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Abstract
In this paper the problem of interaction between a coherent floating ice field and
a fixed, rigid, vertically-walled circular cylinder is investigated. The ice cover, of ho-
rizontal dimensions significantly larger than the characteristic size of the structure, is
assumed to be driven against the cylinder by wind drag forces. The ice is treated as
a viscous-plastic material, in which the permissible stress states in the horizontal plane
are bound by an elliptic yield curve. By using an associated flow rule, a constitutive
law, involving two parameters defining the ice strength in compression and much smal-
ler strength in extension, is derived in order to describe the behaviour of the material.
The law predicts distinct responses during yield (occurring at high strain-rates) and
during the flow when the yield condition does not apply (at lower strain-rates). The
results of numerical calculations performed by a finite difference method illustrate,
for chosen ice rheological parameters, the distribution of contact stresses at the ice –
structure interface. Two forms of boundary conditions at the cylinder wall, free-slip
and no-slip, are considered, and their effects on the horizontal loads sustained by the
structure are examined. In addition, the results for the viscous-plastic rheology of ice
are compared with those obtained on the assumption of a purely viscous behaviour
of ice.
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Notations

Ca; Cw – wind and water drag coefficients,
Dr r ; D�� ; Dr � – strain-rate components,
D – strain-rate tensor,
e – dimensional rheological parameter,
h – ice sheet thickness,
I – unit tensor,
Nr ; N� – axial internal forces per unit width of an ice sheet,
Nr � – shear internal force per unit width of an ice sheet,
qr ; q� – distributed load intensities,
p – mean pressure in ice,
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P1; P2 – ice strength parameters,
r; �; z – cylindrical polar coordinates,
R0 – cylinder radius,
vr ; v� – horizontal ice velocity components,
; � – strain-rate invariants,
�; �m – bulk viscosities of ice,
1; 1c – strain-rate invariants,
¼; ¼m – shear viscosities of ice,
%a; %w – air and water densities,
¦r r ; ¦�� ; ¦r � – stress components,
¦ – stress tensor.

1. Introduction

Although the problem of determination of forces which floating ice exerts on
off-shore structures is important for the assessment of the safety and reliability of
the latter, there is still no general agreement among researchers and engineers as

to the most proper rheological model that should be applied in order to describe
the behaviour of ice. During short-time ice – structure interaction events, lasting
from seconds to minutes, an obvious choice is to assume elastic or viscoelastic
behaviour of the ice, and disregard from the analysis any creep or plastic de-
formations in the material. On the other hand, during the long-term events, in

extreme cases lasting several years (for instance, when investigating the flow of
the sea ice sheet in the entire Arctic Ocean region), the prevailing approach is to
treat the ice as a plastic material. This is loosely based on qualitative observational
evidence that the large-scale floating ice flow patterns resemble those observed

in the flows of granular media, for which the application of plasticity theories
is the common practice. An example is the viscous-plastic theory developed by
Hibler (1979), which, with some modifications, has been applied, more or less suc-
cessfully, to many problems involving large ice packs in polar regions. Typically,

in these problems the main objective has been to determine horizontal displace-
ments of ice; the evaluation of stresses in the ice cover has not been addressed
as being unimportant in geophysical applications. In the case of events that last
up to several days – and these are the events which are of prime importance

to engineering practice, it is much more difficult than in the short- or long-time
problems mentioned above to discriminate between the relative significance of
different modes of deformation possible to occur in the ice. Hence, a variety of
theories have been applied so far to model the behaviour of ice in engineering
applications, depending on characteristic strain, strain-rate, and stress levels oc-

curring in problems considered. Most often, though, the viscous, elastic-plastic,
or viscous-plastic rheologies have been adopted. In this work we focus on the
viscous-plastic rheological model for ice, applying it to a quasi-static problem of



Loads Exerted on a Cylindrical Structure by Floating Ice : : : 107

interaction between an ice field and a vertical cylindrical structure, with the main
objective to evaluate the forces exerted by the ice on the structure wall.

It is assumed here that the ice field, driven towards the structure by
wind-induced drag stresses, is coherent enough to be treated as a continuous
sheet expanding in the horizontal plane, rather than a multitude of individual
floes of varying dimensions and shapes and interacting with each other in an
irregular manner (this assumption, referring to granular media again, is analog-
ous to treating the latter as a continuum rather than an aggregate composed of
individual particles). For simplicity, it is supposed that the ice cover has a uni-
form thickness. Similar problems, involving the interaction of ice with a cylindrical
structure, have already been investigated in a number of papers: Wang, Ralston
(1983) treated the ice as an elastoplastic material, Sjölind (1985) adopted the vis-
coelastic ice rheology, and Staroszczyk (2005) solved the problem by employing
a non-linearly viscous constitutive law for ice. In the present study the behaviour
of ice is modelled by a viscous-plastic flow law with an elliptic yield curve in
the two-dimensional principal stress space. Depending on the magnitude of some
strain-rate invariant (a combination of the dilatation-rate and the shear-rate in
ice), the law predicts either plastic flow (yield) when the former invariant exceeds
some critical strain-rate level, or linearly viscous flow when the invariant value is
below the critical strain-rate level. The elliptic yield curve is chosen in such a way
that the maximum pressure in ice is by about two orders of magnitude larger than
the maximum tensile isotropic stress, reflecting the observation that the strength
of ice in diverging flow (that is, under tensile stresses) is, due to the development
of cracks in ice, significantly smaller than the compressive strength of the material.

