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Abstract

A new model for water treatment and waste disposal reactors was developed. The
startpoint to this model is a “triangular” approximation in the shape of the real
flow-through curve. This approximation is defined by some characteristic points of
time, which are strongly related to the characteristic velocities of waste water. Com-
bination of this simplified function with the kinetic equation of the reaction of the 1st
order yields the sequence of the governing equations. Three practical examples show
that the proposed “rational” model gives much better results than the traditional
plug-flow model.
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Notation

The following symbols are used in this paper:

B — width of reactor,

¢ - concentration,

¢n — modal concentration,

D, — effective coefficient of mass transport (diffusive or dispersive),
f- — extrinsic distribution of detention time,

H - reactor depth,
k — reaction rate constant,
L - reactor length,
L, — distance between inlet and outlet of reactor,
My - initial mass of pollutant,
. — mass of pollutant removed in reactor,
n — direction normal to the outlet,
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Q - discharge of fluid,

r — degree of pollutant removal (reactor efficiency),
rer — total efficiency of reactor,

r, — expected (necessary) degree of removal,
t — time,

ty — real detention time,

t,, — modal detention time,

t, — frontal time,

tps — mean detention time,

tr, — time of necessary pollutant removal,

v — mean velocity of fluid,

vg — mean velocity of inflowing stream,

V' — reactor volume,

Z - source function.

Additional subscripts:

Q
|

value determined for approximated (“triangular”) distribution,

v
[

experimental value,
index of the considered substance,

~.
|

— identifier of mass element,

— terminal value,

— organic matter,

— value determined for ideal-mixing model,
nitrogen compounds,

— initial value,

— value determined for rational model,

— suspension,

Nw xS zI ~A
|

— value determined for plug-flow model.

1. Introduction

The present condition of the human environment, is a factor which places high
demands on sanitary engineers’ efforts. Seriously polluted natural resources of
drinking water deliver increasingly worse raw material to the water treatment
plants. At the same time, increasingly severe ecological legal requirements force
the continuous improvement of the waste disposal methods.

In consequence, one can state that the discussion and improving of the exist-
ing design tools is a dictate of both theory and practice. The more so, that the
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existing methods are very far from being perfect. There are two main kinds of
such methods — “algebraic” and “differential”.

The design methods of the first kind, presented in the bibliography and applied
by engineers, are almost entirely founded upon the plug-flow model (Chapra
1998). The essence of this concept is the statement that each mass element passes
through a reactor during the time, equal to the mean detention time:

ts = V/0, 1)

and that this value must be identical with the time of necessary removal of pol-
lutants:

tps = tn. (2)

The time ¢, can be evaluated experimentally (in a laboratory or using
a semi-technical installation) or determined on the basis of practical recommend-
ations (e.g. Design ...1992).

Another model of this kind is based on the assumption that the content of
the reactor is ideally (or fully) mixed. In other words, the concentrations of the
waste-water components are the same for the whole reactor and depend on time
only.

The second analysed category includes those models, which are based on the
equation of the dissolved mass conservation. In the general case this equation has
the following form:

% = % + (ugrad) ¢ = div (D, grad¢) + Z. (3)

In contradistinction to the “algebraic” methods, which were mentioned above,
there exists a significant number of particular “differential” models (Sawicki 2002a,
2003). However, each model of this kind, when applied to the flow through a re-
actor, is charged by two important sources of faults.

The Eq. (3) in the considered class of problems (i.e. flows through reactors)
can be supplemented by the Dirichlet boundary condition for the inlet (x = 0),
but it would not be possible for the outlet (x = L). Such conditions, which can be
written as follows:

c0,t)=co(t), c(L,t) =ck (1), 4)

would be very attractive from the mathematical point of view, but in the outlet it
is just the information in demand. So, the simplified Neumann condition:

ac
— =0, 5
o &)
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is most commonly used in practice. In consequence, the solution to the governing
differential equations, which fulfils the relation (5), introduces a considerable error
to the final result. The absolute value of this error can reach even 10% (Sawicki
and Zima 1995, Zima 2000).

