of the ramp. The data obtained in experiments was recorded by
means of a PC computer with sampling frequency equal to 200 Hz. Some of the
results obtained in experiments are presented in the subsequent Figs. 2 and 3, where
the plots represent the distribution in time of the free surface elevations measured
by the set of wave gauges. Obviously, all the plots shown in the figures depend on
the frequency and the amplitude of the generator motion. From comparison of the
plots in the figures it may be seen that the distribution in time of the elevation at
different horizontal points changes significantly. For instance, the amplitude of the
free surface elevation at point B (see Fig. 1) is much smaller than the amplitude
measured at other points of the horizontal coordinate. Moreover, as compared to
the first gauge (S1 in Fig. 1), higher order components have an important share in
the distribution of the elevation in time. It may be seen that, within the first elapse
of time (approximately 15 s from the starting point) there are no significant differ-
ences between the two first plots. With the passage of time, however, the difference
between the two plots increases. The latter results from the reflection of the water
waves from the right and lower boundaries of the fluid domain. The reduction of
the wave height at point B is a characteristic feature of the experiments conducted
in the laboratory flume. Moreover, from the plots it may be seen that the free
surface elevations grow in time. The observed growth of the free surface elevation
results from a wave reflection together with a resonance phenomenon, which may
occur for the finite fluid domain considered. As a matter of fact, the finite fluid
domain forms a mechanical system with its own set of eigenfrequencies. Therefore,
in general, one may expect that some of the components of the fluid motion may
fall into a resonance range, and may thus be strengthened. The strengthening of the
elevation will lead to a breaking phenomenon which necessarily emerges within
a relatively large lapse of time measured from the starting point. In order to avoid
such a possibility, the experiments have been terminated at a proper moment of
time. With the passing time, in addition to the components corresponding to the
generator frequency, higher order components, corresponding to higher frequencies,
emerge. In order to extract main components of the time records, a digital Kalman
filter method has been applied. With the help of the filtration one can decompose
an original record into components corresponding to a multiple of the leading fre-
quency. For illustration, the decomposition of the free surface elevation, recorded
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Fig. 2. Surface elevations for the bottom slope 1 : 10, recorded in laboratory experiments
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Fig. 3. Surface elevations for the bottom slope 1 : 15, recorded in laboratory experiments



150 K. Szmidt, B. Hedzielski

Fig. 4. Decomposition of the original record into components corresponding to leading
frequency and its double for the S5 wave gauge
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by the wave gauge S5, into components is shown in Fig. 4. It may be seen that, with
the passage of time, due to the reflection phenomenon, an influence of the higher
order components on final results becomes more important.

5. A Comparison of Theory and Experiments

The main objective of the research is to answer the question about accuracy and
a range of applicability of the theoretical description of the phenomenon. Therefore,
in what follows, we will focus our attention on theoretical solutions to cases chosen
in the laboratory experiments. The data obtained in experiments is compared with
theoretical results. In this way judgment on the applicability of the description is
formulated. At the same time, it is perhaps important to emphasise here that the
theory presented above has been derived under the assumption of a moderate wave
height and sufficient length of a generated wave. Therefore, one may expect higher
discrepancies between calculated and measured parameters for waves of higher
amplitudes. The equations of fluid motion derived in the preceding sections enable
us to obtain a linear solution to the problem and estimate a second order solution by
means of the perturbation scheme applied. But, even in the linear case, the result-
ing momentum equation is a partial differential equation with variable coefficients
depending on the space coordinate, and thus, in order to integrate the equation, we
have to resort to the finite difference method. With this method, the momentum
equation has been substituted by a system of ordinary differential equations with
respect to time. Some of the results obtained in calculations are shown in Figs. 5
and 6. The theoretical results shown in the figures are compared with those obtained
in experiments, which have been shown earlier in Figs. 2 and 3. The differences
between the two sets of plots depend on the amplitude and length of a generated
wave as well as the shape of the fluid domain. From the plots it may be seen that
the differences between them depend also on the horizontal coordinates, where the
free surface elevations were measured and calculated. The shift in the phase of the
plots, especially within the first range of time, say up to 15 s from the starting point,
is a result of a hydraulic oil servomechanism system responsible for the wave-maker
motion. Therefore, in order to obtain a qualitative measure of comparison of the
records, one may calculate squares of the elevations, or absolute values of them,
and take their averages within an assumed range of time. Such a comparison will
depend on the wave amplitude. Another possibility, chosen in the present paper, is
a comparison of spectral densities of the records resulting from the finite Fourier
transforms of them. Some of the results obtained in this way are shown in Figs.
7 and 8. The graphs in Fig. 7 represent the lowest transform amplitudes for the
free surface elevation records corresponding to the successive wave gauges. All the
cases presented in the figure are associated with the generation frequency ω = 3.666
s−1 relevant to the wave of length λ = 8H , where H is the calm water depth. Like
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Fig. 5. Comparison of theoretical results with data obtained in experiments for the bottom
slope 1 : 10