In the analysis, the ice sheet equilibrium equations are solved by applying
a finite difference method. The results of numerical simulations carried out for
a range of parameters defining the strength of ice and the critical strain-rate level
defining the onset of ice yield, illustrate the distribution of the forces which the
floating ice exerts on the cylinder wall. Two types of boundary conditions at the ice
– structure interface, free-slip and no-slip, are considered. The numerical analysis
is complemented by comparing the results obtained for the viscous-plastic rhe-
ology with those calculated by using the non-linearly viscous flow law (Staroszczyk
2005).

2. Problem Formulation

The floating ice sheet is subject, in general, to the combined action of in-plane
and transverse loads. The in-plane loads act tangentially to the ice top and bottom
surfaces and are caused by the wind and water drag forces, and the transverse
load comes from the vertical reaction of the underlying water. As a result, the ice
cover undergoes both axial and shear deformation in the horizontal plane, and
bending and twisting that deforms the ice off its middle surface. As we are here
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primarily focused on the determination of horizontal forces that are exerted by

the ice cover on an engineering object, we neglect in the analysis the bending and

twisting effects and restrict attention solely to the analysis of the in-plane axial

and shear forces in the ice. Such a simplification is motivated by the fact that

the ice sheet off-plane deformations have a very limited effect on the magnitudes

of the horizontal forces sustained by the ice, hence their influence on the loads

passed from the ice onto the structure may be regarded as insignificant. On the

other hand, the ice sheet bending and twisting mechanisms lead to the sheet

buckling and its subsequent flexural failure (resulting ultimately in the ice ridging

and piling-up), therefore the off-plane modes of deformation affect the maximum

axial forces that can develop in the ice sheet, hence they determine, indirectly,

the in-plane strength of the floating ice sheet.

Fig. 1. Geometry of the problem and the adopted polar coordinates:
(a) plane view, (b) ice sheet cross-section

Since we are concerned with the problem involving a structure of the circular

cross-section in the horizontal plane, we adopt cylindrical polar coordinates r; �; z

.0 � � < 2³/, with the vertical z-axis coinciding with the axis of symmetry of the

cylinder, as shown in Fig. 1. For simplicity, the region of the ice cover which

immediately interacts with the structure is assumed to be of a constant thickness,

denoted by h. The ice is assumed to be homogeneous across its depth, that is, the

effects of such phenomena as temperature and ice porosity variation with z are

neglected. A circular cylinder, of a radius R0, is treated as a fixed rigid body that

interacts with the ice sheet along its vertical walls at r D R0. The purpose of the

analysis is to evaluate the horizontal forces which the floating ice exerts on the
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cylinder during an interaction event, when a large ice field is pushed towards the

structure by the drag stresses generated by wind and/or water currents.

Fig. 2. Definitions of internal axial and shear forces acting on an ice sheet element

Internal in-plane forces acting on an infinitesimal ice sheet element, with com-

ponents expressed in the adopted polar coordinates, are defined in Fig. 2. The

axial forces are denoted by Nr and N� , and the shear forces are Nr � D N� r , all

are measured per unit length along the ice sheet span. The external forces acting

in the horizontal direction are those coming from the wind and water drag; their

components are denoted by qr and q� . Then, in the absence of inertia forces which

are neglected due to small time variations in the ice velocities occurring in natural

conditions, the ice equilibrium equations are given by

@.r Nr /

@r
� N� C

@ N� r

@�
C r qr D 0;

1

r

@.r 2 Nr � /

@r
C

@ N�

@�
C r q� D 0:

(1)

The forces driving the ice pack, with the component intensities qr and q� , are

adopted in the form of the following quadratic relations

−a D Ca%a.ua � v/jua � vj; −w D Cw%w.uw � v/juw � vj; (2)

where −a and −w are the tractions due to wind stress and water drag, respectively.

The parameters Ca and Cw in the above equations are the dimensionless wind

and water drag coefficients (Sanderson 1988), %a and %w denote the air and water

densities, ua and uw are the velocity vectors of wind and water current, and v

is the vector of the horizontal velocity of ice. The component loads qr and q�

entering Eq. (1) are equal to the sums of the projections of −a and −w on the

respective directions r and � .

The internal forces Nr , N� and Nr � are determined by the depth integration

of the axial, ¦r r and ¦�� , and shear, ¦r � , stresses. Accordingly, they are expressed

by the equations
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Nr D

h
Z

0

¦r r dz; N� D

h
Z

0

¦��dz; Nr � D

h
Z

0

¦r �dz: (3)

The stress components in Eq. (3), required to determine the internal forces and
hence to solve the equilibrium equations Eq. (1), are related to ice deformations
through constitutive laws. As we are concerned only with the viscous-plastic beha-
viour of the material, neglecting thus any elastic or viscoelastic effects, we adopt
constitutive laws which express the stress solely in terms of current strain-rate (that
is, no history of deformation is taken into account). Accordingly, we define the
two-dimensional strain-rate components Dr r , D�� , Dr � in terms of the components
vr and v� of the velocity field v :

Dr r D
@vr

@r
; D�� D

1

r

�

vr C
@v�

@�

�

; Dr � D
1

2

�

1

r

@vr

@�
C r

@

@r

�v�

r

�

½

: (4)

A specific form of the constitutive law adopted to describe the viscous-plastic
rheology of ice is discussed in the following section.