The second source of the error brings the choice of the turbulence model. One
can match such a model with quite a high accuracy for almost each individual case.
However, the error created by this model during the technological forecasting for
new states of the analysed system, cannot be determined exactly.

Finally, the third factor — which must be mentioned — is an economical aspect.
The calculations with the use of differential models are rather expensive and
time-consuming. Especially when a more complex, three-dimensional model is
applied (Olsen and Skoglund 1994). For this reason, some authors try to apply
some simplified differential relations (e.g. Makinia and Wells 2000). Such relations
can be easily solved, but the errors, discussed above, are especially high in these
cases.

Concluding, one can state that the models based on the CFD methods are
surely a very powerful and important tool for engineers. They should be applied
especially when complex and difficult tasks are considered. However, this kind of
mathematical description of the problem cannot be accepted as a typical, basic
tool in every-day engineering practice. So, it would be very reasonable to look for
some compromising method — simple in form (algebraic if possible), but reach in
content (at least, giving better results, than the traditional plug-flow model). Such
a simplified method is presented in this paper.

2. Functional Characteristics of the Reactor
2.1. Kinetics of the Process

One of the basic parameters is a function describing the temporal course of re-
moval of each substance. For the sanitary engineering problems one can usually
assume, that the considered process can be described by the model of the reaction
of the first order, when the following equation is valid:

dc;
d_tl = —kc;, ¢; (t =0) = cjo, (6)
whence the degree of pollutant removal equals (Sawicki 2002a):
AU
r)=1-9YD 1 _exp k). )
i0

An example of the function r (¢) is shown in Fig. 1a.

For simple cases, this relation can be determined theoretically (the reaction
velocity constant k& can be taken from the bibliography). However, for special cases
the function r () must be evaluated experimentally.
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Fig. 1. Qualitative characteristics of the reactor (a — kinetics of the reaction, b — transformation of
mass in the reactor, ¢ — ideal-mixing reactor)

2.2. Flow Through the Reactor

The main physical quantity, which expresses the functional characteristics of each
reactor, is the real detention time #;;. This parameter is equal to the time in which
a mass element number “j” traverses this reactor.

Because of the unavoidable complexity of the velocity field inside each reactor,
this time differs for the different parts of the mass “slice”, which enters the reactor
at the same initial moment of time. Assuming that the concentration of a pollut-
ant in this initial “slice” equals cg, the temporal distribution of the mass in the
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outflowing stream is given by the function ¢, (¢), when a conservative compound
is considered, or by the function ¢ () for the degradable matter (Fig. 1b). In prac-
tice, the function ci; (t) is very often replaced by so-called extrinsic distribution
of detention time (Sawicki et al. 2003):

fz () = ciz (1) /M, (8)

where the auxiliary parameter:

M = /ckz () dt. )
0

For the plug-flow model, mentioned above, the detention time is identical
for each mass element (of the fluid and each component dispersed in this fluid,
especially — for the tracer, used for the experimental investigations of the reactor)
and equal to ,; (Eq. 2, Fig. 1b).

In the theory of reactors another simplified model of flow can be met, viz. the
reactor of the ideal mixing (and some combinations of these simple concepts), for
which the line ¢, (t) = ¢, (t) has a specific shape (Fig. 1c).

2.3. Efficiency of the Reactor

Dispersed substance (one or more) can be subject to some transformations inside
the reactor. If the kinetics of each reaction can be described by the function r (¢),
(Fig. 1a), the terminal concentration of the considered component is equal to:

k@) =cr: @ [1—7 @] (10)

The removed mass of this component can be calculated from the relation:

M, = /Ckz ) r @) Qdt, (1)
0

whereas the total efficiency of the reactor can be expressed as follows:

Vef = M, /My, (12)
where M), defined by the integral:

My = / cr: (t) Qdt, (13)
0
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can also be determined as the initial mass of the tracer, introduced into the
reactor. Introducing the extrinsic distribution of detention time (Eq. 8) we can
rewrite Eq. 12 as below (for Q = const):

Tef :/fz @) r () dt. (14)
0

These relations become more simple for the plug-flow model. The terminal
concentration is equal to:

¢ =co (1l —r,) = const (15)

and the total efficiency equals:
Teft =Tn. (16)

3. Practical Problems

As already mentioned, in technical practice, the plug-flow model is almost always
applied. The main cause of this situation is the high level of the formal simplicity
of this model. However, what results from the above discussion, real behaviour
of each reactor is much more complex.

