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Abstract
In the paper, the problem of dynamic impact of a floating ice sheet at an off-shore structure
is considered. It is assumed that during an interaction event the dominant mechanism is
the brittle fracture of ice at the ice–structure interface, that is, elastic and creep effects in
ice are ignored. Since in natural conditions the edge of floating ice is usually irregular, the
contact between a floe and an engineering object is imperfect. Thus, at any one time, the
failure of ice occurs only in a number of small zones along a structure wall, leading to
a highly irregular variation of forces exerted on the structure during the impact process. It is
supposed in the analysis that the successive small-scale fracture events at the contact surface
occur at random, and all these small-scale events take place independently of each other.
An off-shore structure is modelled as a fixed and rigid circular cylinder with vertical walls.
For an adopted geometry of the ice sheet, its initial horizontal velocity, and the variety of
parameters describing the limit failure stresses in ice, the history of total loads sustained
by the structure and the floe velocity variation are illustrated for a typical impact event.
Furthermore, probability distributions for maximum impact forces exerted on the structure,
depending on the floe size, its thickness and initial velocity, are determined.
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Notations

A, A0 – ice–structure contact area, reference area,
b – discrete ice element size,
Fx, Fy – components of total force sustained by a structure,
h – ice floe thickness,
m – floe mass,
r0,R0 – cylinder radius, floe radius,
t – time,
v – floe velocity,
V0 – initial floe velocity,
x – ice penetration distance,
β – ice fracture strength scale dependance parameter,
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∆ – critical displacement,
ε f – critical failure strain,
σc – ice clearing stress,
σ f – ice failure stress,
σ∗f – normalized ice fracture strength.

1. Introduction

When a hydro-engineering structure is surrounded by a compact cover of floating
ice and starts to interact with it, a variety of deformation mechanisms in ice can
be observed. At the beginning of an interaction process elastic strains develop in
ice, but these are very small in magnitude compared to other modes of deformation
in this material and therefore are usually neglected in the analysis. If the ice is
initially in more or less good contact with the structure walls (is adfrozen to them)
and the forces (wind and/or water currents) driving the ice cover onto the object
change slowly, then the material deforms by creep, in a continuous, or ductile, way.
A number of various approaches have been pursued to describe this type of material
behaviour. Most notably, these include the application of non-linearly viscous (Smith
1983, Overland and Pease 1988, Morland and Staroszczyk 1998, Staroszczyk 2005)
or viscous-plastic rheological models (Hibler 1979, Ip et al 1991, Tremblay 1999,
Staroszczyk 2006). Further increase in strains, strain-rates and stresses in ice leads
to the next phase of the ice deformation, in which cracks develop and subsequently
propagate in the medium, giving rise to the brittle behaviour of ice. Typically, sea ice
undergoes a transition from ductile to brittle behaviour when either compressive
stresses exceed the magnitude of about 5 MPa, or strains exceed about 0.01, or
strain-rates reach the level of 10−4 to 10−3 s−1 (Hawkes and Mellor 1972, Sanderson
1988). During this creep-to-brittle transition phase the loads exerted by ice on the
structure attain their maximum or near-maximum values; further increase in the ice
deformation and velocity usually does not increase the respective forces. However,
when the strains and strain-rates grow further, the cracks in ice begin to spread
out quickly through the medium, and the material starts to fail by brittle fracture.
Since most often the failure of ice takes place only at a number of relatively small
parts of the ice–structure interface, the loads exerted on the object during this
stage show a highly irregular variation in time, with a number of characteristic
sharp spikes appearing at irregular time intervals. Peak forces experienced by the
structure during this phase are usually smaller than those occurring during the
ductile-to-brittle transition. However, if the interaction time is sufficiently long,
then there is an increasing probability that subsequent failure peaks may exceed the
transition peak loading.

This paper deals with the problem in which an ice floe impacts dynamically
at an off-shore structure. In such a situation, due to relatively high velocities of
the floe and high deformation-rates occurring in ice from the moment when the
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first contact between the structure and the floe has been established, the behaviour
of ice is essentially brittle in nature. Indeed, there is little evidence of continuous
behaviour of ice in the vicinity of off-shore structures in Arctic seas; rather, what
is commonly observed in the field, is a multitude of broken ice blocks of various
shapes and sizes surrounding engineering objects (Sanderson 1988, Jordaan 2001).
Therefore, in this analysis of the ice floe impact problem it is assumed that during
the ice–structure interaction the material fails by brittle fracture, and hence other
types of ice behaviour are disregarded.

