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Abstract

This paper describes the application of methodology based on the artificial neural
network technique to make short-term wave forecasts. The neural network model is
used to predict significant wave height at a selected location on the Baltic Sea based
on wave and/or wind data at ten points scattered on the sea. High quality hindcast
data were used in the process of developing the forecast methodology. The data
originated from the WAM4 wave model. The results show that the neural network
technique allowed significant wave height to be predicted accurately. The agreement
obtained by a comparison with a testing data set was sufficiently good to confirm the
effectiveness of this approach.
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Notation

d – neuron output,

h – linear activation function,

L – the number of multiple regression inputs,

N – number of samples,

p1:::L – multiple regression inputs,

w0:::L – multiple regression weights,

X; x – WAM4 model results,

Y; y – forecast results.
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1. Introduction

This study was undertaken with the aim of meeting the requirements of a wide
group of sea users for whom precise short-term forecasts of sea state are essential.
The conventional wave models that resolve wave physics in a high-resolution grid,
like WAM (WAMDI 1988) or SWAN (Booij et al 1999), require a high-resolution
atmospheric model and considerable computational resources. The WAM4 wave
model has been set up and validated in many locations throughout the world (Ko-
men et al 1994) including the Baltic Sea (see e.g. Paplińska 1999). At the moment,
neither the spatial resolution of these models nor the frequency of updates on
operational wave forecast systems (usually six hours) are satisfactory. Thus, it is
necessary to develop a fast, efficient, short-term local wave forecast method that
is complementary to numerical models.

Neural networks are universal tools for the classification, approximation, con-
trol, and prediction of various phenomena. They are comprised of a set of artificial
neurons linked together that work in parallel according to specific network archi-
tecture. This structure is able to capture and represent input-output relationships
in data sets. Networks learn by example, based on training sets, and can generalize
knowledge obtained. A well-trained net can predict output on the basis of input
data that does not belong to the training set. Consequently, neural networks can
predict many physical phenomena fairly well.

Neural nets have many applications in oceanography, including forecasting wa-
ter level (Huang et al 2003, Sztobryn 2003). They also have several applications in
wave forecasting (Deo et al 2001, Makarsky et al 2002, Medina, Serrano-Hidalgo
2005). In these works, wave parameters were forecasted using local wind or wave
data for the forecast location as only these data were available. Improvement of
the forecast accuracy was attempted by applying increasingly complex neural net-
work models. Although the applications indicated the ability of neural networks
to predict wave parameters on the basis of wind and wave data, the results of
these forecasts are not satisfactory.

In addition to the tools applied, the choice of input data for the model also
impacts the quality of the predictions. The primary factors shaping waves at sea
are wind speed and duration. The waves in any location are the product of what
is happening at any moment throughout the basin as well as what was happening
there many hours previously. It would seem natural then to try to improve the
quality of forecasts by widening the range of input data in the neural network
model.

The most reliable source of data are in situ measurements. Only a few wave
observation sites are in operation in the Baltic region at present, but there is great
demand within the Baltic community for the establishment of further observation
points (BOOS). Assuming that a system of buoys is in operation on the Baltic
Sea in the near future, these buoys will provide real-time information on the Sea
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state and wind. These data will be utilized to forecast waves at any given location
in the Baltic.

The aim of this research was to develop a method for making short-term wave
forecasts that are quick and computer efficient and that permit the predictions of
waves several hours in advance.

Due to the present unavailability of measured data, hindcast results instead
of buoy measurements were employed in the current research to develop forecast
methodology. Time series of significant wave height, mean wave direction, and
wind speed and direction were simulated with the WAM4 wave model. The high
quality hindcast data used were obtained within the framework of the EU project
HIPOCAS (Hindcast of dynamic processes of the ocean and coastal areas of
Europe, Soares et al 2002). The wind data originated from the REMO regional
atmospheric model (Feser et al 2001), and the wave data came from the WAM4
wave model (Cieślikiewicz et al 2004, Cieślikiewicz, Paplińska 2005).

2. Data, Pre-Processing and Preliminary Statistical Analysis

The present study is based on Baltic Sea wave and wind modeled data for the
1989–1990 period. The data set consisted of the following four parameters:

ž significant wave height,

ž horizontal and vertical components of mean wave direction,

ž wind speed,

ž horizontal and vertical components of wind direction,

which were available every hour in the spatial grid of 5209 sea points with a res-
olution of about 5 Nm in the modelled area.