The acceptability of each model of a reactor is determined by the level of con-
formity between two functions — real and calculated by the model distributions of
the terminal concentration of dispersed matter. Considering the plug-flow model
one has to state that these two functions differ very much (Fig. 1b). In con-
sequence, the real efficiency of the reactor (Eq. 14) apparently differs from the
value calculated for the plug-flow model.

Two examples of the real cases are shown in Figs. 2 and 3. The first one is
related to the technical scale and shows the characteristics of the activated-sludge
chamber (waste water discharge Q = 0.524 m?’/s, effective chamber volume
V = 4500 m3, length and width of the chamber L = 84.0 m, B = 15.5 m,
mean detention time ¢,; = 143 min) in Hillsboro (Oregon, USA, Makinia and
Wells 2000). The second case (Fig. 3) illustrates an experiment which was carried
out in a Hydraulic Laboratory of the Gdansk University of Technology (Sawicki
2002b). The goal of these measurements was to determine the transformation of
the conservative tracer (k = 0) through the reservoir. The shape of the investig-
ated object is shown in Fig. 4 and the results of 8 performed tests are presented
in Table 1. The symbol #,9, used there, denotes the time after which the terminal
concentration of the tracer (dissolved NaCl) reaches the value cx = 0.20 c,.

The analysis of lines, which are shown in Figs. 2 and 3, confirms the statement,
that the quality of the plug-flow model is very low.
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Fig. 2. Real distribution of the tracer concentration (Makinia and Wells 2000)
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Fig. 3. Laboratory distribution of the tracer concentration (Sawicki 2002b)

Table 1. Parameters of the laboratory experiment

h H 0 Vv P |t |t | tps
Test 3 3

[m] [m] | [dm’/s] | [dm?] | [s] | [s] [s] [s]
Al | 0.101 | 0.101 1.45 38.89 6.6 | 11.6 | 21.8 | 26.8
B1 0.041 | 0.106 1.45 40.81 58 | 109 | 19.6 | 28.1
A2 | 0.133 | 0.133 1.45 51.21 81 | 11.3 | 274 | 353
B2 | 0.088 | 0.153 1.45 58.91 7.6 | 11.2 | 244 | 40.6
A3 0.127 | 0.127 6.22 48.90 2.7 4.4 8.6 79
B3 | 0.086 | 0.151 6.22 58.14 2.4 5.0 9.7 93
A4 | 0.155 | 0.155 6.22 59.68 3.6 52 11.3 | 9.6
B4 | 0.099 | 0.164 6.22 63.14 3.0 5.1 12.3 | 10.2




Rational Determination of Dynamic Characteristics of Fluid-Flow Reactors 185

But on the other hand, as stated above, application of the real characteristics
of the reactor would be unrealistic, due to the mathematical difficulties. Even the
formulation of the problem is a very complex task. In consequence, everybody
must admit that an intermediate method — situated between the over-simplified
algebraic plug-flow concept and specialized differential equations — would be wel-
come.
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Fig. 4. Laboratory model

4. The Rational Model
4.1. Approximation of the Terminal Concentration Distribution

Our previous considerations can be reduced to the statement that the essential
question is a reasonable approximation of the real curve cg; (f). An important
difficulty is caused by the specific “tail”, which characterizes this curve and is a
consequence of the detention time elongation in the boundary layer and “dead
zones” of the reactor. However, taking into account the fact that this “tail” is
placed in the region of high intensity of removal of the dissolved matter as the
function r — 1 (Fig. 1a), we can attach less importance to the existence of this
segment of the line c; (¢).
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In effect, one can propose (arbitrarily and intuitively) the approximation of
the real diagram ci, (¢) by a triangle (Fig. 5). Without any doubt it is a much
better solution than the classical case, given by the plug-flow model.
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Fig. 5. General concept of the “triangular” approximation

In order to determine the position of this triangle, three characteristic points
of time must be found: initial ¢,, modal #,, (i.e. the time in which the outflowing
concentration has the maximum value) and terminal #. The maximal ordinate of
this triangle ¢,, (modal concentration) can be calculated using the condition of the
dissolved matter conservation, as the total mass of each component is expressed
by Eq. 13.

