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Abstract

A method of simulating random fields using a moving average is proposed in this
paper. Random fields were simulated for different sizes of sub-field and different
numbers of cycles of calculations of the moving average. For the fields obtained the
covariance function was analyzed. In order to estimate the efficiency of the proposed
simulation method of random field based on the method of diagonal covariance
matrix was performed. It is shown that two of the simulation methods presented
are able to generate a multidimensional random variable with required correlation
function. However, the method of diagonal covariance matrix has some limitations
caused by the size of the simulated random field, which result from the necessity
of converting a relatively large matrix. Using the proposed simulation method it is
possible to simulate, in a comparatively quick and simple manner, a random field
with a large number of nodes on PC-s. The presented method can be useful in the
stochastic analysis of transport phenomena in soil.
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1. Introduction

The water flow in soil is determined by external conditions and the hydraulic
properties of the medium. Since such hydraulic parameters as suction pressure,
diffusivity, water capacity, hydraulic conductivity or flux intensity, are heterogen-
eous and of random character, the soil can be considered as a random field.
The water flow and pollutant transport in soil can be described using a stochastic
computational model. Let us consider a homogeneous and isotropic random field,
where the covariance is a direction-independent function of distance. The solu-
tions of the stochastic model for such a field are non-random time-dependent
characteristics of unknown random variables (hydraulic parameters), Maciejewski
(1998).
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Consequently, in order to take into account the heterogeneity of the soil, it
is necessary to simulate the multidimensional random variables first. This paper
presents a simple method of doing this.

The group of n random variables Y1; Y2; : : : ; Yn is treated as a vector of random
variables Y D .Y1; Y2; : : : ; Yn/ in n-dimensional vector space. It is characterized
by the expected value � and covariance matrix C (Brandt 1998, Rozanow 1974,
Węglarczyk 1999):

� D .�1; �2; : : : ; �n/ ; (1)

C D E
�

Y Ð YT
Ð

� � Ð �
T : (2)

It is assumed that the covariance function of the local fluctuation f can be
described by an exponential expression in the form:

C .jrj/ D E[ f .x C r/ f .x/] D Þ Ð exp .�þ Ð jrj/ ; (3)

where:

jrj – distance between points x and x C r,

Þ – variance of local fluctuation,

þ – decay coefficient.

Next, one can introduce the n-dimensional vector of deviations U D .U1;

U2; : : : ; Un/ defined as:

U D Y � �; (4)

the expected value of which is equal to zero and covariance matrix C is equal to:

C D E
�

U Ð UT
Ð

: (5)

2. Simulation of Random Fields using the Moving Average Method

The proposed simulation method lies in generating n independent random vari-
ables Y1; Y2; : : : ; Yn at nodes of the grid (Fig. 1). The obtained independent vari-
ables are then transformed into correlated random variables.

In our case the multidimensional random variable Y is the hydraulic conduct-
ivity K .Y1 D K11; Y2 D K12; : : :Yn D Klm/.

The independent random variables are generated using the following formula:

K0
i j

D K C 1K Ð N .0; 1/ ; (6)
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Fig. 1. The nodes of the grid (random field)

where:

N.0; 1/ – normalized random variable,

1K – assumed standard deviation,

K – assumed mean value,

K0
i j

– independent random variable at the grid nodes.

The generated random variables represent white noise which, as is well known,
does not have any correlation. In the second step the random field is smoothed
using central moving average Ki j (Fig. 2):

Ki j D

iCs
P

lDi�s

jCs
P

mD j�s

Klm

.2s C 1/2
: (7)

The size of the sub-field used to calculate the moving average is characterized
by s and can be arbitrary. In the case shown in Fig. 2, the sub-field consists of 9
points (s D 1/. For s D 2 the sub-field consists of 25 points etc. The smooth process
can be repeated ¾ times (¾ ½ 1). ¾ is number of smoothing cycle. The number of
smoothing cycles, in which the moving average is calculated can also be arbitrary.
The influence of the sub-field size and number of smoothing cycles on the results
of the simulation is presented in the Section 3 “Results and Discussion”.

