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Abstract

The aim of the paper is to discuss the usefulness of the non-linear Schrédinger dif-
ferential equation in the study of transformations of progressive deep water waves.
Its solution compared with a regular Stokes type wave is essentially restricted to the
first order approximation of the second one. The difference is that the Schrodinger
equation introduces the concepts of a carrier wave and complex amplitude. In this
way the dispersion relation of the third order Stokes expansion is taken into account.
The analysis starts with regular, non breaking Stokes waves with large amplitudes
as measured in our laboratory. The third order approximation is considered and
compared with the corresponding solution of the Schrodinger equation. Then small
periodic modifications are introduced in the time series fed into the control system
of the generator. The approximation by trigonometric series is applied and the sim-
plified analysis of superposition of very small modifications is used (higher powers
of modifications are neglected). The Schrodinger non-linear equation is used in this
analysis. The comparison of experimental and calculated envelopes is good, but for
the surface elevations in space it is not as good. The approximation by trigonometric
series is also applied to study the case of larger modifications. Finally the solutions
of the Schrodinger equation corresponding to perfect solitons, are compared with
the experimental data for cases where the measured surface elevations look almost
like periodic solitons. This gives a reasonable approximation of the real behaviour
in a very short space interval. It is not easy to get a good numerical description
for the wave problem discussed as the waves are physically unstable. The results of
the presented research will be used to establish an effective numerical procedure,
stress the approximations introduced by the application of the Schrodinger differen-
tial equation and show how the theoretical solutions should be compared with the
measured data.

Key words: water waves, stability, transformation, wave groups, non-linear
Schrodinger differential equation
1. Introduction

Lighthill (1965) was one of the first to study the stability of motion problem for
deep water waves. An important contribution is from Benjamin and Feir (1967).



214 P. Wilde

They considered the basic frequency and a growth of the side frequencies when
the wave progresses. Zacharov (1968) showed that the stability problem might be
described by the non-linear Schrodinger differential equation. In his book, Witham
(1974) described the properties of the dispersive waves. Important contributions
to experimental research are due to Lake and Yuen (1977) and summarised in
the book by Yuen and Lake (1982). Derivations of the non-linear Schrodinger
differential equations for the description of deep water waves were proposed by
other authors by different methods. Short descriptions of the basic properties and
the Schrodinger differential equation are included to make reading of the paper
easier.

The experimental research in transformations of deep water waves started at
the Institute of Hydro-Engineering when the new 64 m long, 0.60 m wide and 1.40
m high wave flume was constructed. Precise experiments described in the paper
by Wilde et al. (2003) were performed in our laboratory in the year 2001 and
presented in detail in an internal report, Wilde et al. (2001). In the experiments,
the wave trains were initiated by time series based on the algorithm presented
by Wilde and Wilde (2001). The calculated time series was fed into the control
system of the piston generator. The envelope of the horizontal motion grew slowly
in time and was finally kept constant until the decay interval was introduced. The
motion of the piston was fixed as the real part of the product of the values of
the envelope as a function of time ¢ with the function exp (—iwgt), where wy was
a fixed dominant frequency. In standard tests, surface elevations were measured
by seven gauges denoted by S1...S7 that were placed at distances 4, 8, 16, 24,. ..,
48 m from the piston. Periodic modifications with very small amplitudes that
resulted in the prescribed wave groups in time were introduced. In the present
paper, fixed time intervals are discussed as they transform along the flume. The
Eulerian description is used, and the surface elevations are measured by gauges
along the flume.

In the theoretical analysis the approximations by trigonometric series are ap-
plied in the case of regular Stokes waves and in waves with superimposed small
and finite modifications. The Kalman filter described in the book by Wilde and
Kozakiewicz (1993) is used to decompose the measured data into two compon-
ents. The first order components correspond to the neighbourhood of the dom-
inant frequency and the second order components to the double of the dominant
frequency. Such a decomposition is also applied to the Fourier components. The
non-linear Schrodinger differential equation essentially describes the behaviour of
the complex amplitude and is based on the first order approximation. The simple
non-linear term in the Schrodinger differential equation takes care of the influ-
ence of the third order approximation on the dispersion relation. The second and
third terms in the expressions for the surface elevations are neglected.
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In the experiments, the modifications grew and in the middle of the flume
looked almost like periodic solitons. They were not perfect solitons as they con-
tinued to change shapes along the flume, but in a small interval of space it is use-
ful to approximate the measured surface elevation by the theoretical solution for
a periodic soliton. The theoretical solution based on the non-linear Schrodinger
differential equation was given in the paper by Martin et al. (1980). It is not
possible to obtain a perfect approximation, but it is true that the Jacobi elliptic
function dn is suitable when describing the motion of the envelopes. The experi-
mental values corresponded to measurements by seven gauges placed at distances
40 m, 40.20, 40.40,. . ., 41.20 m from the piston. The spacing was so dense (0.20 m)
as the measured surface elevations looked like solitons only in a small neighbour-
hood in space.