The description of the ice fracture mechanism is difficult, and requires the
knowledge of advanced methods of both experimental and theoretical mechanics.
A number of theories, with increasing degrees of generality, have been developed
over the past two decades to describe the mechanism of brittle failure of ice (Ashby
and Hallam 1986, Sjölind 1987, Nixon 1996, Pralong et al 2006). Unfortunately,
despite all their merits, these formulations seem to be too complex to be effectively
implemented into realistic, engineering applications, as they involve many material
parameters that cannot be satisfactorily determined for the types of sea-ice encoun-
tered in natural conditions. For this reason, a very simple method is proposed here,
in which the mechanism of ice failure is described, essentially, by only three pa-
rameters: (1) axial compressive failure stress, (2) an associated axial strain at which
the fracture occurs, and (3) ice clearing axial stress, which is a stress occurring in
already fractured blocks of ice. Undoubtedly, such an approximation ignores many
interesting local processes taking place in ice during its brittle fracture. However,
this study is primarily focused on the determination of total net forces that the
ice floe exerts on the structure, thus all small-scale phenomena occurring in the
material near the ice–structure interface are deemed unimportant for the purposes
of the present analysis.

In this work, an engineering structure is modelled as a rigid, circular in plane
cylinder with vertical walls. An ice floe that hits the structure is treated as a compact
slab of thickness constant along the contact surface. The interaction between the
floe and the object is assumed to occur, at any given time, at a number of small
zones, with local fractures taking place non-simultaneously in different parts of
the contact interface. In this way, the non-perfectness of the ice–structure contact
and the material non-homogeneities are accounted for. The local failure of ice at
each small zone is supposed to occur independently of the other zones, and all
these independent local fracture events are treated as separate random processes.
Accordingly, the total load sustained by the structure is determined as a statistical
sum of individual loads coming from all the small contact zones. Hence, assuming
the floe dimension (or mass) and its initial velocity, probability distributions of
maximum total contact forces occurring during the collision process are calculated
by simulating numerically a large number of single impact events. In particular, the
probability distributions showing the dependence of peak interaction forces on the
floe thickness, its size and its initial velocity are determined. In addition, the time
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variations of the total impact force, the floe velocity, and the distance travelled by
the floe during a typical impact event are illustrated.

2. Non-Simultaneous Fracture of Ice

The problem considered is depicted in Fig. 1. An ice floe, initially at some distance
from a rigid structure, driven by wind and/or water current drag forces, is moving
towards the object at the horizontal velocity V0 , carrying some amount of kinetic
energy. After arriving at the structure at time t0 and establishing contact with its
walls, the ice starts to fail at locations at which the magnitudes of local contact
stresses reach the brittle failure strength of ice. As the ice is progressively crushed,
and also piled up or sunk near the structure, the initial energy of the impacting
floe is dissipated, and the floe velocity, v(t), with t denoting time elapsed from the
instant t0, gradually decreases until the ice sheet comes to rest.

Fig. 1. Definition of the problem: (a) planar and (b) cross-sectional views

Due to the geometry of the ice leading edge which in real field conditions is
commonly quite irregular in shape, both in planar view and across the ice depth,
the contact between the floe and the structure wall is most unlikely to take place
over the entire possible interface between the ice and the object (see Fig. 2a).
Further, once the interaction has been initiated and the ice starts to fail, broken
blocks of different size and shape are formed in a chaotic fashion. The observed
characteristic size of such fractured fragments is of the order of the floe thickness;
for very thick, multi-year ice of the thickness of several metres, this size is of
the order of about 1 m (Sanderson 1988). All these separate ice blocks are being
crushed at the structure wall independently of one another, in a series of local
failure events which can be regarded as a random process. Hence, the failure of the
ice occurs in a non-simultaneous manner, as different ice fragments fail at different
times at different small-area zones at the interface surface. At any one such small
zone, the ice fragments are supposed to arrive and fail one by one: as one fragment
fails and the debris is cleared by the process of ice piling up or sinking, another
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ice fragment arrives immediately to start its interaction with the wall and to fail
after some time, etc. In order to model such a complex interaction phenomenon,
I apply, and refine, a method originally proposed by Ashby and Hallam (1986) and
subsequently followed by Sanderson (1988). In this method, the floe is treated as
a collection of regular in shape and independent cells, as shown in Figs. 2b and
2c. Each discrete cell has the same size, and is a square of dimensions b × b in the
horizontal plane and has a depth h equal to the floe thickness. The dimension b
corresponds to the above-mentioned characteristic size of fractured ice blocks and
is chosen to be close to h (provided that geometric features of the problem under
consideration enable this). As a particular cell starts to interact with the structure
(Fig. 2c), it is assumed that it fails (that is, the axial stress component normal to
the contact surface reaches the fracture strength of ice) when the whole discrete
element is advanced by a distance ∆; the latter parameter representing a critical
displacement at which the crushing of ice occurs.