According to the requirement of the formal simplicity (which is a very im-
portant premise of this paper) these three characteristic points of time should be
related to other important parametres of the reactor. The initial time 7, can be
connected with the maximal characteristic velocity. The most convincing value of
this parameter is probably the mean velocity of the inflowing stream v, (channel or
pipe), as when this value is too large — one can observe “a hydraulic short-circuit”
in a reactor. Dividing the distance L,, by the velocity v; one obtains:

ty = Ly /va, (17)

(very often the distance between the inlet and outlet of the reactor L,, is identical
with L). After that period of time the fluid begins to leave the reservoir.

In order to evaluate the modal time ¢,, one should define some intermediate
characteristic velocity of the fluid. It cannot be identified with the mean velocity
in the reactor:

v=0Q/(BH), (18)

as in this case Eq. 1 would be obtained, which gives too high a value of the
mean time of flow (as was already discussed). However, analysing the results of
measurements presented above (Figs. 2 and 3, Table 2) one can note that the time
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tps is approximately twice as long as the modal value #,,. This statement can, to
some degree, be related to the fact, that the maximal value of the real velocity
profile is considerably greater than the averaged value of this profile (for the
laminar flow — two times). Thus it is logical to accept the following evaluation:

tm =ty /2 = V)20 = L/2v. (19)

Table 2. Comparison of calculated and measured parameters of flow

ex
vq tp P 1o

sl | 1 | B [ Al ] B | 61 | B | 5]
Al 0.10 10.0 6.6 0.04 | 134 | 11.6 | 26.8 | 21.8
B1 0.24 4.2 5.8 0.04 | 14.1 | 10.9 | 28.1 | 19.6
A2 0.08 12.5 8.1 0.03 17.6 | 11.3 | 353 | 274
B2 0.11 9.1 7.6 0.02 | 203 | 11.2 | 40.6 | 24.4
A3 0.34 2.9 2.7 0.13 4.0 4.4 7.9 8.6
B3 0.50 2.0 2.4 0.11 4.7 5.0 9.3 9.7
A4 0.28 3.6 3.6 0.10 4.8 52 9.6 | 11.3
B4 0.43 2.3 3.0 0.10 5.1 5.1 | 10.2 | 12.3

t]c]alc v trcnalc lﬁfp t]galc

Test

Finally, we have to determine the third characteristic point of time, namely #.
The repeated analysis of the experimental data leads to the conclusion that the
most convenient solution would be the following:

=ty =V/Q. (20)
a) b)
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Fig. 6. Examples of the “triangular” approximation (a — real reactor, b — laboratory model)

The method of practical application of the function ¢k, by a triangular distri-
bution, introduced above, is certainly not delightful, but surely shows much better
conformity with the real situation than the plug-flow model (Fig. 6, Table 2), both
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for the laboratory model and for the technical object (width and depth of the inlet
channel of the bioreactor at the Rock Creek WWTP were equal to B = 2.00 m
and H = 0.50 m respectively, which for Q = 0.525 m3/s and L= 84.00 m gives
t, = 160 s).