In the next step, the average of all nodal values is calculated. It represents the
average value of the variable for the whole area considered:

K
ar ea

D

l
P

iD0

m
P

jD0

Ki j

n
; (8)

where n – total number of nodes.
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Fig. 2. Random field with marked subfield used to calculate the moving average (s D 1)

Also, the new value of the standard deviation for the area 1KŁ is calculated.
The resulting value 1KŁ is smaller than the value assumed initially. This is due
to the smoothing of random field. The required value of standard deviation is
obtained using the following transformation:

Ki j D
Ki j � K

ar ea

1KŁ
Ð 1K C K

ar ea
; (9)

where the random variable Ki j is already a correlated variable, i.e. there exists
a correlation between the neighbouring points of grid.

Now in the literature, it is possible to find several methods of simulating ran-
dom fields proposed by researchers (Dietrich, Newsam 1993, Mantoglou, Wilson
1982, Przewłócki 1998, Robin et al 1993). For comparison, below we present an-
other method of simulating a multidimensional random variable. It is described
in detail in Wilde’s work (Wilde 1981). This method was also used by Przewłócki
(2003) to determine the ultimate bearing resistance of soil loaded by continuous
footing. Here only a brief outline of the procedure is presented.

The simulation of a correlated random variable is performed in the following
steps:

– choose n independent random variables .V1; V2; : : : ; Vn/ D V with normal
distribution and expected value equal to zero,

– diagonalize the covariance matrix, using the transformation of independent
random variable V to random variable U in the following form

U D p Ð V; (10)

p – a lower triangular matrix with diagonal elements equal to one; the
matrix is non-singular as its determinant is equal to one:
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p D

2

6

6

6

6

6

6

6

4

1 0 0 0 0 0
p21 1 0 0 0 0
p31 p32 1 0 0 0
p41 p42 p43 1 0 0
:::

:::
:::

::: 1 0
pn1 pn2 pn3 pn4 Ð Ð Ð 1

3

7

7

7

7

7

7

7

5

: (11)

Random variables V are independent, hence are uncorrelated and their co-
variance matrix d diagonal:

d D

2

6

6

6

6

6

6

6

4

d1 0 0 0 0 0
0 d2 0 0 0 0
0 0 d3 0 0 0
0 0 0 d4 0 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 Ð Ð Ð dn

3

7

7

7

7

7

7

7

5

: (12)

Using matrices p; V; d the covariance matrix of the random variable U can be
written in the following form:

C D E
�

U Ð UT
Ð

D E
�

p Ð V Ð VT Ð pT
Ð

D p Ð E
�

V Ð VT
Ð

Ð pT D p Ð d Ð pT : (13)

From this equation one can determine the all elements of matrix d and p:

d1 D C11; (14)

di D Ci i �

i�1
X

lD1

p2
i ldl for i D 2; : : : ; n; (15)

d1 pj1 D C1 j for j D 2; : : : ; n; (16)

pj i D
Ci j

di
�

i�1
P

lD1

pi l pj ldl

di
for j > i i; j D 2; : : : n: (17)

Using the elements of matrix p it is possible to determine the correlated
random variable U from Eq. (10). Elements of matrix U are equal to:

Uj D
X

pj i Ð Vi C Vj : (18)
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3. Results and Discussion

The random fields were simulated with the method given by Eqs. (6)–(9) for

various sizes of the sub-fields and various numbers of the cycles of calculations

of the moving average. In all presented examples the field consisted of 10251

nodes. Next, the random field was investigated through the analysis of covariance

function. As shown in Fig. 3, the covariance function of the simulated multidi-

mensional random variable can be approximated with the formula Eq. (3). As the

number of points in the sub-field increases this function has a smoother course,

thus, the decay coefficient þ assumes smaller values.