Fig. 2. (a) Imperfect contact between an ice floe and a structure wall, (b) problem idealiza-
tion, (c) detailed view and definitions

The history of loading experienced by a discrete zone at the contact interface,
as successive ice cells arrive and fail there, is illustrated in Fig. 3. When an ice cell
comes to the rigid wall and then moves by a distance ∆, the contact stress is assumed
to grow in a linear manner from zero to its peak value, equal to the ice fracture
strength, σ f . Next, immediately after the failure of ice, the contact stress drops
sharply to a much lower level, σc, which is a stress in ice caused by forces which
are needed to clear the debris formed during failure (that is, to move the fractured
ice fragments up or down, since the debris cannot be cleared by pushing it aside,
in the direction lateral to the impact direction). This clearing stress is supposed to
remain constant until the time when the next ice block arrives at the wall and starts
to fail, rising the stress gradually to the σ f level again, etc. The failure and clearing
stresses, σ f and σc, for different ice cells are assumed to have different magnitudes,
in order to reflect a stochastic character of the fracture mechanism and an associated
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Fig. 3. Contact stress history for a single discrete zone

statistical scatter in available empirical data. The respective mean values of σ f and
σc are illustrated in the figure by the two horizontal dashed lines. The variations of
σ f and σc about their mean values are supposed to follow the normal distribution.
Moreover, the distance between consecutive failure stress peaks is not uniform, but
also varies in a stochastic manner; in such a way the randomness of an individual
ice block size is accounted for. In the model it is assumed that the average distance
separating two successive failure stress peaks is equal to b – the average size of
a fractured block. Further, it is supposed there is an equal probability of a stress
peak to lie anywhere within a given stretch of length b (that is, a uniform probability
distribution function is used).

The model for the mechanism of the ice–structure interaction, as described
above, is based on three main parameters: the stress magnitudes σ f and σc (their
mean values and statistical variation) and the critical displacement ∆ at which an
ice element of length b fails. The latter parameter will be expressed by means of
a critical axial strain, ε f , at which brittle fracture occurs.

The most significant of the above three parameters, with regard to the magni-
tudes of forces exerted by impacting ice on a structure, is the failure stress level
σ f , equal to the brittle fracture strength of ice. It is well known that fracture
mechanisms exhibit pronounced scale-dependence, and ice is no exception. Hence,
the stress under which a given sample of ice fails in a brittle way strongly depends
on its geometrical dimensions, as well as the size, shape and distribution of flaws
and cracks in the material. There is a host of empirical data, obtained from both
small-scale laboratory and large-scale field measurements, which show how the ice
peak failure stress is related to the contact area on which the stress is applied.
These data, covering the range of scales varying from square centimetres to even
square kilometres, have been collected, and presented in so-called pressure-area
diagrams, in the book by Sanderson (1988). It follows from these diagrams that the
compressive failure strength of ice decreases with increasing contact area, A, with
a functional dependence expressed by

σ f ∝ A−β, (1)



Loads on an Off-Shore Structure due to an Ice Floe Impact 83

where the symbol ‘∝’ means ‘proportional to’. There is some discussion in the
literature on the subject, concerning the most appropriate value of the parameter
β in the above power law. Generally, it is accepted that β takes a value from the
range 1/4 to 1/2, with the lower limit value for smaller scales (A . 0.1 m2), and the
upper limit value for larger scales (A & 103 m2). In the model proposed here, the
value β = 1/4 is adopted, which has been derived by Palmer and Sanderson (1991)
and Xu et al (2004) on the basis of a fractal analysis of the size distribution of
fragmented sea ice. Hence, the ice size effect on the failure strength is expressed
in the following, normalized, form