4.2. Efficiency of the Reactor

Now we can calculate the total efficiency of the reactor. Let us assume that the
intensity of removal of the considered dissolved component is described by Eq.
7. Substituting ¢, (f) according to the “triangular scheme” in place of the real
function ¢, (t) in Eq. 11 and making use of Eq. 7 one can analytically calculate
the proper integral, separately for the “ascending” (mass M,,) and “descending”
(mass M,4) parts of this triangle. According to definition (11) we have:

tm

M,y = / ca () 7 () Qdt, (21)
Ip
173

Mrd:/Cd (t)r () Qdt. (22)
tm

Making use of the evident geometrical relations (Fig. 5), one can write:

Cm
Cqt)y="—"—(t—1tp), (23)
(tm _ tp) ( P)
Cm
cat) = — 5 t=0. (24)

Substituting these formulae into Eqgs. 21 and 22, and expressing r (¢) according
to Eq. 7, one obtains:

tm—t,  exp(—kty)  exp(—ktn)  exp(—ktp)
M,, = — , 25
¢ ch[ 2 " k K2 (tm —tp) K2 (tm — 1p) )
ty —tm exp(—kt,) exp(—kty) exp(—kty)
M,y = - - - . 26
i=en0]™5 £ Rl Rt 20
Efficiency of the reactor (12) in this case can be expressed as follows:
M,, + M,
Fof = ’“To’d (27)

The initial mass My for the triangular distribution is equal to:
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My =0.50c, (tx —1p) . (28)

After some rearranging, we finally obtain:

ref Xty =
-1 3 cXp (_ktl’) exp (—kiy) _ exp (—kt;,) (29)
R (tm—tp) (k=) k—tm) (k—1p) ko — L) (6 — 1)

4.3. Ideal-Mixing Model

It is evident (see Fig. 1c) that the ideal-mixing model can be considered as a
special case of the rational model proposed above, when:

and #; is expressed by Eq. 20. Such an attitude affords the possibility of estimating
the assumption concerning ideal mixing. On the one hand Eqgs. 30 are very simple
in form (advantage), but the results given by this model differ very much from
the real terminal distribution of the dissolved mass concentration (defect).

An analysis of this case leads also to the conclusion, that the evaluation of
the frontal time (Eq. 17) can be generalized in order to include the case, when
the reactor is provided with some mixing installations (e.g. aerators). Existence of
such mechanical devices practically destroys the individuality of the inlet stream.
In consequence we have to replace the velocity v; in Eq. 17 by another value vy,
characteristic of the local flow, induced by this mixing device, which yields:

ty =tm = Ly/Um. (31)

This question should be analysed separately. In the extreme case we can have
vm — 00, which leads to the traditional version of the ideal-mixing model (Eq. 30).

5. Dispersive Model

Also, the dispersive model can be compared with the rational one. In general
this first belongs to the higher class, as it is based on the analysis of the intrinsic
structure of the fluid velocity (although to a limited degree, as such a model does
not contain the full 3D velocity field, but only its mean value, averaged with respect
to the stream cross-section). Applying the dispersive model one can obtain the
function cg; (¢) for a conservative substance, or the function ¢ (¢) for degradable
compounds (Fig. 1b).
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However, the dispersive model contains two important faults. First, such
a model can be used only when the length of the stream exceeds some critical
value (Fisher et al. 1979). In the case of reactors, especially when the flow direc-
tion changes in several places of the chamber, this condition can be not fulfilled.
Secondly, the accuracy of this model depends greatly on the proper determination
of the coefficient of dispersion, which is determined by the individual features of
the considered system.

Thus, the dispersive model (e.g. Makinia and Wells 2000) is a separate pos-
sibility, different from the suggestion presented above.

6. Practical Verification of the Rational Model
6.1. General Remarks

The essence of the proposed method is expressed by Eq. 29, which describes
the total efficiency of the reactor. First of all, this method should be applied
by engineers, designing new or improving the existing objects. The calculation
procedure depends on which parameters and variables are known or given, and
which must be found.

The presented version of the rational method refers to those transformations
and reactions, which can be described by the 1st order model (Eq. 6). One can have
some reservations concerning the acceptability of this model. However, in practice,
this attitude is very popular (e.g. Chapra 1998) and moreover — if necessary, Eq. 6
can easily be replaced by a more complex relation, expressing a reaction of the
higher order.

