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Abstract

The paper describes the problem of discrete formulation of plane fluid flows in ma-
terial description. The investigation is confined to chosen cases of stationary potential
and vortex motion of an incompressible inviscid fluid within circular domains with
perfect boundaries. The paths of fluid particles are obtained by numerical integration
of momentum equations within a discrete time space. Brownian type random disturb-
ances are attached to the displacement field obtained by the integration. It has been
shown, that the discrete formulation may lead to solutions in which a small distance
between two material points may grow to a relatively large value after a finite elapse
of time. The last feature of the procedure may be a serious drawback of the discrete
formulation in the material variables.
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1. Introduction

The theory of water flows is based on the fundamental assumption that the fluid
is a continuous medium. This means that the space (three dimensional Euclidean
space) is occupied by continuously distributed fluid particles i.e. we have space
points with attached mass of fluid. Accordingly, all parameters associated with
fluid motion are continuous functions, to the desired order, in a mathematical
sense, and thus, the functions can be expanded into Taylor series with respect to
any surroundings of a given point. In particular, within the surrounds of the point,
an infinite number of material points exists. The governing equations of fluid dy-
namics expressing the conservation of mass and momentum, as well as the balance
of energy, assume the form of partial differential equations for the unknown fields
of velocity and pressure depending on the space, or material, variables and time.
In describing the problem of water waves, it is more common to use the space
variables, but in some cases it is more convenient to apply the material ones.
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For example, the latter description is simpler in solving boundary conditions es-
pecially on moving boundaries of the fluid domain. Both descriptions are equally
admissible and should lead to the same results. In order to describe a state of
the fluid we have to find a solution to the aforementioned differential equations
satisfying given boundary and initial conditions. In principle, for a well posed
problem, a solution to the equations exists (Pogorzelski 1962). When applying
the material description we follow individual particles of fluid and thus, the prob-
lem of a surrounding of a given material point is of practical importance. The
latter problem closely relates to the Reynolds experiments (Troskolański 1962,
Sawicki 1998), which have shown, that laminar flow of fluid may exist only for
small Reynolds numbers. With growing values of the numbers a phenomenon of
turbulent motion of the fluid occurs, for which, the fundamental assumption on
surroundings of a point in the material description does not hold. Such a situ-
ation is similar to mixing motion of a granular medium, where we cannot speak
on a surrounding of a given material point in the mathematical sense. The last
feature is especially important in discrete descriptions of the phenomenon, when
we follow chosen particles representing the whole fluid domain. With the discrete
approach, a path of a chosen particle is calculated approximately at chosen in-
stants of time and therefore for a finite elapse of time the particle may jump from
one path to another. Such a situation may happen especially in the vicinity of
singular points where a concentration of the fluid paths may be observed. Since
a general solution of the equations of fluid motion is not known, in order to get
a solution of a given problem we are forced to resort to certain approximation of
the equations. Such a procedure is frequently justified and enables us to obtain
solutions of acceptable accuracy. For example, in order to simplify the equations
for water waves, an assumption that the velocity field is a potential field, is fre-
quently introduced into descriptions of the wave phenomenon. Another way is to
resort to discrete formulations of the original task formulated in continuum. In
the discrete formulations we operate with small, but finite, increments of space
variables and time and thus the notion of the fluid continuity is lost. Moreover,
with the discrete approach we have a finite dynamical system for which a determ-
inistic chaos may occur (Baker and Gollub 1998, Schuster 1993). In the latter case
we cannot predict the future state of the fluid. As far as the discrete formulations
are concerned, the finite difference method is of practical importance. With this
method the derivatives entering the fundamental equations of the problem con-
sidered are substituted by finite difference quotients. In this way the differential
equations for continuum are substituted by a system of algebraic equations writ-
ten for a set of chosen discrete points. Such a procedure is not unique because
one can choose different schemes for a derivative at hand (Szymkiewicz 2000).
In particular, with the discrete formulation, we cannot speak on a surrounding
of a given material point, however we can describe the distance between chosen
points. The accuracy of the discrete approximation of the differential equations
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depends on many factors. For instance, the first finite difference may be close to
the first differential in a continuum, but with growing order of differentiation, the
discrepancy between the two formulations will increase. At the same time, when
paths of fluid particles calculated in a continuum are very close to each other in
a certain area of the fluid, the discrete formulation may lead to an uncontrolled
change of paths of the fluid particles.