2. The Case of Regular Stokes Waves

In the wave flume, the amplitudes and frequencies of piston motions were con-
trolled by time series fed into the control system of the generator. The depth of wa-
ter & was equal to 0.6 m. In the experiments, it was assumed that the wave-length
L (calculated according to the linear theory) was equal to 24, and thus it may be
assumed that it is a deep water wave. In Fig. 4 of the paper P. Wilde et al. (2003)
measured data of the transformation of a wave train are presented. The end parts
of the data change significantly along the path of propagation, but the central part
corresponds to a regular Stokes wave and is discussed in the present paragraph.
The formulae for the third order deep water Stokes wave are the starting points
of the analysis as they are given by Werhausen and Laitone (1960) by the relations
(27.25), (27.26) and (27.27). These expressions are derived for the case the depth
tends to infinity. The depth of water was not infinite, but when the dispersion
relation for finite depth was used, the difference was around 1%. The surface
elevation ¢ (x, t), the potential function ® (x,z,¢), and the dispersion relation is
given by the following expressions:

1
¢ (x,t) = Agcos (kgx — wgt) + idef, cos 2 (kgx — wgt) +

3
+§k§AS} cos 3 (kgx — wqt) ,

(1)
1
D (x,z,t) = A\/g/ka exp (kqgz) sin (kyx — wqt), Ag=A (1 + §k§A2> ,

1
wq = /gky <1+§k§A2...>,

where wy = 2 f; is the angular frequency and f; the frequency in Hz, k; is
the wave number, A, is the amplitude of the first term in the expression for the
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surface elevation, A is the amplitude that appears in the formula for the potential;
it is related to the measured amplitude 4, by the expression given in the second
row. If the amplitude A, is very small then A ~ A; — A; the linear wave theory
may be used and the wave number is related to the angular frequency by the
formula &k = a)ﬁ /8.

In the experiments, the seven gauges S1...S7 were placed at distances 4, 8,
16, 24, 32, 40, 48 m from the piston of the generator. For a fixed dominant fre-
quency, three control time series of piston motions were fed into the control
system of the generator by multiplication by three different factors. The largest
factor corresponded to the case closest to breakage. The amplitudes of corres-
ponding surface elevations [0.0204, 0.0285, 0.0362 m] measured by the gauge S3
were used as characteristic values for the progressive surface waves. In Fig. 1 the
three frequencies measured on gauges S1 to S7 for the third case 4; = 0.0362 m
are shown and compared with the mean values of the basic frequency and its
double and threefold values [ fz, 2 f4, 3 f4]. The amplitude of the third component
is very small, but still the estimated frequencies are almost constant along the
flume. In all the experiments the values of frequencies changed very little along
the flume and when the amplitude was increased. Thus it may be assumed that the
measured frequencies stay constant, with values as given in the time series fed into
the control system of the generator. The statistical values for all measured values
are: for the basic frequency the mean value is 1.1390 Hz, the standard deviation
0.0010 Hz and for the second frequency the mean value is 2.2753 Hz and standard
deviation 0.0067 Hz. The differences are well within the experimental accuracy.
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Fig. 1. Three frequencies measured along the flume and compared with mean values
fa =1.1390, 2f; =2.2780, 3f; = 3.4170, a = 0.0362 m
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In Fig. 2 the amplitudes of the dominant frequency component as measured
on gauges S1 to S7 are depicted with a least square approximation of the data
by a straight line. It should be noted that the amplitudes in general decrease
along the flume, but there are also oscillations with respect to the straight line
approximation. These phenomena are mainly due to the dissipation of energy
along the path of propagation. The wave motion is generated by the motion of
the piston with uniform horizontal displacements along the depth of the water.
In the region close to the piston of the generator the velocity profile changes to
a negligible velocity at the bottom. This transformation is also accompanied by
a dissipation of energy. Such behaviours can not be described by methods that do
not describe damped progressive waves.

positions of gauges in m
0 8 16 24 32 40 48
4 1 1 1

3.75 K

amplitudes in cm

T
\

Fig. 2. Amplitudes of the first component measured by the seven gauges and approximation by
a straight line, a = 0.0362 m

To calculate the value of the wave number k; it is necessary to obtain the
surface elevation as a function of distance x for a fixed time. In our laboratory
an approximate graph may be obtained by a dense set of gauges with very small
spacing. A theoretical local value may be calculated from the equations (1) as
the solution of two non-linear equations: the dispersion relation and the relation
between the amplitudes A; and A with two unknown values 4 and k.

It is convenient to introduce the following dimensionless variables

x4 =A/Aq, xx = ka/ki = Vkag/wa,

that transform these equation to the following form

1 2‘03 2.5 1 2“’3 4.3
EAdg—zxAxk +Xk—1=0, gAd?xkxA—i-XA—l:O' (2)
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The solution was constructed by successive approximations. It was assumed
that initially x4 = 1 and this value substituted into the first equation makes it
possible to calculate the value of x;. There were five roots, two complex conjug-
ate, but only one real. The real value substituted into the second equation led
to the value of x4 (the real root) in the first step. Repeating the steps the suc-
cessive approximations for the pairs [xx (r),x4 (r)], r = 1,2, ... were obtained.
The convergence was very rapid. Four steps gave a very good accuracy. It should
be mentioned that for our parameters the relative difference between A4 and A4y
was around 0.25%. Thus it is reasonable to calculate the wave number from the
dispersion relation with A ~ A,

AU + kg —k =0, kg =w3/g. (3)

The difference between the calculated wave numbers is insignificant for para-
meters in our example.
In complex numbers the surface elevation of the Stokes wave is

c(x,t) =real(Z),

4)
1 3 (
Z=Agexpli® (x.t)] + Ek"AZI exp[2i0 (x.1)] + gkﬁAfl exp [3iO (x,1)],

where O (x,t) = kgx — wgt + o.