σ f = σ
∗
f

(
A
A0

)−1/4

, (2)

where A0 is a reference contact area, assumed here to be equal to 1 m2, and σ∗f is
a normalized ice failure strength (that is, that corresponding to A0). Xu et al (2004)
suggested a value of σ∗f = 1.66 MPa, as the one providing the best fit to the available
empirical data. The latter value of β is particularly suitable for the case of contact
areas of the order of 1 m2. The failure strength defined by equation (2) represents its
mean value. The experimental data for sea ice, however, show a significant statistical
scatter. Sanderson (1988) carried out some detailed statistical calculations for the
Arctic sea ice and found that the variation coefficient (the ratio of the standard
deviation to the mean value) of the data for first-year ice is as high as about 45%,
and for multi-year ice it is about 65%. In this work, as we are concerned with rather
thin first-year ice, the variation coefficient equal to 50% is adopted to describe the
scatter in possible values of σ∗f . Moreover, Sanderson (1988) indicated that the
probability distribution of experimental data for σ∗f is approximately normal, and,
therefore, such a type of distribution will be used in the numerical simulations.

While the failure strength of ice, σ f , is relatively well identified and reliable
empirical data sets are readily available, the magnitude of the ice clearing stress, σc,
the other parameter in the model, is much more difficult to identify, since – as far as
I am aware – no measurements of this quantity have been carried out yet during real
impact events. Due to the lack of the results obtained directly in situ, a few attempts
have been made by different authors, for instance Sanderson (1988), to estimate the
ice clearing stresses indirectly, by purely theoretical considerations. To this end, the
work done against gravity, required to rise or sink ice fragments after their failure,
is calculated and compared to the work done by the forces in impacting ice. In this
way the stress levels during clearing the ice post-failure debris can be determined,
and it turns out that so obtained stresses are about two orders of magnitude smaller
than the typical failure stresses. In order to make allowance for additional forces
that can develop in ice to overcome frictional resistance of the failed material, as
well as to account for dynamic effects, some numerical factors can be introduced
in the analysis to increase the magnitude of the possible clearing stress. Yet, these
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stresses will be appreciably smaller compared to the failure stresses. Sanderson
(1988) proposed the value of 0.05 MPa for σc, but this was for multi-year ice of
10 m thickness. For much thinner ice floes considered in this work, a lower value
for the clearing stress is adopted, namely 0.02 MPa as its mean value, together with
a 50% variation coefficient, in order to describe the scatter of empirical data – the
same value of the variation coefficient as that adopted above for the failure stress.

The third key parameter used in the proposed ice floe failure model is the critical
strain ε f , developing during the process of brittle crushing of ice, and determining
the critical axial displacement ∆ (see Fig. 3) through the relation ∆ = ε f b. There is
some experimental evidence regarding the strain magnitudes at which ice fractures,
but this is limited to small-scale laboratory tests on fresh-water ice samples, and thus
has little relevance to real large-scale field conditions. Therefore, as in the above
case of σc, the value of the critical strain ε f has been inferred indirectly, by some
theoretical argument (Sanderson 1988). The latter author presents two examples,
in one he assumed ε f = 0.02, and in the other ε f = 0.05, both values for thick,
multi-year ice. In the present analysis the lower value is adopted, that is ε f = 0.02,
in belief that pre-failure strains that develop in young, thin, and therefore relatively
homogeneous ice are much smaller than those occurring in multi-year, thick, and
hence highly heterogenous ice. For comparison, strains measured in laboratory at
failure of fresh-water ice, depending on strain-rates and stress regimes applied,
have the values ranging from 0.002 to 0.007 (Schulson and Gratz 1999, Iliescu and
Schulson 2002).

3. Numerical Method

Let the direction of the floe movement be defined by an axis x, with the x-coordinate
measuring a distance between the floe and the structure. Assume that x = 0 at the
time of first contact, taking place at t = t0, and x grows as the ice is progressively
penetrated. Hence, the x-coordinate denotes the ice penetration distance, shown in
Fig. 3.

