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Abstract
The case of linear, two-dimensional long waves on a uniform slope is considered. It
is assumed that the fluid is nonviscous and incompressible. In the present paper the
description of the long wave proposed by Wilde (Wilde, Chybicki 2004) is based on
the fundamental assumption that the vertical material lines of fluid remain vertical
during the entire motion. The equations of motion are derived with the help of
a variational formulation of the problem. The Lagrangian is the difference between
the kinetic and potential energy of the fluid. In the paper a correction followed from
dispersion to the results obtained by Shuto is presented.
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1. Introduction

Usually the wave run-up is defined as the maximum vertical height above still
water level reached by the wave. Only a few models of water wave propagation are
available for waves on a sloping bottom. In the Eulerian description usually used,
the solution of this problem is writen in terms of the first kind Bessel functions of
zero order. In the Lagrangian description the solution of this problem was found
by Shuto (Shuto 1967).

Its application to this problem has several advantages. The boundary condi-
tion on the bottom in this system is more easily satisfied than in the Eulerian
description. Secondly the maximum run-up height is the maximum of vertical
displacement of the particle of water which at rest was on the shore line.

Another solution of this problem is presented. The equations of motion are
derived with the help of a variational formulation of the problem. The Lagrangian
is the difference between the kinetic and potential energy of the fluid. The basic
assumption of the theory of long water waves simplifies the geometry of the dis-
placement field. The correction follows from taking into account the additional
term of kinetic energy.
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2. Theory and Results

Let us consider a periodic two-dimensional motion of an infinite layer of inviscid
fluid. It is assumed that the water for a time t � 0 is at rest and the corresponding
particle co-ordinates are named a; b, .�h.a/ � b � 0/, where h denotes depth of
water. Let us assume that the bottom is described as

b D �þa; (1)

hence the depth of the water is h.a/ D þa. The still water surface is taken as the
a-axis. The motion of the fluid is described by the mapping of the names into
the positions occupied by the points at the time t . Let us assume that horizontal
displacement is independent of the vertical co-ordinate. Thus, the mapping can
be given as:

x D x.a; b; t/ D a C u.a; t/;

y D y.a; b; t/ D b C w.a; b; t/ :
(2)

The incompressibility condition

@.x ; y/

@.a; b/
D

@x

@a
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@b
�

@x

@b

@y

@a
D 1; (3)

leads to the following relation:

@w

@b
D

�ua.a; t/

1 C ua.a; t/
D �

ua.a; t/

1 C ua.a; t/
: (4)

The solution of the equation reads

w.a; b; t/ D �
.b C þa/ ua.a; t/

1 C ua.a; t/
C f .a; t/ (5)

and the continuity equation is satisfied for any function f .a; t/. This function can

be specified from the boundary condition on the bottom, which in the Lagrangian
description can be formulated as follows: the water particle originally rested on
the bottom should stay here. It is easy to verify that function

f .a; t/ D �h .a C u .a; t// C h .a/ ³

³ �
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@a3
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(6)

guarantees, that this condition is fulfilled.

The equations of motion are derived from the hamiltonian principle (Herivel
1954, Szmidt 1988):
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with the Lagrangian function
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In the considered case the determinant of matrix of Jacobi is always equal to
unity and the Lagrangian function presents the density of the difference between
the kinetic and potential energy, given as:
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½

db: (9)

Using relations (1) and (5) the Lagrangian function can be expressed in terms
of horizontal displacements. This function can be integrated analytically with re-
spect to vertical co-ordinate b from �þa to 0. In order to obtain the linear equa-
tion of motion, let us consider the two lowest orders of the Lagrangian function:

L D L1 C L2; (10)

where
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(11)

It is proper to notice that for constant depth the last bracket vanishes. The
Euler equation reads

�

1 C
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D 0: (12)

This is an equation of linear long waves with weak dispersion for the case of
uneven bottom. For constant depth equation (12) takes the form:

@2u

@t2
� gh

@2u
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�

h2

3

@4u

@t2@a2
D 0 (13)
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and determines dispersion relation the same as in the Boussinesq equations:

!2 D
ghk2

1 C k2h2=3
: (14)

For very long waves the terms followed from kinetic energy of vertical dis-
placement are usually neglected as negligible quantities. Thus, for long waves
equation (12) reads:

@2u

@t2
� g

@2

@a2
.hu/ D 0: (15)

The above equation was obtained by Shuto (Shuto 1967).