Fig. 3. Relationships between covariance and distance r for various sizes of the sub-field:
A – sub-field consisting of 9 points, B – 49 points, C – 81 points, D – 121 points.

Sign: Ž – points obtained from simulation, solid line – fitted curve Eq. (3)
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The relation between the decay coefficient þ and the number of cycles of
calculations of the moving average is presented in Fig. 4. One can observe that
increasing the number of cycles of calculations influences significantly the shape of
the covariance function. It can be seen that for the same number of points in the
sub-field, there is an increase in the number of cycles of calculations determining
shape of the covariance function.

Fig. 4. Relationships between covariance and distance r for various numbers of cycles of
calculations of the moving average and various sizes of the sub-field: A – 1 cycle of smoothing,

B – 3 cycles, C – 4 cycles, D – 6 cycles,
—— sub-field consisting of 9 points, - - - - - 25 points, – – – – 49 points,

– Ð � �Ð – 81 points, – ÐÐ – ÐÐ – 121 points
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The relation between the decay coefficient and the size of the sub-field is shown

in Fig. 5. The results are shown for various numbers of the calculation cycles. The
value of the decay coefficient þ decreases as the number of the calculation cycles

increases. Using this plot one can determine the simulation parameters such as the
size of sub-field and the number of cycles in order to obtain a multidimensional

random variable with required covariance function. Note that the initial estimation
of the decay þ can be made by choosing appropriate sub-field size and number
of cycles of calculations (Tab. 1).

Fig. 5. Relationships between the decay coefficient þ and size of sub-field for various numbers of
cycles of calculations of the moving average:

——– 1 cycle, – – – – 3 cycles, � Ð � Ð � Ð � 6 cycles

Table 1. The values of the decay coefficient þ [1/cm] as a function of the number of cycles of
calculations and the size of the sub-field

The number The size of subfield
of cycles 9 25 49 81 121

1 0.6337 0.3815 0.2577 0.1931 0.1833
2 0.4515 0.2625 0.1966 0.1269 0.1122
3 0.3840 0.2145 0.1777 0.1098 0.0821
4 0.3436 0.1877 0.1650 0.1010 0.0707
5 0.3160 0.1694 0.1582 0.0975 0.0657
6 0.2964 0.1575 0.1537 0.0959 0.0627

In order to estimate the efficiency of the proposed method the simulation of
random field was performed using the method of diagonalizing the covariance

metric described by Eqs. (10)–(18). Due to the large number of elements of the
matrix p the simulations were performed for a field containing 208 nodes only.
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The assumed and calculated values of the decay coefficient þ are presented in
Table 2.

Table 2. The values of the decay coefficient þ

Coefficient þ assumed Coefficient þ calculated after simulation
[1/cm] [1/cm]
0.3868 0.3229
0.2784 0.2514
0.1923 0.2038
0.1349 0.1804
0.1193 0.1747

For a single simulation the real decay coefficient þ calculated for a generated
random field differs from the assumed coefficient (Tab. 2). One of the possible
reasons for this discrepancy is the small number of nodes (208).

The results of comparison of execution times on PC using the Delphi 5 im-
plementation are presented in Table 3.

Table 3. The times for the generation method
Number of nodes in the Time generation for

random field mesh moving average method method described by Wilde

102 0.4 sec. 0.6 sec.

103 1 sec. 1 min.

104 1 min 38 sec. 1 h 40 min

4. Conclusions

Two methods presented in this paper enable to generate a multidimensional ran-
dom variable for an assumed correlation function. In the case of the proposed
method based on the moving average the simulation process is very simple and
relatively quick. With this method one can simulate large random fields on PC-s,
which is also possible (but needs time-consuming operations) with the method de-
scribed by Wilde due to excessive dimensions of matrix p. For a random field of n

nodes there are approximately n2
Ž

2 non-zero elements in the matrix p. Therefore
the simple method of generating the random field presented in this paper should
be useful for the stochastic analysis of transport phenomena in soil.
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