The original data set was transformed. It is known that the relationship
between wave height and wind speed is quadratic (Massel 1996). Therefore, the
wind speed parameter was raised to its square. Wave and wind directions are used
in vector representation. Data regarding wave direction and wind direction were
applied in the model as the horizontal and vertical vector components corres-
ponding to wave height and wind speed respectively.

The preliminary statistical analysis was performed to obtain essential inform-
ation for the construction of the prediction model. Based on data from the first
720 hours of 1989, correlation analysis was performed to analyze the spatial de-
pendence of the significant wave height at a selected point – the point of interest
(PoI in Fig. 1) on

a. the square value of wind velocity,

b. the significant wave height

at the 5208 remaining Baltic Sea grid points simultaneously.
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Fig. 1. Location of the data points on the Baltic Sea used in the present study

The localization of the PoI is not in any way unique, and every point on
the Baltic Sea is equivalent. This point was chosen since it is near the Coastal
Research Laboratory of IBW PAN and is located where the Waverider buoy takes
wave measurements.

The results are presented in Fig. 2 as contour plots of the correlation coef-
ficient between significant wave height at the PoI (cross) and squared wind ve-
locity (a) and significant wave height (b). The maps show that there is a strong,
long-range dependence between the data. Correlations between wave data are
stronger than those between wind and wave data.

Time correlation analysis was also performed to analyze how the correlation
between significant wave height and squared wind velocity or significant wave
height changes with different time lags (from 1 to 72 hours). The analysis takes
into consideration only significant correlations (greater than 0.5). The results are
presented in Fig. 3. The figure presents maps of time lag for the maximum correla-
tion occurrence at grid points on the Baltic Sea. The maps indicate that significant
correlations for squared wind velocity occur at a 1–15 hour time shift (a) and at
1–63 hours for significant wave height (b). Long-term shifts in (b) occur rarely.

The very high correlations between these data indicate that a neural network
can be appropriate for predicting significant wave height at chosen points using as
input the time history of wave and wind data from points scattered on the Baltic
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Fig. 2. Maps of correlation between significant wave height at PoI (cross) and a) squared wind
velocity, b) significant wave height on the Baltic Sea

Fig. 3. Maps of time lag for the maximum correlation occurrence on the Baltic Sea
a) squared wind velocity, b) significant wave height on the Baltic Sea)
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Sea. The locations of points were chosen with respect to the results of correlation
analysis. Point density is greater in areas where correlation is higher. The initial
number of points was chosen intuitively in order to minimize the number while
not excluding any information contained in either the wave or wind data. Testing
of the significance of the chosen points will be presented in a later part of this
paper.

3. Construction of the Neural Network

Determining the best wave prediction method was comprised of several stages.
The work was begun by formulating modelled cases. Linear multiple regression
was then applied. Sensitivity analyses were performed based on multiple regres-
sion. The results of these analyses were applied in the construction of various
expanded neural networks.

3.1. Description of the Modelled Cases

The preliminary statistical analysis was the basis for formulating three prediction
cases – A, B, and C. The three cases differ from each other with regard to input
parameters:

Case A. (Number of inputs – 330)
at 10 points, 11-hour time history (1-hour time step) of:

ž squared wind speed,
ž horizontal and vertical components of the wind vector (normalized to the

squared wind speed);

Case B. (Number of inputs – 330)
at 10 points, 11-hour time history (1-hour time step) of:

ž significant wave height,
ž horizontal and vertical components of the wave direction vector (normalized

to unit);

Case C. (Number of inputs – 660)
at 10 points, 11-hour time history (1-hour time step) of:

ž squared wind speed,
ž horizontal and vertical components of the wind vector (normalized to the

squared wind speed),
ž significant wave height,
ž horizontal and vertical components of the wave direction vector (normalized

to unit).
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In all the above cases a significant wave height at the point of interest PoI is
predicted.

The following statistical parameters were used to measure the prediction per-
formance.

ž Bias

bias D
1
N

N
X

iD1

.yi � xi / D Ny � Nx ; (1)

where:

N – number of observed and computed values,
xi – WAM4 model value at time t ,
yi – the value computed with the regression model,
Ny; Nx – mean values.