In the present paper a discrete description of the fluid flow in material vari-
ables is considered. We focus our attention on the problem of accuracy of the
discrete calculation of the fluid paths within a finite range of time. In order to
estimate a possible departure of the discrete solution from an analytical one,
Brownian type disturbances are added to the displacement field of the fluid. In
this way the state of the fluid influences the final departure of individual particles.
In what follows we confine our attention to plane problems of steady fluid flows in
bounded domains on the assumption that the gravitational acceleration is perpen-
dicular to the plane. Two examples of the fluid motion are examined in detail. The
first one is a potential velocity field within a plane ring. The second one is a ro-
tational motion of the fluid in a circular domain. For the assumed velocity fields
satisfying given boundary conditions the Brownian type motion of chosen particles
is considered. In calculations of the discrete paths of individual particles a finite
number of fluid particles is assumed to be dropped into the fluid at a chosen
point. In this way, a sequence of individual drops with equal time elapse between
the subsequent drops is formed. The fluid drops are assumed to have the same
velocity as the fluid passing through the space point.

2. Steady Velocity Fields in Circular Domains

Let us consider a plane problem of fluid flow in circular regions as shown in
Fig. 1. With respect to the shape of the regions it is convenient to introduce
the polar system of coordinates r and '. In the first case (Fig. 1a) we have the
circular ring r0 � r � R, 0 � ' � 2³ , and in the second one (Fig. 1b) the circular
region 0 � r � R, 0 � ' � 2³ is considered. In accordance with the Cartesian
(x D X1; y D X2/, and polar (r; '/, systems of coordinates, the velocity vector is
written in the form

ÐEr D Ev D PxEi C PyEj D XiEei D Pr Eer C r P'Ee'; (1)

where Eer D @Er
@r

, rEe' D @Er
@'

and
þ

þEer

þ

þ D
þ

þEe'

þ

þ D 1.

For the case of potential motion, with the velocity potential �.r; '/, the fol-
lowing relations hold

*
v D grad � D vr Eer C v'Ee' D @�
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Fig. 1. Circular regions of fluids

At the same time the Laplace equation for the velocity potential assumes the
form

r2� D �;r r C 1

r
�;r C 1

r 2
�;'' D 0: (3)

Let us consider now the case of potential flow within the ring shown in Fig. 1a.
To make the discussion clear we confine our attention to the following velocity
potential

� D d' C const; (4)

where d is a constant.

The relevant velocity components are

vr D @�

@r
D 0; v' D 1

r

@�

@'
D d

r
: (5)

It is seen that the chosen velocity field does not depend directly on time. From
the relations (1) and (5) it follows

Pr D 0; ! r D const D rs ;

P' D d

r 2
; ! ' D d

r 2
s

t C 's :
(6)

The equations describe a set of circles defined by the parameter rs . From the
second equation in (6) the period for a given particle is obtained

T D 2³ r 2
s

d
: (7)
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As the second case, let us consider the rotational flow within the circle
(Fig. 1b), described by the assumed velocity field (Szmidt 2001)

Pr D dr sin
r³

R
sin 2';

P' D d
h

2 sin
r³

R
C r³

R
cos

r³

R

i

cos2 ':

(8)

One can check, that the velocity field (8) satisfies the incompressibility condi-
tion div Ev D 0. With respect to the Cartesian system of coordinates, the relevant
components ( Px ; Py/ of the velocity vector (1) read

Px D Pr cos ' � r sin ' P';

Py D Pr sin ' C r cos ' P':
(9)

The equations can be transformed into the following form

vx D dx

dt
D Pr x

r
� y P';

vy D dy

dt
D Pr y

r
C x P':

(10)

Integration of the velocity field in the time domain leads to the components of
the displacement vector. In the case of discrete time step 1t > 0, the displacement
may be described by means of the difference equation

1X D X.t C 1t/ � X.t/ D Ev1t; (11)

where XT D .x ; y/ is the matrix containing the Cartesian coordinates of a given
material point.

With respect to the notations (10) the last equation gives

xnC1 D xn C
� Pr x

r
� y P'

�

1t;

ynC1 D yn C
� Pr y

r
C x P'

�

1t:

(12)

where the superscript n means the level of time (tn D n1t/ and r D
p

x2 C y2.
A random displacement of an individual fluid particle may be described by an

equation similar to equation (12), namely

1X D X.t C 1t/ � X.t/ D Ev.X; t/1t C ¦ .X; t/
p

1tU.t C 1t/; (13)

where ¦ is a diagonal matrix of positive numbers and U.t C 1t/ describes the
vector of independent random variables having the normal distribution N.0; 1/.