Using (1) equation (12) is rewritten as:
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Let us consider the case in which the movement is harmonic in time, i.e.

� D u.a/ei!t (17)

and equation (16) reduces to ordinary differential equation
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Introducing a new variable y D
þ!2

3g
a equation (18) takes the form:
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or after some manipulation
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(20)

where A D 1 �

p

3 C þ2

þ
, B D 1 C

p

3 C þ2

þ
, C D 2. The equation in the last brack-

ets is a so called hypergeometric differential equation (Morse, Feshbach 1953).
The solution, which has a regular singular point at the origin is a hypergeometric
function
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The free surface is determined by the equality b D 0. Setting b D 0 to equa-
tion (5) and using (6) we obtain the formula of the vertical displacement:

w.a; t/ D �
þaua.a; t/

1 C ua.a; t/
� þu .a; t/ : (22)

Hence, a linear part of Eq. (22) is

w.a; t/ D �þaua.a; t/ � þu .a; t/ : (23)

Using formula

d .2 F1.a; b; c; z//
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D
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2 F1.a C 1; b C 1; c C 1; z/; (24)

we can write free surface elevation for standing waves in parametric form:
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(26)

The maximum horizontal and vertical displacement of the particle which rests
on the shore-line at the initial instant is A and Aþ respectively. Relations (25–26)
represent the solution of equation (16) when complete reflection is assumed.

Hypergeometric functions (25) and (26) have their singular point at
þ!2a

3g
D 1.

For long waves however, this argument can be approximated as
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and for long waves, for L > 8h this value is always less than 0.2.
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The solution of equation (14) in case of non-dispersive waves for horizontal
and vertical displacements was obtained by Shuto (Shuto 1967):

u.a; t/ D A1
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Relationships (25–26) and (28–29) describe the surface elevation on uniform
slopes in parametric form respectively with and without taking into considera-
tion the influence of dispersion. Figure 1 shows the comparison of free surface
elevation calculated with the help of formulas (25–26) and (28–29).

Fig. 1. Free surface elevation with dispersion – dashed line and without dispersion – solid line.

Wave parameters, ! D 0:3 s�1, þ D 0:1

The influence of dispersion causes that increase of wave amplitude is a bit
smaller and waves for great depth are shorter. This effect is more visible when
the waves are shorter and the slope is smaller. For standing waves with period of
about 10 s and slope 1 : 25 the same comparison is shown in Fig. 2.

Fig. 2. Free surface elevation with dispersion – dashed line and without dispersion – solid line.

Wave parameters, ! D 0:6 s�1, þ D 0:04

The maximum run-up amplitude on uniform slope was obtained by Carrier
and Greenspan (Carrier, Greenspan 1958, Voltzinger et al 1989):
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; (30)
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where A0 is the amplitude of the incident wave with frequency ! on depth h0. The
ratio Rc=Rmax calculated run-up amplitude Rc to the theoretical results, given by

Eq. (30), as a function of dimensionless frequency !

s

h0

gþ2
is displayed in Fig. 3.

Fig. 3. The ratio calculated run-up amplitude to the theoretical results as a function of
dimensionless frequency

The influence of dispersion is significantly stronger for dimensionless fre-
quency parameter.

3. Conclusions

1. For the long waves, the assumption that horizontal displacements do not
depend on vertical co-ordinates leads to the expression for vertical displace-
ment.

2. The part of kinetic energy following vertical displacement introduces dis-
persion to the equation obtained.

3. When the motion is harmonic in time, the equation of motion can be simpli-
fied to a hypergeometric differential equation. The solution for horizontal
and vertical displacement is expressed in terms of hypergeometric functions.

4. The comparison of the obtained solution with result described by Shuto
was shown. If the dispersion of the waves is taken into account, the result-
ing waves are shorter. The increase of wave amplitude is less than in the
non-dispersive case.
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