in the previous figure, the plots in Fig. 8 represent also the lowest amplitudes of
the Fourier transforms, but now all the plots correspond to the point x = x(S5).
The figure illustrates the accuracy of the theoretical solution for waves of different
lengths. From the plots it may be seen that the theory provides reliable results
for water waves of lengths ranging from λ = 4H to λ = 16H . At the same time,
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Fig. 5. Continued

the theory fails to deliver proper results for shorter waves, say waves of lengths
λ < 4H. Thus, with respect to practical applications, the theory presented above is,
in principle, accurate enough for estimation of transformation and reflection of long
sea waves approaching a sea shore.
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Fig. 6. Comparison of theoretical results with data obtained in experiments for the bottom
slope 1 : 15
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Fig. 6. Continued
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Fig. 7. Discrete spectral densities of the free surface elevations resulting from theoretical
solutions and obtained in laboratory experiments for all the wave gauges

Fig. 8. Discrete spectral densities of the free surface elevations at the wave gauge S5 resulting
from theoretical solutions and obtained in laboratory experiments for a set of generation

frequencies
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6. Concluding Remarks

The transformation of water waves approaching the area of uneven bottom together
with reflection of the waves from a barrier depends mainly on changes of the
water depth and characteristics of the waves. In the considered cases, the water
depth diminishes towards the barrier installed in an area of smaller water depth.
In the laboratory experiments and theoretical approach presented, we have been
dealing with the initial value problem of the finite fluid domain starting to move
at a certain moment of time. A relatively complicated structure of the water flow
is a result of geometry of the fluid domain and a resonance phenomenon which is
an important factor especially for the harmonic generation of the water flow within
finite domains. The resonance is responsible for a significant growth of wave height
with passing time, till a breaking of the wave. With the breaking phenomenon, the
condition of continuity of the free surface is lost, and thus displacements of the
fluid particles forming the free surface are uncontrolled. As compared to classical
formulations existing in the literature of the subject, the most important feature
of the theoretical description of the phenomenon presented is a reduction of the
description to the momentum equation for the horizontal displacement, instead of
the vertical one. With respect to the kinematical assumption on average horizontal
displacements of all fluid particles forming a vertical material line, the formulation
allows us to estimate the fluid flow also for cases of relatively steep waves, even for
breaking waves. Such an estimation is possible because the vertical displacements
do not enter the fundamental equations as the dependent variable. The vertical
displacement depends on the horizontal solution, and thus it may be calculated for
all cases except u′ = −1. Comparison of the theoretical results with data obtained in
the laboratory experiments has shown that the average difference between the two
sets of the dependent variables was less than about 10%. It should be noted here,
that the comparison has been conducted for relatively high waves, i.e. for waves
the height of which has reached the level of about 40% of the water depth in the
neighbourhood of the right boundary (CD in Fig. 1). It means that the description
model developed in the paper may be used for practical cases as a convenient tool
in analysing the transformation and reflection of sea waves approaching sea shores.
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