The numerical simulation of an impact event, based on the assumptions and
approximations presented above, proceeds in the following steps:
1. Given the initial geometry of an ice floe, its in-plane dimensions and a mean

thickness h, the ice sheet is discretized in the way shown in Fig. 2, by choosing
the ice cell size b of a magnitude close to h. Also the floe mass, m, is evaluated
(in the model, the effect of the added mass of underlying water is neglected).

2. For each discrete contact zone at the ice–structure interface, a separate stochastic
realization of loading, as illustrated in Fig. 3, with the values of the failure and
clearing stress, as well as the distance between consecutive failure stress peaks,
randomized about their mean values, is prepared. For this purpose, standard
random number generators for the uniform and normal probability distributions
are used.
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3. At each calculation step, for t > t0, the floe is advanced by a small increment δx,
chosen to be a fraction (one-tenth or one-twentieth) of the critical displacement
∆ = ε f b. For the current value of x, a local contact stress, obtained from the
respective realization of loading, is determined for each discrete zone, and all
these local stresses, multiplied by the respective local contact areas, are summed
together to yield a total impact force, F, at given x.

4. Assuming that during a given displacement step k (k = 1, 2, 3, . . .) the interaction
force, Fk , is constant, the total work done by this force over the distance δx is
Fkδx. Equating that work with the amount of the total kinetic energy of the floe
lost due to the decrease in its velocity from the value of vk−1 to vk , the latter
can be evaluated from the relation

v2k = v
2
k−1 −

2Fk

m
δx, k = 1, 2, 3, . . . , v0 = v(t0) = v(x = 0) = V0. (3)

5. Assuming a linear variation of the floe velocity at each step, the time which
elapsed during the advance of the floe at the k-th step, denoted by (δt)k , is
calculated from the formula

(δt)k =
2 δx
vk−1 + vk

. (4)

All the time increments, added up over all preceding displacement steps, give
the current value of time t elapsed since the beginning of the interaction process.

The procedure outlined above yields time histories of the total interaction force
F, the floe velocity v, and the penetration distance x for one particular stochastic
realization of an impact event. For each realization, a magnitude of the maximum
force F occurring during an event is found, and then, by simulating a large num-
ber of realizations, probability distributions for the peak ice impact loads F are
determined.

4. Results of Simulations

The model presented in the two preceding sections has been applied to simu-
late ice–structure dynamic interaction events of the geometries shown in Fig. 4.
The basic configuration used in the computations is depicted in Fig. 4a, showing
a cylindrical structure of radius r0 impacted by a circular floe of radius R0 and
average thickness h, moving towards the structure with velocity v(t). Strictly, only
the geometry of the leading floe edge which can come in direct contact with the
structure may play a role, otherwise the planar shape of the floe is irrelevant (since
it is the mass of ice which matters). To examine the effect of the geometry of the
impacting floe edge on the peak forces exerted on the structure, the interaction
configuration shown in Fig. 4b has also been considered, in which the projection
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Fig. 4. Cylindrical structure of radius r0 in contact (a) with a floe of radius R0, (b) with
a straight-edged floe. The hatched areas show the regions of ice penetrated by the structure

of the leading floe edge on the horizontal plane is a straight line normal to the ice
movement direction.

The simulations have been carried out for a vertically-sided circular cylinder of
radius 10 m. The main purpose was to investigate the influence of the floes initial
velocity and size on the characteristics of the total forces exerted on the object.
Hence, the initial ice velocity, V0, was varied within the range 0.2 to 0.5 m s−1. The
latter, higher value can be regarded as a typical ice floe speed occurring in the Arctic
during high wind seasons (Sanderson 1988). The ice thickness, h, was assumed to
range from 0.2 to 0.5 m, pertaining to young, one-year ice. Unless otherwise stated,
interaction with a circular floe of radius R0 = 100 m was simulated. As discussed
earlier in Section 2, the following values of the parameters used in the proposed ice
fracture model were adopted: σ∗f = 1.66 MPa, σc = 0.02 MPa, ε f = 0.02. The ice
density (needed to determine the total mass of the floe) was taken as 900 kg m−3.
All probability distributions presented further in this Section have been obtained
by running the model repeatedly 10 000 times (that is, impact events).