The standard expression in real numbers is given in the first row of equations
(1) and corresponds to the case the origin of the x, ¢ coordinate system is at the
maximum value £(0,0) = A; + deﬁ /2 + 3k§A‘3i /8 and thus ¢y = 0. The general
expression in complex numbers (4) corresponds to a shifted origin of the coordin-
ate system. One must be careful in fixing the value of the angle ¢y. The complex
expression (4) is convenient as the second term corresponds to the square of the
first term multiplied by the coefficient k;/2 and the third to the cube of the first
term multiplied by 3k§ /8. Thus, when the first term is known, the second and
third terms may be easily calculated. This relation may be used in more general
cases to obtain a reasonable estimate for the third order approximation.

A detailed analysis and comparison of calculated and measured values was
done on one example by considering the case A; = 0.0285 m (the middle one in
the set) and restricting our attention to the surface elevations at the gauges S3,
S4, S5, at distances 16, 24, 32 m from the piston. In this region, the influence
of the region close to the piston is much smaller and thus the wave does not
depend so much upon the way it is generated. The measured surface elevations
were registered in the time interval 0.00-140.10 s with a sampling frequency 50 Hz
(7006 data). For the gauges considered the data were transformed, so that they
were accepted by the program MATLAB. The present analysis is restricted to the
interval with no or very little influence of the starting and decay intervals and the
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Fig. 3. Basic (amplitude 2.85 cm), double (amplitude 0.3330 cm) and threefold (amplitude 0.0748)
Fourier components with envelopes, for the gauge S3

analysis is in a Eulerian description. Thus from the three data sets, time intervals
of 84.48-89.76 s in length (265 data) were cut. The three Fourier components
(coefficients and frequencies) were found by least square approximation for the
measured surface elevations at S3, S4, S5. In Fig. 3 the three components with
their envelopes are depicted for the measurements at S3. The first component
has an amplitude equal to 2.85 cm the second 0.3330 cm and the third 0.0748 cm.
A careful inspection shows that the addition of the double frequency term shifts
the graph, the crests become steeper and the depth of the troughs decreases. The
wave height does not change significantly. The third term has an influence on the
wave height. It is small because its amplitude is very small. In engineering practise
very often the linear theory is used, but it has to be remembered that to calculate
the wave velocity the third order theory has to be used and when we are interested
in the position of maximum wave crest the second term has to be considered. In
Fig. 4 the three sets of graphs corresponding to the three gauges S3, S4 and S5
are depicted. The curves corresponding to the first order approximations have the
corresponding amplitudes S3 2.85 cm, -2.85 cm, S4 2.7229 cm, -2.7229 cm and
S5 2.6399 cm, -2.6399 cm. The sums of the three components, very close to the
measured values have different upper and lower amplitudes. The corresponding
envelopes were calculated as the absolute values of the three complex functions
Zy, Z,, Z3 corresponding to the three terms in the Eq. (4). The positions of the
upper and lower envelopes z,., z, were calculated according to the following
formulae
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Fig. 4. Comparison of data measured and first order approximations for gauges S3, S4 and S5.
Curves corresponding to the first order approximations have symmetric envelopes with amplitudes
respectively 2.85, 2.72 and 2.64 cm. The sums of the three components have different upper and
lower components



Theoretical Analysis on Experiments in Transformation of Deep-Water-Waves 221

Zye = abs(Z1) + abs (Z;) + abs (Z3) ,

®)
zje = —abs(Z1) + abs (Z;) — abs (Z3) .

For the measured data the upper and lower amplitudes calculated according
to the formulae (5) are S3: 3.2626 cm, -2.5966 cm, S4: 2.9994 cm, -2.5127 cm
and S5: 2.8368 cm, -2.4572 cm. The surface elevations and the corresponding
estimated upper and lower envelopes are depicted in Fig. 4. The relative errors
between the first order approximations of the positions of the envelopes and the
upper ones for the data at the three gauges are respectively 2.61%, 1.20% and
0.64%.

It may be seen that when the coefficients A5, wy and in the expression for Z;
are known, the positions of the upper and lower envelopes may be easily calculated
and they are the envelopes for the measured surface elevations as function of time
for the considered positions of the gauges.

The surface elevation as the function of distance x from the position of the
gauge S3 and time ¢ was also calculated by the relation (4). First, it was necessary,
to calculate the wave numbers and the amplitudes k;, and A for positions S3, S4,
S5 as functions of the corresponding amplitudes A4;, by the successive approx-
imations applied to the set of equations (2). The values of the surface elevation
as the function of x for + = 0 are depicted in Fig. 5. In Fig. 6 the first order
approximations of the surface elevations for positions of gauges S1, S2, S3 are
shown. The decrease of wave height is small but visible. Solid lines indicate the
measured values and envelopes, the calculated first term approximations are in-
dicated by lines with crosses. It may be seen that there are phase shifts. The space
interval of 16 m length spans 13 wave-lengths (average value around 1.23 m). The
problem is how good the estimate of the wave-length is? If the error is just 1 cm,
then the phase shift corresponds to 13 cm in 16 m. In general, in measured wave
data, visible phase shifts are observed in comparison with theoretical solutions. In
design the maximum values of surface elevations, frequencies and wave numbers
are important. Thus from the engineering point of view, the knowledge of the
envelopes, the values of the dominant frequency and wave number are important.
Therefore the simplified description of water waves propagation as given by the
non-linear Schrodinger differential equation is very interesting.