3. Viscous-Plastic Rheology of Floating Ice

In typical sea ice – engineering structure events, both reversible (elastic or vis-
coelastic) and irreversible (plastic) phenomena occur. Therefore, in the first at-
tempts to describe the sea ice rheology, elastic-plastic constitutive models were
formulated; an example of these early developments is the paper by Pritchard
(1975). However, it was soon realized that during the ice deformations taking
place over time scales of the orders imposed by wind forcing (hours and days), the
reversible strains become negligibly small compared to irreversible ones. Hence,
in subsequent theories constructed to model the sea ice rheology, the elastic be-
haviour was ignored, giving rise to viscous-plastic formulations. In this way the
mathematical and numerical complexities of the models are considerably reduced,
since the necessity of keeping track of elastic strains indefinitely (which usually
forces a Lagrangian formulation) in a given solution domain is avoided. Such an
approach, based on the exclusion of elastic effects in ice, had prevailed for about
two decades, until the paper by Hunke and Dukowicz (1997) was published. The
authors discovered that the presence of elasticity terms in the equations for ice
leads to significant improvement of numerical stability of the model. The en-
hanced model gives more accurate results for transient states in ice, and reduces
to earlier viscous-plastic theories for longer time scales. This modified approach,
however, has a drawback as well, since the elastic-like behaviour is not intended
to be physically realistic – the specific values of elastic parameters are chosen in
such a way that the numerical efficiency of the model is optimized. Hence, these
parameters have an artificial character.
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Fig. 3. Comparison of different yield curves for viscous-plastic rheology: H – elliptic curve by
Hibler (1979), R – teardrop curve by Rothrock (1975), MS – teardrop curve by Morland and

Staroszczyk (1998), CM – Coulomb-Mohr straight lines

We pursue an approach in which the sea ice is consistently treated as

a viscous-plastic material. Accordingly, only irreversible deformations are taken

into account, that is, no elastic, nor viscoelastic effects are included in the analysis.

Therefore, the model cannot be applied to simulate the behaviour of ice over very

short time scales, when the irreversible and reversible strains in the material are

of comparable magnitudes. It is assumed in the model that two distinct types of

deformation in ice occur, depending on the value of a certain critical strain-rate

invariant. At strain-rates above the critical level the ice deforms by plastic flow

(yield), whereas below that critical strain-rate the ice is supposed to deform by vis-

cous flow. The limit stress level in the ice during its plastic flow is defined by a yield

curve, the shape of which prescribes admissible stress states in the medium, for

instance the magnitudes of maximum shear stresses compared to the axial stresses.

Different shapes of the yield curves for sea ice have been proposed and investig-

ated numerically so far; some of them, plotted in principal stress axes .¦1; ¦2/, with

positive values denoting tension, are presented in Fig. 3. In the first viscous-plastic

model for ice, originally formulated by Hibler (1977, 1979), and further improved

by Ip et al (1991) and Hibler and Ip (1995), an elliptic yield curve was adopted

(the solid line in the figure). Rothrock (1975) proposed, by considering the ener-

getics of plastic flow of ice during its ridging, a teardrop yield curve (the dashed

line); the latter, though, has not been implemented in numerical sea ice mod-

els. A stress envelope of the shape similar to the Rothrock curve was proposed,

and investigated in sea ice flow simulations, by Morland and Staroszczyk (1998),

the dashed-dotted line; the latter authors, however, used it to bound stresses in
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their non-linearly viscous model, an alternative to the viscous-plastic rheology.
For comparison, the yield curve for the classical Coulomb-Mohr rheology, widely
applied for granular media, is also shown in Fig. 3 (the solid straight lines). Some
other shapes of the yield curves, not depicted in the figure, have also been ex-
plored. These include a straight line for a so-called cavitating fluid (a fluid with
no shear resistance, Flato, Hibler 1992), square yield curve (Ip et al 1991), and
‘ice-cream-cone’ curve (Tremblay, Mysak 1997, Tremblay 1999). Comparison ana-
lyses for different sea ice viscous-plastic models have been carried out by Ip et al
(1991), Schulkes et al (1998), and Tremblay (1999). The results have shown that
there are significant similarities between the models including the elliptic and
square yield curves, and between the cavitating fluid and Coulomb-Mohr models
(Ip et al 1991). Comparisons between numerically predicted and observed sea ice
drift data performed for the models implementing the elliptic yield curve and the
cavitating fluid rheology seem to give advantage to the former (Tremblay 1999).

All the yield curves shown in Fig. 3, except the Coulomb-Mohr straight lines,
characterize the ice of the compressive strength equal to P , and the tensile
strength equal to zero. The latter feature, with no resistance of ice to isotropic
tensile stresses (occurring in diverging flow), is a source of serious problems en-
countered in numerical simulations. Namely, it has always been found in the
computational models for sea ice that setting stress to be identically zero in di-
verging flow gives rise to numerical instabilities and subsequent breakdown of the
flow simulation, since an arbitrarily small change in the divergence rate through
zero results in a large change in the response of the system. Therefore, artifi-
cial terms are usually added to the sea ice flow problems governing equations in
order to render numerical schemes stable. Commonly, diffusive terms are added
(Hibler 1979, Ip et al 1991, Tremblay, Mysak 1997), which introduce some ficti-
tious damping into the problems considered. This must result in the appearance
of some unphysical features in the solutions obtained (Gray and Killworth 1995),
but it is believed that such artificial effects do not distort significantly the results
of simulations. Another method, applied by Schulkes et al (1998) and Morland
and Staroszczyk (1998), consists in allowing the stresses to change continuously
during a transition from converging to diverging flow regime, so that some small
tensile stresses are permitted in the ice. Such a smooth variation in stress, oc-
curring within a narrow range of positive dilatation rates, improves considerably
the stability of numerical models for floating ice, although does not guarantee an
unconditional stability of numerical algorithms.