ž Root mean square error (RMSE)

RMSE D

(

1
N

N
X

iD1

.xi � yi /
2

)1=2

I (2)

ž Scatter Index

SI D
RMSE

j Nx j
I (3)

ž Maximum error
Max E D max

iD1:::N
.xi � yi / I (4)

ž Minimum error
MinE D min

iD1:::N
.xi � yi / I (5)

ž Correlation coefficient

CC D

PN
iD1 .xi � Nx / .yi � Ny/

r

PN
iD1 .xi � Nx /2

q

PN
iD1 .yi � Ny/2

: (6)

3.2. Linear Multiple Regression Method

Testing the applicability of neural networks for forecasting waves was begun by
applying the linear multiple regression method which is identical to a simple neural
network (Fig. 4). This network consists of one linear neuron and is trained using
the multiple regression method (Jang et al 1997). The neural network is trained
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d D h

 

L
X

jD1

pj Ð wj C w0

!

Fig. 4. One-neuron network, where p1:::L – inputs, d – output, h – linear activation function,
w0:::L – neuron weights, L – number of inputs

for the considered cases to predict significant wave height at the point of interest
PoI (prediction point).

Training was based on the consecutive hours of the year 1989. The training
data set consists of approximately 9000 samples. The trained network was tested
with the testing data set which consisted of the consecutive hours of the first
quarter of 1990 (approximately 2000 samples).

Multiple regression was applied to a 4-hour forecast of significant wave height
in these cases. The results are presented in Fig. 5. The plots show the comparison
between predicted significant wave height and WAM4 model results for the testing
data set. The testing data were independent and were not used in the network
training process. The comparison reveals very good conformity of the forecast
results and the WAM4 model output for all the models.

The worst results were obtained for case A, excluding minimal error, which
is highest for the results from case B. The statistical parameters for case C are
better than the corresponding ones for case B. This indicates that the prediction
derived on the basis of wave data is better than that derived from wind data. This
was expected since wave fields are correlated not only with wind, but also with
wave history. Moreover, wave data comprise some information about wind and
its influence on waves. Therefore, the relation between wave data at considered
points is less complicated than that between wind and wave data. As a result,
correlations between wave data are stronger than correlations between wind and
wave data. Statistical comparison is shown in Table 2. Detailed analysis indicated
that the quality of all cases is comparable.

The analysis of the behaviour of prediction quality with forecast length was
carried out on case B. Multiple regression was applied to the 4–8-hour forecast
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Fig. 5. Comparison of 4-hour forecast results (dotted line) obtained with the multiple regression
method and WAM4 model output (solid line) for the testing data set. The numbers ‘330’ and
‘660’ indicate the number of inputs. Detailed comparisons during two stormy periods (marked

with dashed rectangles) are shown in Figs. 9–12
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of significant wave height. The results are shown in Fig. 6. The plots represent
the statistical parameters (correlation coefficient, root mean square error) of the
prediction in the testing data set. The results show that prediction quality declines
as the forecast length increases. Although the correlation coefficient decreases
from 0.98 to 0.94, its value remains very high.

Fig. 6. Statistical parameters for 4–8-hour forecasts of significant wave height for testing data set
(Case B)

Linear multiple regression models fed with first guess input data produced
unanticipatedly good results. However, the greatest differences were noted during
storms (see Fig. 5), which is precisely when high quality forecasts are needed the
most. This provided the impetus for striving to improve the results of the forecast
by limiting the input vector only to significant components and by elaborating the
neural network.

3.3. Choice of Input Data – Sensitivity Analysis

Prior to applying more complicated networks, the regression performed was sub-
jected to sensitivity analysis. The aim of the analysis was to identify the input data
which had a real impact on the forecasting of significant wave height. Determining
the hierarchy significance of individual inputs permitted the omission of unneces-
sary inputs, which decreased the computational complexity of the problem, and
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allowed for the use of a more complicated neural network. Additionally, adapt-
ively fitting the network to insignificant parameters worsens prediction, which is
why they should be removed from the input vector.