3. The Schriodinger Non-Linear Differential Equation

In the analysis of the transformation and stability of deep water waves, the
non-linear Schrodinger equation, as given in the book by Yuen and Lake (1982)

i (Ac,l + UgAc,x) +oadexx — ,3|Ac|2Ac =0 (6)
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Fig. 5. Calculated surface elevations as functions of distance from S3, for t =0

is used. In equation (6) A. is the complex amplitude and the coefficients
vg, o and B are given by the following relations:

) D) 1

v :2_/;’ a:—S—k(;, B = sk, (7)

and quantities denoted by subscript 0 are the parameters of the carrier wave.
When for a regular Stokes wave the parameters of the carrier wave correspond to
the linear solution (wy = w;, ko =k, a — 0) then the Taylor series expansion

of the dispersion relation is

w—awy = vy (k— ki) + o (k— k) + Ba’. (8)

The coefficients are given by the expressions (7).

In the case of our experiments in the wave flume the dominant wave frequency
is equal to the dominant frequency of the time series of piston motion fed into the
control system of the generator. Thus it is convenient to take the carrier frequency
equal to the dominant frequency wy = w; and to take the carrier wave number
equal to the corresponding wave number when the amplitude tends to zero, that
is ko = k; (the subscript / points to the linear theory solution, k; = a)czl /8).

For the case of a regular Stokes wave the dispersion relation is given by the
corresponding expression in the equation (1), its approximate form (3), or its
Taylor series expansion (8), and it is thus convenient to take

wy=wyg =w;, ky=k = a)g/g, ki—k =k <2—2,/1 +k12Ac2i) , (9)
kd —k =~ —kIBAg.
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Fig. 6. Comparison of first order approximations for measured, solid lines and with x-marks
calculated by Eq. (4), surface elevations at S3, S4, S5
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The approximate relation follows from binomial expansion. The expression for
the first term in complex notation for the complex amplitude of a regular Stokes
wave, as given in the complex function notation given by the equation (4), may
be written in the following form

Z = Ac.(x)exp[i(kix — wat + o), Ac (x) = Agexp[itky —k)x] . (10)

The symbol A, (x) defines the complex amplitude for the regular Stokes wave.
In this case, as in the wave flume, the dominant frequency in the time series intro-
duced into the control system of the generator becomes the dominant frequency
of the surface elevation. Thus this case may be called the frequency controlled
case.

A second theoretical possibility is that the wave number is controlled. For the
case of a regular Stokes wave it corresponds to the case

ko =ka =k, wy= w1 = /gka,

1 (11)
wi — W] = wy (—1 +4/1 +k§A2> ~ Ea)lkleg.

In this case, called the wave number controlled test, the corresponding complex
amplitude is defined by the following relations

Z =A:(t)explikgx —wyt)], Ac(t) = Agexp[—i(wg — wp)t]. (12)

It must be mentioned that in a standard wave flume it is not possible to control
the wave numbers.

The non-linear Schrodinger differential equation is not restricted to the ana-
lysis of regular Stokes waves. In its derivation it is assumed that the amplitude is
a function of distance and time Ay = Ay (x,t), but that it is a modified regular
Stokes wave. The modifications cannot be arbitrary, but, for example, by the ad-
dition of small terms to the basic regular Stokes wave. Such waves will be called
Stokes-type waves.

The non-linear Schrodinger differential equation is a convenient relation for
the description of Stokes type waves. It is a non-linear differential equation in
complex variables, but there is only one simple algebraic non-linear term and
for a regular wave, the variability of the real and imaginary parts is very slow as
a function of distance (kg — k; is a very small number when compared with k).

4. The Superposition of a Small Modification on a Stokes Wave

Let us consider the superposition of small modifications on the complex amplitude
of a second order deep water wave given by the following expression:
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Ac = ACO + AAC’

Ay = Aq exp [—ikjAlx],

(13)
AA. = exp (Ux) {e; exp [iK (x — vgt)] +

+e_ [—iK (x — vgr)]} exp [—ik;A%x].

In these relations Ao is the complex amplitude of the regular Stokes wave,
K =g /n is the wave number of the wave group and n is the number of waves
in the group in space (not necessarily an integer), v, = wq/ (2k;) is the group
velocity, the speed of energy propagation. It is assumed that the amplitudes of
the modifications exp (Ux) e+ and exp (Ux) e_, small as compared with A,, are
so small that their products may be neglected. It is assumed that the amplitudes
of the superimposed modifications may grow on the path of propagation by the
term exp(Ux), where U has the dimension 1/m. In view of the relations (8), (9)
and (13) it follows that the complex function description of the modified Stokes
wave is

Zy = Agexp i tkgx — wat — ¢o)] +exp (Ux) ey [i (kg + ki /n)x—
+i (14 1/@2n))wat —igo] + (14)
+exp(Ux)e_[itkg —ki/n)x —i(1 —1/(2n))wat —igo].

It should be noted that Z; (x, ) is just the first term of the generalised Stokes
wave.

There are three additive terms in the relation (14). For a fixed distance x and
for example n = 3 the three angular frequencies are respectively wg, 7wg/6 and
Swq/6. The groups in time have six wave periods. The picture in space, for a fixed
time when (k; ~ ky), is close to three additive terms with three wave numbers
k4, 4ky/3 and 2k, /3. This in general agrees with the experiments that the number
of wave-lengths is equal to half the number of periods in a periodic group. In
experiments, the behaviour of wave groups in time may be studied very precisely
while it is not so easy to study this behaviour in space.