In order to verify the rational model, an analysis of the reaction-velocity con-
stant was performed. For three real cases this parameter was determined experi-
mentally and theoretically, by means of the traditional Eq. 7 and using the rational
method (Eq. 29).

6.2. Sedimentation

Analysing the experimental data (e.g. Imhoff and Imhoff 1979) one can state that
the sedimentation of particles suspended in waste water can be quantitatively
expressed in compact form by an equation of the 1st order reaction. The process
rate constant equals:

ksp =118 d7L. (32)

As an example let us consider the rectangular secondary settling tank at the
Tezew WWTP (Poland), for which we have:
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Q = 3600 m¥d, V =250m3, L=L, = 460 m, B =134 m, H = 42 m,
v = 64.0 m/d, vy = 8955 m/d, t,; = 0.72 d, ¢, = 0.05d, t,, = 0.36 d, cs, =
619 g/m3, cgr = 21 g/m3, rg = 96.6%.

Making use of Eq. 7 for ¢t =1,; we obtain:

ks =4.7 d-! < ksg, (33)
whereas according to the rational method (Eq. 29) the sedimentation rate is equal
to:

ksgp =123 d~! ~ kgp. (34)

6.3. Organic Matter Biodegradation

The biodegradation rate for the organic substances contained in waste water
strongly depends on the technological characteristics of each individual process
of purification. Let us, for instance, analyse the situation at the Gdynia WWTP
(Poland), where:
Q = 14150 m*/d, V = 12000 m*, L=L,, = 192.0 m, B = 125 m, H = 5.0 m,
v = 226.4 m/d, vy = 28165 m/d, t,; = 0.848 d, t, = 0.007 d, t,, = 0.424 d, initial
and terminal BODs— c;g = 330.0 g/m3, crr = 3.45 g/m3, rr. = 98.96%.

A laboratory test (Geneja 1992) for such a kind of process gave the following
experimental value:

kpp=19.7d71 (35)
For the plug-flow model (Eq. 7) we have:

kpr =538 d7! < kg, (36)
while Eq. 29 yields:

kigr=183d '~ k. (37)

6.4. Denitrification of Waste Water

Elimination of the nitrogen compounds from the waste water is a complex com-
bination of several unit processes. However, even in this case, it is possible to
apply the 1st order reaction model (at least as a first approximation — see Chapra
1998). For the Gdynia WWTP (which has been described above) the empirical
effective denitrification rate equals (Mathematical ... 1978):

kg =334 d7 1. (38)
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initial total nitrogen content - cno = 80.67 g/m3;
terminal total nitrogen content - oy = 1722 g/m3 ;
reduction of nitrogen compounds - ry = 78.65%.

At present the denitrification process at the Gdynia WWTP is characterized
by the following parameters:
According to our procedure:

kyr =1.82 d7! < kyg, (39)

and:
knr =3.74 d'~ knE. (40)

7. Conclusions

The method proposed in this paper is based on an approximated “triangular”
distribution of the terminal concentration of a substance (pollutant or admixture)
dissolved in waste water flowing through a reactor. Combination of this simplified
function with the equation of the kinetics of the reaction of the 1st order yields
a sequence of mathematical equations which express the interrelations among the
characteristic parameters of this reactor. Especially important is Eq. 29, describing
the total effectivity of the system under consideration.
The rational model surely proves three important advantages:

1) the “triangular” approximation of the terminal concentration is more logical
and correct from the mathematical point of view than the oversimplified
distribution, resulting from the plug-flow model;

2) the governing mathematical relations of this new model (although not as
simple as traditional) still have an algebraic form and can easily be applied
in practice;

3) the reaction-velocity constants, determined for practical situations (sedi-
mentation, biodegradation and denitrification) at the Gdynia WWTP and
Tezew WWTP by means of the rational model (Eqs. 34, 37 and 40) are
much closer to the proper experimental values (Eqgs. 32, 35 and 38) than
the respective parameters, obtained by means of the plug-flow model (Egs.
33, 36 and 39).

The final verification of the rational model requires more practical data. How-
ever, even now, one can state that this model can be an attractive offer for sanitary
and environmental engineers.
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