The method described by Engelbrecht et al (1995) was used to test sensitivity.
This is based on determining the sensitivity of the i-th input on its output. The
sensitivity Si of trained output y with respect of an input xi is defined as:

Si D

v

u

u

u

t

N
P

kD1

ð

@yk

Ž

@xi;k

Ł2

N
; (7)

where N is the number of training pairs. In the formula above it is assumed that
all inputs are normalized. Sensitivity Si obtained in this way is a measure of the
significance of i-th input to output, thanks to which the most significant inputs can
be separated from unnecessary ones. Histograms of significance of the multiple
regression inputs presented in Fig. 7 were obtained based on the sensitivity analysis
performed.

Fig. 7. Histogram of significance

These indicate that in all the cases a substantial number of inputs do not have
much of an impact on the output. Sensitivity analysis was used to categorize the
input data according to their significance, which permitted eliminating those that
had a lesser impact on the output. The only thing remaining is to determine how
many inputs should be included to obtain the best modelling result.

The linear multiple regression model was applied with various numbers of
inputs thus eliminating subsequent inputs of increasing sensitivity. The modelling
results were compared to the testing data set. Changes in the RMS error depend-
ing on the size of the input vector are presented in Fig. 8. It is clearly visible in
case A that for 47 inputs the error is the smallest. In case C the minimum error
for 100 inputs is slightly less distinct. Due to the occurrence of the minimum of
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RMS error, the initial vector in models A and C was only increased to 200. Cal-
culations were also performed for 330 and 660 inputs, respectively. The minimum
error in case B is not as distinct. Thus, the case was tested for the full range of
inputs up to 330. Increasing the initial vector in this case to above 147 does not
improve the output.

Fig. 8. Changes in the RMSE error in multiple regression linear models depending on the size of
the initial vector. The optimal initial vector size for the multiple regression model is depicted with

circles

In Fig. 8 the optimal initial vector size for the multiple regression model is
represented with circles. The statistical parameters of the comparisons of cases
A, B, and C with limited numbers of inputs of 47, 147, and 100, respectively, are
presented in Table 2 in the next chapter. It can be concluded that substantially
limiting the number of inputs improves the results of modelling with the help of
cases A and C, but that case B does not change them.

3.4. Neural Network Method

Just like any problem in engineering, the prediction of waves can be reduced to
the problem of predicting some parameters using others, i.e. to the multivariate
approximation function. As is demonstrated in the work of Jang et al (1997),
Duch et al (2000), Hertz et al (1991), neural network feed-forward (perceptrons)
is very good for realizing such approximation tasks. The quality of prediction based
on them depends largely on the choice of the appropriate structure (number of
neural layers, the quantity of neurons in each layer). In the nomenclature of the
present work, the input vector is not regarded as a neural layer in the network. As
demonstrated by Hertz et al (1991), three neural network layers are sufficient to
solve any given approximation problem. The question of calibration remains the
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choice of the number of neurons in a given layer. However, too many (leading to
overtraining, interpolation, small capacity for generalization) as well as too few
(leading to large prediction error) neurons in the various layers is not desirable.

To ensure the possibility of mapping linear and nonlinear relationships, neur-
ons in the first hidden layer and in the output layers have a linear activation
function, while the second hidden layer has a nonlinear sigmoid activation func-
tion.

The prediction error realized by the network was minimized by the use of
the root mean square error, which is applied widely in solving approximation
problems.

Of the available benchmarks (Demuth and Beale 2001), it appears that with
approximation problems of comparable complexity to the problem under consid-
eration in this work, the best training algorithm, as regards convergence and the
length of time required for the training, is the Levenberg-Marquardt algorithm.
However, as is the case with all neural networks and training algorithms, there is
never any guarantee that the error obtained is the minimum which can be obtained
based on the trained network (i.e., never is there complete certainty that the min-
imum error found is the global minimum). This is why training is repeated many
times starting at random beginning states of the network (set of weights), in order
to find the minimum that is closest to the local minimum. In the present work
the training process was repeated 16 times using the Nguyen-Widrow algorithm
(Nguyen and Widrow 1990) to draw the initial weights and which, in choosing the
optimal initial weight range, takes into consideration the network architecture.

The network was then calibrated “by hand” by testing various structure com-
binations (1ł8 neurons in the first hidden layer, 1ł8 in the second hidden layer,
1 neuron in the output layer) and the quantity of the most significant parameters;
the goal was to determine which network produced the best prediction results.
Based on generalization capability and prediction error, network I was chosen
from among the tested networks. Its structure is presented in Table 1. The first
linear hidden layer, which consists of four neurons, is capable of extracting four
linear principal components from a signal. The second hidden layer is able to add
on potential non-linearity (non-linear interactions between components), or the
signal is allowed trough approximately in linear way. An output neuron serves as
a weighted sum.