In the relation for the complex amplitude the value of the parameter U is
not known. Its value has to be fixed from the condition that the function has to
satisfy the Schrodinger differential equation (6) within the assumption that the
modifications have very small amplitudes and the value of the parameter U is
very small. Substitution of the modified complex amplitude (14) into the complex
differential equation (6) leads finally to two homogeneous algebraic equations
corresponding to the real and imaginary parts
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K? ) 0 U .

(S_klz_klAd> cos (K¢&) —2—klsm(K$) er4e 1 0 )
U K2 . 8++8, - 0 ’
Z—kICOS(KS;‘) @sm(l(é)

1

where & = x — vgf.
A non-trivial solution exists if the determinant of the equation is zero. This
condition leads to the following equation for the unknown parameter U

U? K? | K?
— = | iPA - —}—. (16)
45 [ 8k? | 8k?

The amplitudes of the modification grow if U is real, thus the value of K has
to be in the interval

0 < K/k < 22k Ay. (17)

The dimensionless parameter K/k; is equal to 1/n. When the amplitude A4
tends to zero (linear wave) then K and U also tend to zero. The modifications
do not grow. They grow if the following relation is satisfied

Ay > 1/ (Zﬁn)

A more detailed description of the stability problem is described in the paper
by Wilde et al. (2003).

To obtain a large growth of modifications in experiments, one has to induce
large amplitudes of the dominant wave, but one has to be careful to avoid such
breaking waves that the description by the standard wave theory is not acceptable.

As an example, let us consider the results of an example described in the pa-
per by Wilde et al. (2003) and depicted in their paper on page 302 in Fig. 7. In
this example, the dominant frequency was f; = 1.1390 Hz, the amplitude of the
modifications was 5% of the regular wave and the number of waves in a group in
time was 6 (in space n = 3). To compare the experimental data with the solution
of the Schrodinger differential equation proposed in this paragraph it is necessary
to restrict the analysis to the case of small modifications. Calculations showed
that for the measurement at positions S1 (4 m), S2 (8 m) and S3 (16 m) it was
necessary to consider the first order components with the dominant frequency
and the two side frequencies [Sf;/6, fs, 7f4/6] and the second order compon-
ents [11f;/6, 2f;/6, 13f;/6]. Thus the first order components conform to the
assumed form of the solutions (11) and (12) of the Schrodinger differential equa-
tion. The part of the measured surface elevations that corresponded to the same
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time interval for all gauges was decomposed into a trigonometric series by a least
square approximation. In Fig. 7 are depicted three graphs, the first shows the dom-
inant component, the second the sum of side components and the third, a dotted
line, the first order approximation. This figure illustrates the properties of the first
order components based on the measurements by the gauge S1 and corresponds
to the initial value in space for the progressive waves. In Fig. 8 the corresponding
components are depicted for the measurements at S3. It is worthwhile noting that
the sums of side components have a period equal to 6 dominant wave periods
and that the modifications grow, but are still small at S3.
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Fig. 7. Dominant component, sum of side components — solid lines and dotted line — the first
order approximation, sum of three components at gauge S1

The propagation distance from the gauge S1 to S3 was divided into small steps
of length Ax = 0.02 in m. The surface elevations measured by gauges S1 to S5
were used to obtain a second order polynomial approximation of the amplitudes
as the function of distance. The dispersion relation was used to obtain the relation
of wave numbers as the function of distance. The wave parameters at S1 were
used as initial values to calculate the value of U according to the relation (16).
In the very small step the exponential function may be replaced by its expansion
exp (UAx) =1+ UAx. The values of the wave number and amplitudes at x =0
become k; (Ax), Az (Ax), 1+ UAx)e; and (14 UAx)e_ at the end of the
first interval and are the initial values for the second interval. Repeating the
consecutive steps the values of the three first order components are obtained.
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Fig. 8. Dominant component, sum of side components — solid lines and dotted line — the first
order approximation, sum of three components at gauge S3

The calculated graphs are depicted in Fig. 9. The first order approximation (the
sum of the three components) and the envelopes are depicted in Fig. 10. It should
be noted that the calculated envelopes are symmetric with respect to the reference
X axis.

The measurements of surface elevations show that the peaks are steeper and
the troughs milder, as in the Stokes waves. Let us consider the influence of the
second order approximations. The surface elevations measured by the gauges
may be used to calculate the second order frequencies and their corresponding
Fourier series coefficients. Thus neglecting the third order terms we can calculate
the surface elevation within the second order approximation at the positions of
the gauges as

L (X 1) =21 (X, ) + Zp (X1, 1), (18)

where Z,,, Z1, Z, are respectively the measured, the first and second order ap-
proximations by Fourier series. The third order approximations may be taken into
account, but when the amplitudes of the higher terms become very small it is not
worthwhile doing it. Now it is possible to calculate the positions of the upper and
lower envelopes by the two terms in the relations (5). These functions calculated
for the data of the gauge S3 are depicted in Fig. 11 by thicker lines.