In the present work we pursue another approach. We apply an elliptic yield
curve, analogous to that proposed by Hibler, but instead of zero tensile strength,
we allow a small strength of ice in diverging flow. Hence, we define two strength
parameters: P1 > 0 for compression and P2 > 0 for tension, with P1 × P2. In
this manner, without introducing artificial diffusion terms in the flow equations,
we hope to improve the stability of a numerical method, but still preserve in the
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model an important physical feature of very small tensile strength of ice compared

to its compressive strength. The adopted yield curve, plotted in two-dimensional

principal stress space, is illustrated in Fig. 4 (the solid line).

Fig. 4. Elliptic yield curve (solid line) with the ice compressive strength P1 (stress point A) and
small tensile strength P2 (point B), and a smaller ellipse (dashed line) describing stress states

during viscous flow

The elliptical yield curve presented in Fig. 4 is specified by the equation

F.¦1; ¦2/ D .¦1 C ¦2 C P1 � P2/2 C e2 .¦1 � ¦2/2 � .P1 C P2/2 D 0; (5)

where ¦1 and ¦2 are the principal stress components, and e is the ellipse eccent-

ricity (the ratio of the major to the minor axis lengths of the ellipse). In physical

terms, e defines the ratio of the maximum shear yield stress in the material to

the maximum yield mean pressure: the smaller value of the latter parameter, the

smaller is the shear resistance of ice.

Following Hibler (1977), we assume that the material during its yield (when the

stress lies on the yield curve) obeys a normal flow rule, implying that the principal

strain-rate vector is normal to the yield curve F.¦1; ¦2/. Hence, we apply the
associated flow law expressed by

Di j D ½
@ F.¦i j /

@¦i j

þ

þ

þ

þ

FD0

; i; j D 1; 2; ½ > 0; (6)

where ½ is a function of strain-rate. Adopting the orthogonal coordinate axes x1

and x2 to coincide with the principal stress axes, the axial strain-rate components

given by Eq. (6) are
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D11 D 2½
ð

¦11.1 C e2/ C ¦22.1 � e2/ C P1 � P2

Ł

;

D22 D 2½
ð

¦11.1 � e2/ C ¦22.1 C e2/ C P1 � P2

Ł

;
(7)

with D12 D 0 on the yield curve. Equations (7) give the axial stress components
expressed in terms of the strain-rate components by

¦11 D
1

8½e2

h

2D11 C .e2 � 1/.D11 C D22

i

�
1

2
.P1 � P2/;

¦22 D
1

8½e2

h

2D22 C .e2 � 1/.D11 C D22

i

�
1

2
.P1 � P2/:

(8)

The above stresses, inserted into Eq. (5), determine the function ½ as

½ D
1

4.P1 C P2/
: (9)

In Eq. (9), 1 is a strain-rate invariant given by

12 D �2 C 4 2=e2; (10)

and is a function of two other strain-rate invariants, namely the dilatation-rate �

and the shear-rate  , defined by

� D tr D;  2 D 1
2 tr OD2; (11)

where D is the strain-rate tensor and OD is its deviatoric part expressed by

OD D D � 1
2 �I; (12)

with I denoting the unit tensor. In terms of the principal strain-rates D11 and D22,
the two latter invariants are given by

� D D11 C D22;  2 D 1
4 .D11 � D22/2 ; (13)

while in arbitrary polar coordinates (with r and � not necessarily aligned with the
principal stress/strain-rate directions at a point), they become

� D Dr r C D�� ;  2 D D2
r � C 1

4 .Dr r � D�� /2 ; (14)

with the strain-rate components defined by Eq. (4).
Substitution of the definition (9) into equations (8) eliminates the function

½ from the latter, so that the stresses are expressed in terms of the strain-rate
components and their invariants, as well as the coefficients P1, P2 and e defining
the shape of the yield curve. By introducing the parameters

� D
P1 C P2

21
; ¼ D

�

e2
D

P1 C P2

21e2
; (15)
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the stresses in ice can be described by the following tensor relation

¦ D 2¼D C

�

.� � ¼/� �
1

2
.P1 � P2/

½

I; (16)

which expresses the plastic flow law for ice in the frame-indifferent form. By
comparing Eq. (16) with the Reiner-Rivlin form of the constitutive law for
a non-linearly viscous fluid (Chadwick 1999), we note that � and ¼ can be identi-
fied as the bulk and shear viscosities of ice, respectively, both being functions of
the ice strength parameters P1 and P2 and the strain-rate invariant 1. It can be
readily verified that in the particular case of purely converging or diverging flow,
when ¦11 D ¦22 (so that the stress points lie on the straight line ¦1 D ¦2 in Fig. 4),
the flow law given by Eq. (16) reduces to

p D �
1

2
[.P1 C P2/sgn.�/ � .P1 � P2/] ; (17)

where p D �.¦11 C ¦22/=2 is the mean pressure. In converging flow (ice compres-
sion, � < 0 and sgn.�/ D �1), the latter relation gives p D P1, or ¦11 D ¦22 D �P1,
while in diverging flow (ice extension, � > 0 and sgn.�/ D C1), equation (17) sup-
plies p D �P2, or ¦11 D ¦22 D P2. Hence, the predicted responses coincide with
the stress points A and B in Fig. 4, as expected.