The difference equation corresponds to Itô stochastic differential equation
(Jaźwiński 1970, Wilde and Paczos 1988)
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dX D v.x; t/dt C ¦ .x; t/dB; (14)

which describes the difference of a displacement field with random disturbances.
In the equation, the dB term means the differential of the Brownian motion

process in the Itô sense (the Brownian motion process is not differentiable in
a conventional sense).

For the isotropic cases considered in this paper the diagonal of the matrix ¦ in
(13) is a constant. Because of the random term U.t C 1t/ on the right hand side
of the equation, numerical computations for a set of individual particles provide
a family of realizations of the stochastic process describing the motion of the
particles. With respect to the above, the path of a given particle is described by
the difference formulae

xnC1 D xn C
� Pr x

r
� y P'

�n

1t C ¦
p

1tU1.n C 1/;

ynC1 D yn C
� Pr y

r
C x P'

�n

1t C ¦
p

1tU2.n C 1/;

(15)

where ¦
p

1t denotes the standard deviation, and U1.n C 1/ and U2.n C 1/ are
random sequences with the normal distribution N.0; 1/. In calculations of the de-
terministic terms entering the equations it is convenient to use the Runge-Kutta
methods (Björck, Dahlquist 1983). In such a case the discrete deterministic solu-
tion within the range (t; t C 1t/ is supplemented with the random impulse at-
tached to the solution at the time (t C 1t/.

3. Numerical Examples

In what follows we confine our attention to calculations of chosen fluid paths
in the finite regions of fluids shown in Fig. 1. As the first, let us consider the
potential motion of the fluid within the ring shown in Fig. 1a. It is assumed that
at the point P.x D x0; z D 0/ a sequence of fluid particles is dropped into the
fluid. The starting velocity of the particles is equal to the velocity of the fluid at
this point. Following the equations (15) the path of each particle is calculated as a
sequence of numbers for equal time steps. The procedure is repeated for a chosen
number of the particles. In the discussed case, the paths for N D 2000 particles
have been obtained. The positions of the particles at chosen moments of time
were calculated and kept in a computer memory. The results of computations
are shown in Fig. 2, where the pictures display the distribution of the particles
at chosen instants of time. The particles form a ring whose thickness depends
on the standard deviation of the random sequences. It may be seen that the
average path of the set is close to that obtained from deterministic equations
of motion. The second example shown in Fig. 3 is more complicated. First of
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all, the equations of the velocity field (10) describe the rotational motion for
which, in some regions of the fluid domain a concentrations of the fluid paths
occur. Therefore, in discrete integration of the equations of motion together with
the attached random disturbances, a given particle may jump from one path to
another. The result is a relatively large spread of the fluid particles within the
fluid area. As compared with the previous, potential motion, a departure of the
particles from their average path is of course greater. The last feature is a serious
drawback in the discrete description of the problem formulated in the material
variables.

Fig. 2. Potential motion of fluid within a circular ring: deterministic path of chosen particles (a),
and random distribution of particles at t D 60 s (b), t D 120 s (c) and t D 200 s (d)
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Fig. 3. Vortex motion of fluid within a circular domain: deterministic path of chosen particles (a),
and random distribution of particles at t D 60 s (b), t D 120 s (c) and t D 200 s (d)

4. Concluding Remarks

In the above, we have obtained numerical solutions to the plane problems of
potential and vortex motions of a perfect fluid in bounded domains. The invest-
igations have been confined to chosen stationary velocity fields within circular
regions. The deterministic fluid paths were supplemented with random disturb-
ances attached to displacements of the fluid particles. In this way the distribution
of a set of individual particles at chosen moments in time has been obtained. The
distribution shows that a small distance between two particles at one moment
in time may grow to a relatively large value at another moment in time. Such
cases may occur especially in the vicinity of singular points where the fluid paths
are so close to each other that in the numerical integration a given particle may
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jump from one path to another. Such a phenomenon is a serious drawback of the
discrete formulation in the material variables. For instance, in the finite element
formulation with elements described by material nodal points, a large element
of distortion may occur which leads to large errors, or even to loss of the solu-
tion uniqueness. An example of the later phenomenon is a distortion of elements
describing the free surface of a gravitational wave with large steepness.
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