When the modifications are small compared with the amplitude of the domin-
ant wave we may generalise the expression for the Stokes wave (4) and estimate
the second order term by
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Fig. 9. Calculated three first order surface elevation components in the interval from S1 to S3 as
function of distance from the gauge S1
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Z> (x,1) ~ ide% o, 1) . (19)
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Fig. 11. Measured with included measured second order terms (thicker lines) and estimated within
second order approximation (thinner lines) envelopes for the gauge S3 as a functions of time

The corresponding estimated upper and lower envelopes for the gauge S3 are
shown in Fig. 11 by thinner lines. There are differences, but the estimate based
on the knowledge of the first order surface elevation is a good one for practical
applications. It must be remembered that a solution based on the non-linear
Schrodinger differential equation considers in detail only the first order terms in
the description.
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S. An Approximation by Fourier Series for Finite Modifications

The assumption that the modifications are small is not true when, due the trans-
formation along the path of propagation, the modifications become finite. In the
experiments, Wilde et al. (2001), the surface elevations as functions of time were
measured in the interval 40 to 41.2 m by seven gauges in 0.20 m spacing. Ap-
proximation by trigonometric series was applied to the measured data in the least
square sense. The starting point was the Fourier analysis applied to a constant
time interval corresponding to the periodic part of the data. The length of the
data interval was adjusted to obtain a small number of important components.
The adjusted time interval was used to obtain the best approximation for all sur-
face elevations measured by the seven gauges. For the data measured by seven
gauges the statistical values for the frequencies in Hz are presented in Table 1.
The standard deviations show that the differences for different gauges are well
within an experimental error. It may be assumed that the considered set of data
has constant frequencies given by the set

F=[5/6, 1, 7/6, 8/6, 9/6, 11/6, 12/6, 13/6]f>. (20)

Table 1. Mean values, standard deviations and relative frequencies with respect to f>/6
mean fy 0.9460 | 1.1370 | 1.3272 | 1.5173 | 1.7029 | 2.0870 | 2.2759 | 2.4587
std f; 0.0012 | 0.0003 | 0.0009 | 0.0029 | 0.0082 | 0.0117 | 0.0061 | 0.0084
mean 6f;/f>|4.9921{6.0000 | 7.0038 | 8.0069 | 8.9862 | 11.0179 | 12.0098 | 12.9746

The amplitudes of the components as measured by the seven gauges, are
depicted in Fig. 12 and the corresponding phases in Fig. 13. The amplitude of the
component with the relative frequency 10/6 was very small and neglected. The first
five components correspond to the first order approximation (linear theory). The
following three correspond to the second order approximation. There are higher
frequency components, but the presented analysis is concerned with a description
as given in the Schrodinger differential equation where the discussion is mainly
restricted to the first order approximation.

It is reasonable to replace the amplitudes by their mean value. It is not obvious
whether the discrepancies are due to the physics of the problem or experimental
errors. The phases of the components as functions of distance may be approxim-
ated by straight lines. The slopes correspond to wave numbers of the components
and the values for x = 0 to the initial angles ¢, (0) at the position S1. In the ex-
periments, the introduced small modifications had amplitudes equal to 5% of the
dominant values. It must be noted however, that the progressive wave at a distance
of 40 m from the piston is the result of transformations over a large distance. The
first order approximations of the measured surface elevation and their envelopes
by the gauge S1 (distance 0.40 m) are depicted in Fig. 14 by the thinner lines. The
corresponding graphs based on measured data by the gauge S3 (distance 40.40 m)
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Fig. 12. Amplitudes of components as measured by the seven gauges in cm
—— f1 = 0.9460 Hz, —»— f» = 1.1370 Hz, = f3 = 1.3272 Hz, =% f4 = 1.5173 Hz,
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Fig. 13. Phases of components as measured by the seven gauges in radians
—— f1 = 0.9460 Hz, —»— f» = 1.1370 Hz, = f3 = 1.3272 Hz, =% f4 = 1.5173 Hz,
=i f5 = 1.7029 Hz
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are shown by thicker lines. It may be seen that the path of motion of the peak of
the envelope from position S1 to S3 is approximately one half the length of the
path of the crest of the wave.
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Fig. 14. First order approximations at gauges S1 (thinner lines) and S3 (thicker lines) as functions
of time, distance 0.40 m

The seven upper envelopes corresponding to the measurements by the seven
gauges as functions of time are depicted in Fig. 15. There is a substantial regularity
in the graphs. It is difficult to say which differences are due to experimental errors
and which due to physical phenomena.

Let us discuss the surface elevations as functions of distance along the flume.
Unfortunately, in our laboratory we have no possibility of measuring the surface
elevations as a function of distance x at fixed times. In the present paper it is
possible to base these discussions on data measured by seven gauges looking for
local approximations as mean values and approximation of phases by straight
lines. The slopes of the graphs of the phases (Fig. 13) correspond to the wave
numbers of components. These values are presented in the first row of Table 2.
The ratios of the consecutive wave numbers with the second one and multiplied
by three are presented in the second row. These dimensionless numbers are close
to integers and thus it is possible to obtain estimated values of wave numbers
corresponding to the first order approximation of the frequencies given by the
five first ones in the set (20). To relate these values to the description by the
non-linear Schrodinger differential equation it is only necessary to calculate the
linear dominant wave number according to the formula
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Fig. 15. Set of upper envelopes in first order approximation for the seven gauges S1 to S7
(spacing 0.20 m) as functions of time

kg = 03/g.

The estimated values are given in the third row of Table 2.

The choice of the set of integers depends upon the choice of the set of fre-
quencies that correspond to the description by the linear theory. It should be
noted that the comparison of Table 2 with Table 1 shows that the introduced sim-
plifications in the case of wave numbers are not so close to the measured ones as
in the case of frequencies.