The flow law (16), in conjunction with the viscosity definitions (15), describes
the behaviour of ice at yield. The latter is assumed to occur when the strain-rate
invariant 1 reaches a certain critical level, denoted by 1c, that is, plastic de-
formations take place when 1 ½ 1c. Below that critical level, when 1 < 1c, ice
is supposed to undergo viscous deformations, with constant (independent of the
current strain-rate) viscosities. These are set to be equal to the viscosities at the
onset of yield (Hibler 1979), that is, when 1 D 1c. Hence, in view of Eq. (15),
they are defined by

�m D
P1 C P2

21c
; ¼m D

P1 C P2

21ce2
: (18)

The latter are the upper bounds for the bulk and shear viscosities of the medium,
and occur at the values of the deformation-rates for which 1 does not exceed
the critical level 1c. At higher strain-rates, when 1 > 1c, the ice viscosities de-
crease monotonically to zero with increasing 1, as prescribed by the definitions
(15), albeit the stresses remain on the yield curve as 1 grows indefinitely. In the
original formulation by Hibler (1979), for 1 < 1c, stresses predicted by the flow
law lie on a family of smaller ellipses that are concentric with the yield ellipse,
and their both axes decrease as 1 decreases, vanishing at 1 D 0. This leads to
a physically unsound response in which isotropic stress arises in ice in the absence
of any deformation. This disadvantage of the constitutive model was subsequently
avoided by Hibler and Ip (1995), who proposed the dependence of the pressure
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term in their flow law (analogous to the term .P1 � P2/ in Eq. (16)) on the current
strain-rate. We make use of the same idea, that is, for 1 < 1c, scale down the
pressure coefficients P1 and P2 by a factor 1=1c :

P1 !
1

1c
P1; P2 !

1

1c
P2; 1 < 1c :

Thus, there are two distinct relations describing the behaviour of ice. One that
describes plastic yield for 1 ½ 1c, given by Eq. (16), and one that describes viscous
flow for 1 < 1c. These are combined into the following form of the constitutive
law:

¦ D

8

>

>

<

>

>

:

2¼D C

�

.� � ¼/� �
1

2
.P1 � P2/

½

I if 1 ½ 1c ;

2¼mD C

�

.�m � ¼m/� �
1

21c
.P1 � P2/

½

I if 1 < 1c ;

(19)

with the viscosities � and ¼, and �m and ¼m, defined by Eq. (15) and Eq. (18),
respectively. It can be shown that, for 1 < 1c, the stresses predicted by Eq. (192)
lie on an ellipse whose centre approaches the stress origin and the major and
minor axes decrease monotonically to zero as 1 ! 0. One such an ellipse is
plotted in Fig. 4 (the dashed line).

The constitutive model given by Eq. (19) has four free parameters: P1 and P2

defining, respectively, compressive and tensile strength of ice, 1c prescribing the
critical strain-rate at which plastic yield starts, and e defining, through Eq. (15)
and Eq. (18), the ratio of the shear to axial viscosities of ice.

4. Numerical Results and Discussion

Combination of the two equilibrium equations (1) with the internal forces defini-
tions (3), the constitutive relations (19), and the strain-rates expressions (4), trans-
forms the problem formulated in Section 2 to the solution of two partial differ-
ential equations for the two unknown horizontal velocity fields, vr and v� . The
latter two equations have been solved numerically by a finite difference method,
in which all partial derivatives have been approximated by standard central dif-
ferences. Owing to the symmetry of the problem with respect to the wind direc-
tion which is assumed to blow along the coordinate line � D 0, only the region
0 � � � ³ has been considered in the numerical model. In the radial direction,
the ice domain extends from the cylinder wall at r D R0 to the free edge of the
ice cover at r D Rmax. The adopted computational mesh has 300 nodes in the ra-
dial direction and 61 nodes in the circumferential direction, uniformly distributed
along both r and � , so that there are 18300 nodes in all, with 36600 unknown
values of the velocities to be calculated. At the ice – structure contact surface
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either no-slip (full bonding) or free-slip boundary conditions are assumed for the
ice deformation. For a no-slip boundary these are expressed by

r D R0 : v D 0; (20)

whereas for a free-slip boundary they are defined by

r D R0 : v Ð n D 0; Nr � D 0; (21)

where n is the unit vector normal to the cylinder wall. The ice at the outer edge
r D Rmax is assumed to be stress-free, that is,

r D Rmax : Nr D 0; Nr � D 0: (22)

Simulations have been carried out for a cylinder of the radius R0 D 10 m,
situated at the centre of a circular ice field extending to Rmax D 500 m, with the
thickness of the ice cover equal to h D 0:2 m. The ice is assumed to be driven
onto the structure by wind of a constant velocity ua D 20 m s�1, blowing along
the coordinate line � D 0 in the negative direction of r . Hence, we neglect transi-
ent states in the ice occurring for smaller wind velocities, that is before the wind
reaches the above limit value ua . In other words, we neglect the history of load-
ing leading up to that limit situation, and consider only a “steady” viscous-plastic
flow during which, in view of the rheological model adopted, the magnitudes of
forces acting on the structure attain their extremal values. The dimensionless at-
mospheric drag coefficient, appearing in Eq. (2), is assumed to have the value
Ca D 2 ð 10�3 (Sanderson 1988), and the air density is %a D 1:3 kg m�3. For sim-
plicity, drag forces due to water currents are neglected.