Fig. 5 illustrates typical time histories of the total force acting on the cylinder
along the direction of the floe advance, Fx(t), the flow velocity, v(t), and the ice
penetration distance, x(t). The results have been obtained for a floe of thickness
0.5 m, moving towards the structure at a velocity of 0.5 m s−1. For this particular
realization, the impact lasts nearly 25 seconds, the ice moves a distance of 6.8 m
(roughly 2/3 of the cylinder radius) before it comes to rest, and the peak forces
exerted on the structure have magnitudes close to 1.6 MN. While the simulated
variation of the total loading is, as has been anticipated, highly irregular, the velocity
of the floe, and in particular, its position against the cylinder wall, vary in a relatively
smooth manner. At first sight, it might seem surprising that such highly irregular
variation of the interaction forces, suggesting the presence of dynamic effects in the
system, is not reflected in the plots for v(t) and x(t). However, each peak force, for
the input parameters (ε f , b = h and V0) adopted, acts over an average time period
of about 1/25 s. Therefore, the changes in floe velocity and position occurring over
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Fig. 5. Typical histories of (a) the total force Fx , (b) the floe velocity and (c) the ice
penetration distance during an impact event, for the floe thickness h = 0.5 m and its initial

velocity V0 = 0.5 m s−1

such short time intervals cannot be discerned on the time scales used in the plots.
It is also worth noting that the force peaks of largest magnitudes gradually increase
as the collision proceeds. This is because the ice–structure contact area widens with
the time of interaction, hence there is an increasing number of local zones at which
ice can potentially fail (that is, there is an increasing number of local contact forces
which, at a particular time, can potentially contribute to the total ice floe–structure
interaction force). However, although such an increase in the maximum loads with
elapsed time is quite a common feature, by no means – due to the random character
of the process – can it be treated as a general rule.

The results demonstrated in Fig. 5 refer to a single impact event. Due to the
intrinsic randomness of the mechanism under investigation, and hence a small re-
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Fig. 6. Histograms of peak ice impact forces Fx and Fy obtained by simulating 10 000
events, for the floe thickness h = 0.5 m and its initial velocity V0 = 0.5 m s−1

peatability of the results obtained for a single event, it is necessary to perform
a series of simulations, the longer the better, in order to infer information of a more
general use. For this purpose, a series of 10 000 impact events has been simu-
lated, adopting the same set of input parameters relating to the floe as those used
in the previous figure. As in engineering practice we are usually most interested
in the magnitudes of forces exerted on the structure, Fig. 6 presents histograms
showing the frequency distributions of peak impact loads – the components Fx
and Fy acting, respectively, along the axes x and y, as shown in Fig. 4. One can
immediately notice that the peak loads acting in the lateral direction, Fy, can attain
quite large magnitudes compared to the loads Fx along the floe movement direction.
For floe velocity V0 = 0.5 m s−1 and ice thickness h = 0.5 m, the average values of
the peak load components are Fx = 1.58 MN and Fy = 0.59 MN (with respective
standard deviations 0.18 MN and 0.08 MN), so that the mean lateral peak force
equals nearly 2/5 of the mean longitudinal component. Similar ratios of the Fy to
Fx components have been obtained for other combinations of the floe parameters. It
can be observed in the histograms that the peak load distributions are not symmetric
about their mean values, hence they cannot be approximated by the normal distri-
bution. The shape of the frequency histograms suggests the Poisson, or, possibly,
the Weibull distribution. The latter type of the probability density distribution often
occurs in fracture mechanics, and with regard to ice fracture phenomena it has
already appeared in a number of analyses, for instance by Kim and Shyam Sunder
(1997) and Kamio et al (2003).