Table 2. Experimental and estimated wave numbers of main components
Experimental wave numbers ks | 3.5626 | 5.0601 | 6.6796 | 8.3812 | 10.2965
Dimensionless values 3k /k> 2.1122 | 3.0000 | 3.9601 | 4.9690 | 6.1045
Estimate [2, 3, 4, 5, 6] kiq/3 3.4689 | 5.2026 | 6.9368 | 8.6710 | 10.2965

The surface elevation and the corresponding envelopes as functions of distance
from the first gauge (while ¢ = 0) are depicted in Fig. 16. These calculated graphs
are based on the introduced simplifications. It may be seen that the number of
waves in the period of the envelope is almost equal to three. It should be noted
that the experimental values are restricted to the interval 0—~1.20 m. The remaining
part is based on estimated parameters.

In the assumed spacing of the gauges (20 cm) it is reasonable to assume that
the amplitudes of components are constant and that the phases as the function of x
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Fig. 16. Calculated first order approximation of elevations and envelopes as function of distance
from the gauge S1 in space

for a constant  may be approximated by a straight line and thus the wave numbers
are constant. These statements are true for the investigated interval of 1.20 m
length. There is a dissipation of energy along the path of propagation of the wave
in the flume. Thus the amplitudes of the components and the wave numbers must
change as a function of distance. The discussed example shows that the applied
spacing is good and would be satisfactory to obtain the experimental values of
amplitudes and wave numbers along the flume. To obtain it, one should measure
the surface elevations by at least 200 gauges in 100 Hz sampling frequency. The
laboratory is equipped to register such an amount of data. The problem is in
the cost of gauges and the necessary installations. If such measurements were
available it would be possible to calculate the complex amplitude based on the
experimental values.

6. The Periodic Solitons

In the experiments the initially small modifications grew along the path of
propagation, then the growth decreased and it looked like an almost periodic
soliton with wave groups moving with group velocity and dominant wave moving
with phase velocity. In Fig. 17 the graph of four wave groups as functions of time
(with six waves in a group) cut from a much longer record of measured data is
presented. This graph corresponds to surface elevation measured by the gauge
placed at a distance of 40.20 m from the piston of the generator. The measure-
ments were decomposed into two components by a Kalman filter as introduced
by Wilde and Kozakiewicz (1993). The components correspond to the peak fre-
quency (first order) and to the double of the dominant frequency (second order)
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and are depicted in Fig. 18. It should be noted that the second order components
increase the maximum positive values and decrease the depths of the troughs. The
phenomenon is the same as in the case of regular Stokes waves. The Schrodinger
differential equation (5) describes only the first order component, thus only com-
ponents in the neighbourhood of the dominant frequency are considered.

timeins
100 105 110 115 120 125

amplitudes in cm

Fig. 17. Measured surface elevation, four wave groups at S7, distance 41.20 m from piston

Martin et al. (1980) presented the analytical expression for the periodic soliton
of the non-linear Schrodinger differential equation (6). A short description of Mar-
tin’s solution will be given for the case as given by the expressions (12) to (17)
in the paper by Wilde et al. (2003). Let us write the transformation of variables
(Martin et al. 1980) in matrix notation with the corresponding inverse transform-
ation

[)T(]z [ :Zj gkl M; ] [; }= [ :Cgkll)—1 ?Zkl)‘1 ][}T(] (21)

where T and X are dimensionless variables.

The transformation leads to a simple form of the Schrodinger non-linear dif-
ferential equation in the dimensionless unknown function B (X, T) that is pro-
portional to the complex amplitude A, (X, T) (the function A. (x,¢) with new
variables), B(X, T) = A. (X, T) k /N2

1
iBr+ 5 Bxx+ |BI’B =0. (22)
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Fig. 18. Decomposition into first and second order components by Kalman filter (two groups
presented). The curve with bigger values corresponds to the dominant frequency 1.1370 Hz, the
second to the dominant frequency 2.2740 Hz

The separation of variables gives

B(X, T) = d(X) exp (isz) , (23)

where y is a dimensionless real number and leads to the following second order
differential equation for the dimensionless function & (X):

1
5 ®xx = pio 4+ @° = 0. (24)

The differential equation (24) has a periodic solution expressed by the Jacobi
elliptic function

P (X) = Bpdn[BpX. m], (25)
where the parameters g, and m are dimensionless real numbers, 0 <m < 1 and

By =v/2/ (2 —m?).

To discuss the meaning of the solution let us go back to the variables x, ¢ by
the transformation of variables (21) and the relation between the complex number
solution (12). The surface elevation as calculated by the non-linear Schrodinger
equation is the real part of the complex number solution

2
E@x,t) = \k/—d_ﬁpdn[ﬁp (2kix — wyt) ,m] cos [klx — (1 + y2) wit + wo]. (26)
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This solution (26) describes a progressive wave with a variable in space and
time amplitude. The progressive wave moves with phase velocity and the periodic
amplitude moves with a group velocity that is approximately one half of the phase
velocity.