The viscous-plastic behaviour of ice predicted by the constitutive laws (19)
is determined by the particular values of the four constitutive parameters: P1,
P2, e and 1c, from among which the first and the last, P1 and 1c, are most im-
portant in terms of quantitative results. Regarding the compressive strength of
ice, P1, there is no clarity in the literature as to its most proper magnitude. In
the original viscous-plastic model, Hibler (1979) used the value 5 ð 103 Pa for
large-scale Arctic ice simulations, and the latter value was subsequently used by
him and co-authors in a number of papers (Ip et al 1991, Hibler, Ip 1995). Flato
and Hibler (1992), in turn, applied a larger value, 2:75 ð 104 Pa, again for de-
scribing the large-scale behaviour of ice. In our simulations, we have adopted
the value P1 D 5 ð 104 Pa, slightly larger than the latter, based on the belief that
the ice strength increases with decreasing spatial scale of the problem involved
(Sanderson 1988). The adopted magnitude of P1 ensures that the domain of ice
in which plastic flow occurs spreads out from the structure wall to the distance of
several radii of the cylinder. This follows from the results obtained by Staroszczyk
(2005), who investigated the problem with the same ice field geometry as the
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present, but with a viscous fluid rheology of ice. Also based on the results presen-
ted in the latter paper, we have adopted for the critical strain-rate invariant the
value 1c D 2 ð 10�5 s�1, which can be treated as a typical strain-rate magnitude
occurring in the vicinity of the structure under the assumed ice and wind condi-
tions. The rheological model parameter e, defining the shape of the yield curve,
and hence the magnitude of the shear viscosity relative to the bulk viscosity, was
commonly assumed (Hibler 1979) as 2 (that is, ¼=� D 1=4). In our simulations
we have explored the range 1 � e � 3. The remaining constitutive model para-
meter, P2, used in the present formulation to define the tensile strength of ice,
has been adopted as a small fraction of the compressive strength P1. Accordingly,
we have adopted P2 D 1 ð 103 Pa, that is, P2 D P1= 50. Smaller values of P2 have
been tried, but they led to numerical instabilities for e >

¾ 2 (and we recall that
the primary purpose of introducing P2 > 0 into our model has been to avoid in-
stabilities encountered in previous viscous-plastic models). Although it is likely
that a smaller value of P2 would better reflect the physics of sea ice, the results
of simulations have shown that the specific magnitude of this parameter does not
have much effect on total horizontal forces sustained by an engineering object,
since most of the loading comes from the ice that is under compression on the
windward side of the structure.

Fig. 5. Distribution of the radial forces Nr along the cylinder wall for no-slip boundary conditions
and different values of the rheological parameter e

Figs. 5 and 6 present the distribution of the forces exerted by the ice on the
structure wall in the case of no-slip boundary conditions. Shown is the dependence
of the contact forces on the rheological parameter e, that is, the effect of the
ratio of the shear to bulk viscosities of ice is demonstrated. The range of e from
1 to 3 corresponds to the viscosity ratios ¼=� (or ¼m=�m) decreasing from 1 (for
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Fig. 6. Distribution of the shear forces Nr � along the cylinder wall for no-slip boundary conditions
and different values of the rheological parameter e

e D 1) to 1=9 ¾ 0:111 (for e D 3), with the bulk viscosity � held constant for

a given strain-rate invariant 1, as prescribed by equation (15). Fig. 5 illustrates

the variation of the radial force Nr with the polar angle � . We observe that the

effect of the shear viscosity on the magnitude of Nr , for the no-slip boundary, is

moderate, particularly on the windward side of the structure. For the chosen ice

and wind parameters, the ice at the cylinder wall is in plastic flow for all e and � ,

except for the case of e D 1 (the solid line) when, for � <
¾ 30Ž, viscous deformation

occurs – this feature will be further illustrated in Fig. 8. Comparing the magnitudes

of the maximum tensile forces at � D 180Ž and compressive forces at � D 0, we

see that their ratio is much greater (especially for smaller e) than the strength

parameters ratio, P2=P1 D 1=50. This may appear surprising, but can be explained

by referring to Fig. 4, showing the elliptic yield curve. Assuming that ¦1 D ¦r r

and ¦2 D ¦�� , the stress state in the ice at the wall at � D 0 (converging flow)

corresponds to the stress point C on the ellipse, while the stress state at � D 180Ž

(diverging flow) corresponds to the point D on the yield curve. For small values

of the ellipse eccentricity parameter e (the case e D 1 corresponds to a circle), the

tensile stress ¦1 D ¦r r at the point D can be much greater than P2. This feature,

of tensile stresses significantly exceeding the tensile strength parameter P2, is an

obvious consequence of the adopted shape of the yield curve.

The distribution of the shear forces Nr � along the cylinder wall is shown in

Fig. 6. We note that the shear forces exerted by the floating ice change smoothly

with the angle � , with maximum values occurring at � ¾ 60Ž. Hence, the mag-

nitudes of Nr � on the windward side of the structure are larger than those on the
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leeward side, though the differences are not considerable, especially for smaller
values of the shear viscosity.

Fig. 7. Distribution of the radial forces Nr along the cylinder wall for free-slip boundary
conditions and different values of the rheological parameter e

Fig. 7 illustrates the variation of the normal forces Nr with the angle � and the
rheological parameter e in the case of a free-slip boundary, when the tangential
forces Nr � are identically zero. Comparing this figure with the analogous plots in
Fig. 5 for no-slip boundary conditions, we immediately note qualitatively distinct
distributions of radial forces along the cylinder wall. While in the no-slip case the
forces Nr vary in a monotonic way over the entire range of � , dramatic changes in
the values of Nr are predicted by the rheological model for the free-slip boundary.
These changes occur within the range 60Ž <

¾ � <
¾ 90Ž, where the normal forces

switch rapidly from compressive to tensile ones, with the maximum tensile forces
occurring at � ¾ 90Ž. As the results displayed below in Fig. 9 show, within the
latter range of � the ice is in viscous flow, in contrast to the rest of the wall
where it deforms plastically. Another feature worth noting is that for e >

¾ 1:5, that
is for the viscosity ratios ¼=� <

¾ 0:4, compressive forces can occur not only on the
windward, but also on the leeward side of the cylinder.