The diagrams in Figs. 7 to 10 present density probability distributions of peak
forces exerted by impacting ice. These figures illustrate the influence of the floe
velocity, its thickness, planar size, and the value of the model parameter ε f , on
the magnitude of the total contact force Fx and the statistics of its occurrence.
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Fig. 7. Exceedance probability distributions of peak impact loads exerted on the structure
for the initial floe velocity V0 = 0.5 m s−1 and different floe thicknesses h. Compared are

the results for circular and straight-edged floes

The plots are arranged in such a way that for each value of the load Fx obtained
from the simulations, the probability that this particular value will be exceeded is
shown. Fig. 7 demonstrates the effect of the floe thickness h on the exceedance
probabilities of the total impact loads. Accordingly, for different values of h, with
the ice velocity V0 and the plane floe dimensions kept unchanged, the respective
probability distributions are plotted. Moreover, the effect of the impacting floe
geometry is illustrated by considering the two configurations depicted in Fig. 4,
namely (a) the circular floe of radius R0 = 100 m and (b) the straight-edged floe of
the same mass as the round one. The results for the circular floe are shown by the
four lines for h = 0.2, 0.3, 0.4 and 0.5 m respectively, and the results for the floe
with the straight leading edge are shown by the squares (h = 0.2 m) and the circles
(h = 0.5 m). It is seen that the influence of the floe edge geometry on the load
probability distributions is negligibly small – the maximum relative discrepancies
are of the order of 1%. On the other hand, the influence of the ice thickness
on the impact load magnitudes is, obviously, significant. However, the total loads
sustained by the cylinder are not roughly proportional to the ice thickness, as could
be expected at first sight, due to two factors. First, the thicker floe has smaller
fracture strength σ∗f than its thinner counterpart, as is described in Section 2, and
in particular is quantified by equation (2). And second, the thicker floe, due to its
larger mass, interacts with the structure for a longer time, which enhances chances
for larger peak forces to occur during an impact event.

Fig. 8 shows the exceedance curves for peak loads Fx as a function of the initial
velocity of ice, V0, with the other problem parameters (h, R0 and ε f ) kept constant.
Hence, for the velocities V0 ranging from 0.2 to 0.5 m s−1 and the ice 0.5 m thick,
the probability distributions for Fx are displayed. It can be noted that, despite
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Fig. 8. Exceedance probability distributions of peak impact loads exerted on the structure
for the floe thickness h = 0.5 m and different initial floe velocities V0

a significant increase in the total kinetic energy of a floe, which is 6.25 times larger
in the case of the velocity changed from 0.2 (the short dashed line) to 0.5 m s−1 (the
solid line), the magnitudes of the total loads, at the same probability of exceedance,
increase merely by a factor of about 1.25 to 1.4. This increase in impact loading
has two sources. Firstly, the ice penetration distance is larger for the faster moving
floe, hence – for the adopted circular geometry of the structure – the maximum total
contact area is larger. Secondly, an increase in the average time of an impact event
(changing from 15.7 s for V0 = 0.2 m s−1 to 24.6 s for V0 = 0.5 m s−1) increases
the likelihood of larger peak loads appearing during a collision event.

In Fig. 9 the floe size effect on the exceedance probabilities of the peak impact
forces is demonstrated. That is, the results of simulations carried out for circular
floes of radii varying between 50 and 200 m are plotted. In some way, the character
of the exceedance curves resembles that shown in the previous diagram. Although
the kinetic energy grows quite considerably with increasing floe radius (by a factor
of 16 between the smallest and the largest floes considered), this translates to much
smaller variations of the peak load magnitudes occurring with the same probability
of exceedance. The reasons for the peak loads increase are again twofold: an increase
in the total contact area, and an increase in the impact duration time.

The previous three diagrams illustrated the effects of the floe geometry (its
thickness, planar size and leading edge shape) and the floe initial velocity on the
probability distributions of the interaction force. In Fig. 10 we show how the mag-
nitude of the critical strain, ε f , affects the resulting load distributions. The latter
parameter is one of the three main parameters of the impact model presented, and
the one which is the most difficult to be realistically estimated. Hence, the ex-
ceedance curves for the peak impact forces are plotted for a set of different values
of ε f , including the value 0.02 used in all previous simulations. It is seen in the
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Fig. 9. Exceedance probability distributions of peak impact loads for the initial floe velocity
V0 = 0.5 m s−1, ice thickness h = 0.5 m, and different floe radii R0

Fig. 10. Exceedance probability distributions of peak impact loads for the initial floe velocity
V0 = 0.5 m s−1, ice thickness h = 0.5 m, and different values of the critical strain ε f

figure that the magnitude of the critical failure strain has a significant effect on
the theoretical predictions of the model, since a change in ε f from 0.01 to 0.05
gives rise to an increase in the magnitudes of total forces occurring with the same
exceedance probability, ranging from about 30% for lower values of probabilities
to about 50% for higher ones.