The dominant wave has the dominant wave number k; and the dominant
frequency

wi = (1+y%) . (27)
(1+7°)

The function dn|B, (X — Xo)] is equal to one for X = X, and for all arguments
corresponding to the multiples of the period. For other arguments its value is less
than one, but not negative. It follows from the relation (26) that the coefficient
«/Qﬂp /kq is equal to the maximum value of the amplitude Ap.x, hence

By = kg Amax/ /2. (28)

The parameter m may be fixed from the measured number of periods in the
periodic group in time. It is well known that the period of the Jacobi elliptic
function is equal to twice the value of the complete elliptic integral K(m) and
thus the number of waves in a group in time n; is

n, =2K (m)/ (27pp) . (29)

In the considered experiments there are no data that correspond to a perfect
periodic soliton. The experiments described in Chapter 6 have features that in
small intervals of time and space are close to the behaviour of a periodic soliton.
Let us estimate the parameters that enter the description. The parameters es-
timated from the experimental data with values for the example are: the dom-
inant frequency f; = 1.1390 Hz and w,, amplitude Apyax = 0.055 m, the number
of waves in a group in time n; = 6. The parameters that enter the relations for
a periodic soliton are wy, Bp,m, y and k;. Now k; = a)lz/g, y may be calculated
from the relation (27), the parameter B, may be calculated from the relation
(28), the same B, may be calculated from the relation in (25) when the parameter
m is known. These values must be equal. This condition leads to the following
algebraic equation

2.2
2—m”ag .,

4 g2

In this equation there are two unknowns «; and m. To calculate them we have

to use the relation (29) where the number of waves in a group in time is known.
The value of m has to be assumed. The equation (30) has five roots, four complex
conjugate and one real. When the value of wj; is calculated it is possible to find
all the other parameters. A new value of m has to be chosen and the calculations

W) + o —wg =0. (30)
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repeated. Successive approximations have to be applied to find both unknowns
that satisfy the two algebraic equations.

A numerical example, based on assumed values of parameters, was calculated.
The calculations yielded the following values of parameters m = 0.9887, n; =
5.9977, fi = 1.1172 Hz and B, = 0.1954, y = 0.1395.

In Fig. 19 the calculated elevations and envelopes are depicted as functions of
time. The comparison with the measured values as presented in Fig. 17 show that
these surface elevations have different positions of upper and lower envelopes.
When the average value is taken then the agreement with the theoretical solution
based on the solution of the non-linear Schrodinger equation is good.
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Fig. 19. Elevations and envelopes at S7 as function of time calculated as the corresponding
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The envelopes corresponding to seven positions with (spacing 0.20 m) as func-
tions of time are depicted in Fig. 20. The comparison of corresponding graphs
based on measurements (Fig. 15) shows that the graphs based on the solution
for periodic solitons confirm the real behaviour and correspond to an idealised
theoretical description.

In Fig. 21 the envelopes and elevations as functions of distance that corres-
pond to the solution for a periodic soliton are presented. The correspondence
is reasonable and in the group in space there are around three wave-lengths. It
must be mentioned however that the considered distance here was 1.2 m and the
spacing was 0.20. In experiments these waves were not stable in greater space
intervals and the transformation on the path of propagation was essential. It must
be stated that comparison of the theoretical solution for a perfect soliton may
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Fig. 20. Set of envelopes (spacing 0.20 m) as functions of time for the corresponding perfect
periodic soliton
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Fig. 21. Envelopes and surface elevation as functions of distance for the perfect periodic soliton
solution of the non-linear Schrodinger differential equation
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be used only for small distances to explain the behaviour of the waves in our
experiments.

It should be noted that in the solution, the parameters are very sensitive. For
example, in the iterations a value close to n; = 6 was obtained within the choice
of m with four digits. It should be noted that m =1 corresponds to the case
the length of the wave group tends to infinity and for groups with six periods
in a group in time m = 0.9887. A perfect soliton is formed when the non-linear
behaviour cancels the influence of dispersion and the solution is stable. This is
a very peculiar situation, the parameters are very sensitive and the real behaviour
is far from the perfect case when the wave transforms on its path of propagation.

7. Conclusions

1. For all Stokes type waves, regular, with superimposed modifications with
small and finite amplitudes the measured frequencies along the flume are
very close to the frequencies fixed in the applied time series fed into the
control system of the generator. The waves are generated by the oscillations
of the piston and the introduced frequencies are preserved along the flume.

2. The measured time series of surface elevations were decomposed by a Kal-
man filter into two components. The first order component corresponded to
the neighbourhood of the dominant frequency and the second order com-
ponent to its double value. The first order component in a complex number
description leads to a simple expression for the envelope as its absolute
value.

3. The non-linear Schrodinger differential equation is a useful tool to study
the unstable motion of deep water waves when we are mainly interested in
amplitudes. The equation is non-linear, but the non-linear term is a simple
algebraic one.

4. It’s solution essentially corresponds to the first order approximation of
a Stokes type wave. Thus in comparisons with experimental data the terms
corresponding to the second and third order approximations have to be
disregarded.

5. For the Stokes wave the second order term corresponds to the square of the
first order term and the third order term to the third power and multiplied
by the corresponding coefficients given in the standard formula. A similar
formula may be established for Stokes waves with superimposed, small amp-
litude modifications to estimate the influences.

6. For measured data that look almost like periodic solitons the closed form
solution of the non-linear Schrodinger differential equation for a periodic
soliton may be used to explain the behaviour in a short space and time
interval. This solution is very sensitive to the values of the parameters.
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7. The dissipation of energy in the progressing wave along the length of the
flume is not negligible. In the presented analysis it was taken into account by
introduction of experimental values of amplitudes into the considerations.
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