Corresponding to the above plots of the normal and shear contact forces are
Figs. 8 and 9 showing the variation of the strain-rate invariant 1 with the angle
� for different values of e. The latter invariant is normalized by the magnitude
of the critical strain-rate invariant 1c; that is, the ratios 1=1c are plotted in
the figures. Since 1c defines the strain-rate level at which plastic yield starts, the
values of 1=1c < 1 indicate that the ice deforms as a viscous material, whereas for
1=1c ½ 1 plastic flow occurs at given points on the cylinder wall. Fig. 8 illustrates
the distribution of 1=1c for a no-slip boundary. It is seen that, for e ½ 1:5, the ice
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Fig. 8. Variation of the dimensionless strain-rate invariant 1=1c along the cylinder wall for
no-slip boundary conditions and different values of the rheological parameter e

Fig. 9. Variation of the dimensionless strain-rate invariant 1=1c along the cylinder wall for
free-slip boundary conditions and different values of the rheological parameter e
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deforms plastically along the whole structure wall, and only in the case of e D 1

(that is, when the shear and bulk viscosities are equal), the critical level of the

strain-rate invariant is not reached for � <
¾ 30Ž and, hence, the ice is in viscous

flow. We also note that the maximum values of the strain-rate invariant 1 occur

at the angles close to 90Ž. Quite a different situation takes place in the case of

a free-slip boundary, as illustrated in Fig. 9, since now the maximum values of 1

occur at the angles � ¾ 0Ž and � ¾ 180Ž. Another characteristic feature observed

in Fig. 9 is that, irrespective of the value of the parameter e (that is, of the viscosity

ratio ¼=� ), the normalized invariant 1=1c reaches values close to zero at some

(dependent on e) angles � from within the range 70Ž <
¾ � <

¾ 80Ž. Accordingly, the

ice in the vicinity of such peculiar points deforms in viscous regime, as opposed

to the remaining part of the cylinder wall where it undergoes plastic yield.

Finally, the predictions of the viscous-plastic rheological model have been

compared with the results given by the non-linearly viscous model proposed

by Staroszczyk (2005). In the latter formulation, it is assumed that the ice vis-

cosities have constant values in converging flow, and decrease very quickly in

a narrow range of strain-rates at the start of diverging flow. This significant vis-

cosity reduction, by three to four orders of magnitude, is strongly non-linear

in strain-rate and reflects rapid weakening of ice with increasing tensile de-

formation. In order to compare the predictions of the two rheologies, we ad-

opt in both models the same maximum bulk and shear viscosities, �m and ¼m,

as defined by Eq. (18). Thus, with the viscous-plastic model parameters un-

changed (P1 D 5 ð 104 Pa, P2 D 1 ð 103 Pa, 1c D 2 ð 10�5 s�1), we set in the vis-

cous model � D 1:25 ð 109 kg m�1 s�1, with ¼ D e�2� , that is dependent on e.

Below, we present the distributions of the contact forces for two values of the

parameter e, 1:5 and 2:0. The corresponding shear viscosities ¼ in the viscous

model are then 5:55 ð 108 kg m�1 s�1 and 3:12 ð 108 kg m�1 s�1, respectively. In

the non-linearly viscous model for ice, the critical strain-rate level around which

significant changes in � and ¼ occur is defined by the dilatation-rate �c, which is

different from the plastic yield critical strain-rate invariant 1c (incorporating both

the � and  invariants) used in the viscous-plastic formulation. To correlate these

two different rheological parameters, we assume that, on average, � and  have

comparable contributions to the value of 1c, that is, j�j ¾  . Hence, in view of

Eqs. (10) and (13), we have �c D 1c.1 C 4=e2/�1=2, that is, �c D 1:2 ð 10�5 s�1 for

e D 1:5, and �c D 1:41 ð 10�5 s�1 for e D 2:0. In Fig. 10 the distributions of the

radial forces Nr along the cylinder wall for a no-slip boundary are compared. We

note that both rheologies give very similar magnitudes of the extremal, compress-

ive and tensile, contact forces on the wall. Similar is also the overall character of

the variations of Nr with � for both rheological models, with significant differences

occurring only within the range of polar angles 90Ž <
¾ � <

¾ 120Ž. A different picture

is observed in Fig. 11 which illustrates the distributions of the radial forces Nr on



Loads Exerted on a Cylindrical Structure by Floating Ice : : : 123

Fig. 10. Distribution of the radial forces Nr along the cylinder wall for no-slip boundary
conditions. Compared are the results for the viscous-plastic (VP) and non-linearly viscous (NV)

ice rheologies

Fig. 11. Distribution of the radial forces Nr along the cylinder wall for free-slip boundary
conditions. Compared are the results for the viscous-plastic (VP) and non-linearly viscous (NV)

ice rheologies
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a free-slip wall. Since in this case the viscous rheology predicts considerably lar-
ger (by about 40 per cent) contact forces on the windward side of the wall when
compared to no-slip boundary conditions (Staroszczyk 2005), the discrepancies
between the predictions of the two rheological models are substantial – mainly in
terms of the quantitative results, as still noticeable qualitative similarities can be
seen.