The networks were trained and tested for the same training and testing data
sets as in the case of multiple regression method.

4. Modelling Results

Two storms with significant wave height over 3 m took place during the testing
period (see Fig. 5). To illustrate performance of the models in severe conditions,
time series plots for the stormy periods are shown in Fig. 9, 10, 11 for cases A, B,
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Table 1. Network I structure
Neurons ActivationNetwork Layers
number function

first hidden 4 linear
1 second hidden 7 tanh

output 1 linear

C respectively, and additionally in Fig. 12 the results of the best neural networks
of all cases are shown altogether.

Fig. 9. Case A: 4-hour forecast of significant wave heights for two stormy periods obtained with
the different methods

Statistical comparison between 4-hour forecasts of a significant wave height
by means of neural network and the testing data set is shown in Table 2. The
results of simulation of the best networks with reduced input vector (as described
in the previous chapter) for the three cases: A, B, C are presented here together
with the results of the multiple regression method with reduced and non-reduced
input vectors.
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Fig. 10. Case B: 4-hour forecast of significant wave heights for two stormy periods obtained with
the different methods

Fairly good predictions of the significant wave height were produced for all
formulated cases. The results of described neural networks models with reduced
input vectors show sufficient improvement in comparison with the results of mul-
tiple regression during the extreme wave conditions, although the statistical para-
meters of multiple regression and network, both with reduced numbers of inputs,
are comparable.

The results of described neural network models with reduced input vector
show sufficient improvement in comparison with the results of multiple regression
during the extreme wave conditions.
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Fig. 11. Case C: 4-hour forecast of significant wave heights for two stormy periods obtained with
the different methods

Table 2. Statistical comparison between 4-hour forecast results and the testing data set. Neural
network models are indicated as NN-number of inputs; multiple regression results as R-number of

inputs. In brackets the values of RMSE and CC obtained in the training process are shown

Number of the testing
samples: ¾2000

bias (m) MinE (m) MaxE (m) RMSE (m) SI CC

R-330 0.023 –1.579 1.427 0.196 0.148 0.975
Case A R-47 0.019 –1.024 1.173 0.187 0.141 0.977

NN-47 –0.001 –0.429 1.051 0.119 (0.095) 0.090 0.991 (0.990)
R-330 0.031 –1.844 0.819 0.169 0.126 0.983

Case B R–147 0.031 –1.836 0.823 0.169 0.128 0.983
NN-147 –0.010 –0.617 0.796 0.120 (0.082) 0.090 0.991 (0.993)
R-660 0.010 –1.550 0.926 0.133 0.098 0.988

Case C R-100 0.006 –1.256 0.992 0.128 0.096 0.989
NN-100 –0.004 –0.744 0.594 0.109 (0.079) 0.083 0.992 (0.993)
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Fig. 12. Comparison of the results of the best networks for the three cases A, B, C

5. Conclusions

In this study, the neural network technique was applied to forecast the significant
wave height at a selected location on the Baltic Sea. Significant wave height was
modelled at a selected point based on wave and/or wind data from 10 scattered
points on the Baltic Sea. The data set for training and testing purposes consisted
of high quality hindcast data: wave data from the WAM4 model and atmospheric
data from the REMO model.

The wave prediction method is comprised of the following stages:

ž formulation of prediction cases,
ž application of a linear multiple regression method,
ž performance of sensitivity analyses and reduction of input vector,
ž construction and application of a neural network model.
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The results show that for all the cases the prediction obtained by the neural
network conforms very well with testing data.

Detailed analysis indicates that when the WAM4 model data are replaced by
real measurements from a number of buoys, the artificial neural network will be
able to forecast real significant wave height at selected points on the Baltic Sea.
Other parameters such as wave period and direction could easily be modelled in
the same manner. A trained network is easy to apply with an 8-hour prediction
taking only a few minutes of computation time. This permits forecasts to be up-
dated as data are gathered. Therefore, the proposed neural network method is
an efficient tool for locally conducted and short-term forecasts.
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