Finally, Table 1 presents mean values, together with respective standard devi-
ations, of the impact duration time T , and the maximum distance X travelled by
the ice floe during a collision event, that is, between the time the ice floe hits the
cylinder wall until it ultimately comes to rest. The table lists the result obtained
for several sets of parameters used in the simulations whose results are shown in
the preceding plots. For most of the parameter combinations considered, the ice
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Table 1. Mean values of impact time T and total penetration distance X, together with their
standard deviations (given after the sign ±) for different combinations of the initial floe
velocity V0, thickness h, floe radius R0, and critical strain ε f , for a cylindrical structure of

radius r0 = 10 m

V0 [m/s] h [m] R0 [m] ε f T [s] X [m]
0.5 0.5 100 0.02 24.6 ± 0.6 6.9 ± 0.1
0.5 0.2 100 0.02 19.6 ± 0.6 5.5 ± 0.1
0.2 0.5 100 0.02 15.7 ± 0.9 1.8 ± 0.1
0.5 0.5 50 0.02 8.8 ± 0.4 2.6 ± 0.1
0.5 0.5 200 0.02 86.2 ± 1.1 22.4 ± 0.2
0.5 0.5 100 0.01 32.0 ± 0.6 8.8 ± 0.1
0.5 0.5 100 0.05 15.3 ± 0.6 4.4 ± 0.1

penetration distance X does not exceed the cylinder radius, except the cases of
very large floes. Also a pronounced effect of the critical strain parameter ε f on the
values of T and X (much larger an effect than on the magnitudes of the total impact
forces) can be noted. It might seem somewhat unexpected that the values of the
standard deviations for T and X are relatively small. However, one should bear in
mind that the parameters describing the ice floe velocity, as well as its thickness
and radius have not been treated in the simulations as random variables – the
randomization has concerned only the parameters directly related to the mechanism
of ice fracture. Hence, the total kinetic energy of the impacting floe has not been
randomized, and this is the quantity which is the most important factor in terms of
the total impact time and the ice penetration distance; the statistical scatter in the
parameters describing the ice fracture strength σ∗f and the critical axial strain ε f
has an effect mainly on the statistical variation in the magnitudes of single contact
force peaks.

5. Conclusions

The mechanical model for the ice floe impact problem has been constructed by
assuming that the dominant mechanism occurring during an ice–structure interac-
tion event is the brittle fracture of ice at a structure wall. The model incorporates
such features as imperfectness of the floe–structure contact and randomness of the
ice failure processes taking place at the structure wall. Hence, the failure stresses
in ice are assumed to be random variables, with their magnitudes varying signif-
icantly about the mean values to reflect large scatter in available empirical data
on the compressive strength of ice. Further, the randomness of the dimensions of
fragmented ice blocks that interact with the structure is considered. The results
obtained by simulating a large number of single impact events provide probability
distributions of the total forces exerted on the structure, in particular, the effects of
the floe dimensions and its initial velocity have been investigated.
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There is no doubt that the proposed model, which, essentially, describes the
mechanism of ice failure by means of only three parameters: the brittle fracture
strength of ice, the axial strain in ice at the final stage of failure, and the ice
clearing stress magnitude, can be improved and extended. It seems that, first of
all, an attempt of including the strain-rate dependence of the ice failure phenomena
should be made. Further, the stochastic character of such quantities, as an impacting
floe size and thickness, together with its velocity, could be considered, since in the
present analysis all these quantities have been treated as deterministic variables.
Hence, a full statistical analysis for a wide set of environmental parameters should,
ideally, be carried out. These parameters include the probability distributions for
the floe velocities, the floe diameters and thicknesses, and the frequency of floe
impacts observed in a given area. Also, it would be highly advisable to measure
the ice–structure contact stress histories in a series of individual impact events, but
this part of observations is most difficult, and expensive, to perform. Having all the
above-mentioned statistical data at disposal, and running the stochastic model with
these data as input, exceedance probabilities of the extreme impact forces acting
on an engineering structure can be generated, enabling in this way a proper risk
assessment of the structure safety and reliability.
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