5. Concluding Remarks

In the paper we have extended the viscous-plastic rheological model with an el-
liptic yield curve which is customarily employed in large-scale simulations of the
floating ice behaviour. The extension consists in introducing into the model an ad-
ditional parameter that can be interpreted as the tensile strength of ice in isotropic
stress state. The aim of the modification is to avoid artificial diffusion terms that
are commonly included into the flow governing equations to ensure the stability
of numerical computations, since such terms give rise to unphysical effects in the
solutions obtained. The proposed constitutive model has been used to calculate
the magnitudes of forces that floating ice exerts on a cylindrical structure, and
it has turned out that, indeed, the modified form of the flow law improves the
numerical stability, provided that the tensile strength is no less than 1=50 of the
compressive strength of the ice. The results of simulations, carried out for no-slip
and free-slip conditions at the ice – structure interface, show that the tensile nor-
mal forces on the leeward side of the cylinder, where diverging ice flow prevails,
may reach the magnitudes that are about 1=5 of the maximum compressive forces
on the windward side (see Figs. 5 and 7). The predictions of the viscous-plastic
model have also been compared with those given by the non-linear rheology of
ice. The results (Figs. 10 and 11) show that relatively good agreement occurs in the
case of no-slip boundary conditions at the wall, whereas considerable differences
between the predictions of both rheological models take place in the free-slip
case. The appearance of significant tensile stresses in the solutions predicted by
the viscous-plastic rheology, the feature which is due to the particular shape of
the elliptic yield curve, seems to be somewhat unrealistic behaviour of floating ice.
It is possible that adopting yield curves which lie entirely in the negative principal
stress quadrant would give the predictions which are in better agreement with
observations. However, such shapes of the yield curve (at least those sketched in
Fig. 3) do not allow the normal flow rule; hence, the formal description of the
ice behaviour during yield will be more complex. Moreover, it is anticipated that
with other shapes of the yield curve it will be even more difficult to maintain the
numerical stability than it is in the case of the elliptic curve adopted in this work.

The analysis presented in the paper demonstrates a general method of cal-
culating the contact forces which a floating ice pack exerts on an engineering
structure. The ice has been modelled here as a viscous-plastic material, though,
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obviously, the same, or a similar, method applies in the case of other rheologies of
ice. However, there is still some way to go before specific engineering problems
involving sea ice – structure interactions can be solved with a sufficient degree
of confidence. First of all, it is not clear yet which particular constitutive model
describes best the real sea ice rheology. In other words, the role, and relative
significance, of elastic, viscous and plastic effects in the material behaviour at
different strains, strain-rates and stress levels is not properly identified yet. An-
other important question in the field of sea ice modelling concerns the values
of physical parameters describing the material, most notably the strength of ice
in compression and extension, and its dependence on the rate of deformation.
Particular values scattered in the literature vary considerably, often by more than
one order of magnitude, which contributes to uncertainties associated with quant-
itative predictions of theoretical analyses. The only method of identification of
rheological properties of the sea ice, and the validation of theoretical models as
well, is by field observations. However, even if these are possible to perform for
certain particular engineering problems, it is difficult to generalize the results so
obtained because of the vast variety of the sea ice types and weather conditions
(i.e. deformation regimes) encountered in practice. That is, the results of physical
measurements obtained for one specific ice – structure interaction problem should
be transferred to other problems with great caution.

References

Chadwick P. (1999), Continuum Mechanics: Concise Theory and Problems , Dover, Mineola, New
York, 2nd edn.

Flato G. M. and Hibler W. D. (1992), Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr.,
Vol. 22 (6), 626–651.

Gray J. M. N. T., Killworth P. D. (1995), Stability of the viscous-plastic sea ice rheology, J. Phys.
Oceanogr., Vol. 25, 971–978.

Hibler W. D. (1977), A viscous sea ice law as a stochastic average of plasticity, J. Geophys. Res.,
Vol. 82 (27), 3932–3938.

Hibler W. D. (1979), A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., Vol. 9 (4),
815–846.

Hibler W. D., Ip C. F. (1995), The effect of sea ice rheology on Arctic buoy drift, ASME AMD ,
Vol. 207, 255–263.

Hunke E. C., Dukowicz J. K. (1997), An elastic-viscous-plastic model for sea ice dynamics, J. Phys.
Oceanogr., Vol. 27, 1849–1867.

Ip C. F., Hibler W. D., Flato G. M. (1991), On the effect of rheology on seasonal sea-ice simulations,
Ann. Glaciol., Vol. 15, 17–25.

Morland L. W., Staroszczyk R. (1998), A material coordinate treatment of the sea-ice dynamics
equations, Proc. R. Soc. Lond., Vol. A 454, 2819–2857.

Pritchard R. S. (1975), An elastic-plastic constitutive law for sea ice, J. Appl. Mech., Ser. E , Vol.
42 (2), 379–384.

Rothrock D. A. (1975), The energetics of the plastic deformation of pack ice by ridging, J. Geophys.
Res., Vol. 80 (33), 4514–4519.



126 R. Staroszczyk

Sanderson T. J. O. (1988), Ice Mechanics. Risks to Offshore Structures , Graham and Trotman,
London.

Schulkes R. M. S. M., Morland L. W., Staroszczyk R. (1998), A finite-element treatment of sea
ice dynamics for different ice rheologies, Int. J. Numer. Anal. Meth. Geomech., Vol. 22 (3),
153–174.

Sjölind S. G. (1985), Viscoelastic buckling analysis of floating ice sheets, Cold Reg. Sci. Technol.,
Vol. 11 (3), 241–246.

Staroszczyk R. (2005), Loads exerted by floating ice on a cylindrical structure, Arch. Hydroeng.
Environ. Mech., Vol. 52 (1), 39–58.

Tremblay L. B. (1999), A comparison study between two visco-plastic sea-ice models, [in:] Advances
in Cold-Region Thermal Engineering and Sciences (eds. K. Hutter, Y. Wang and H. Beer),
Springer, Berlin, 333–352.

Tremblay L. B., Mysak L. A. (1997), Modeling sea ice as a granular material, including the dilatancy
effect, J. Phys. Oceanogr., Vol. 27, 2342–2360.

Wang Y. S. and Ralston T. D. (1983), Elastic-plastic stress and strain distributions in an ice sheet
moving against a circular structure, Proc. Seventh International Conf. on Port and Ocean
Engineering under Arctic Conditions, Helsinki 1983 , 940–951.


