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Abstract

The paper concerns effective conductivity of a heterogeneous soil composed of two
materials characterized by different hydraulic conductivities. According to the homo-
genization theory the effective conductivity is obtained from the solution of an el-
liptic equation for a single representative elementary volume. A numerical algorithm
to solve this equation is described. Examples of calculations for periodic media with
inclusions of various shapes are presented. Influence of volumetric fraction, arrange-
ment, continuity and conductivity ratio of the two materials on the effective conduct-
ivity is investigated. Numerical results are compared with some analytical estimations
available in the literature.
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1. Introduction

Water flow in soils is commonly described by the following generalized equation,
holding for both saturated and unsaturated conditions (e.g. Bear 1972, Zaradny
1993):

.C .h/ C cs S/
@h

@t
� r Ð .K .h/ r .h C x3// D 0; (1)

where C.h/ is the specific moisture capacity, cs the specific storage coefficient, S

saturation of the water phase, K(h/ the hydraulic conductivity tensor, h the water
pressure head (also known as suction head or capillary head in the unsaturated
zone), x3 the vertical coordinate. In the saturated zone h > 0, C D 0, S D 1 and
K is independent of h. In unsaturated conditions h < 0, S < 1, the coefficients C

and K are nonlinear functions of h, and the term cs S is negligibly small compared
to C. Eq. (1) is valid on the assumption that the air phase filling pore space is at
constant atmospheric pressure.
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In practical applications one often has to deal with heterogeneous soils con-

taining shales, lenses or other inclusions, characterized by the hydraulic conductiv-

ity K2.h/ very different from the conductivity of the base material (matrix) K1.h/,

as shown in Fig. 1. If the modelled domain contains a large number of such in-

clusions, the local variability of K is difficult to account for in the solution of

Eq. (1). In such case it is convenient to describe the flow at macroscopic scale,

where the soil is considered to be homogeneous and characterized by effective

(macroscopic) capacity Ce f f .h/ and effective conductivity Ke f f .h/.

inclusions W2

conductivity K2

l

macroscopic scale local scale

L

REV (W)

matrix W1

conductivity K1

interface G

L >> l

Fig. 1. Observation scales in a heterogeneous soil

The macroscopic equations can be derived from the local-scale equations using

various mathematical techniques. One possible choice is the asymptotic homogen-

ization method (Bensoussan et al. 1978, Sanchez-Palencia 1980, Auriault 1991).

Application of this method to the problem of unsaturated flow in heterogeneous

soils is described in the papers by Lewandowska & Laurent (2001), Lewandowska

& Auriault (2004) and Lewandowska et al. (2004). These papers present mac-

roscopic equations and definitions of the effective conductivity Ke f f .h/ and the

effective capacity Ce f f .h/ for three different cases: (1) moderately heterogeneous

soil with local parameters of the same order, (2) soil with highly conductive inclu-

sions and (3) soil with weakly conductive inclusions. In each model the effective

conductivity coefficient is obtained from the solution of the local boundary value

problem for an elliptic equation in the domain of a single representative element-

ary volume (REV). The models were validated by comparison with the results

of “numerical experiments”, i.e. direct solution of the local scale equation in

heterogeneous domain (e.g. Lewandowska et al. 2004, Szymkiewicz 2004). Some

preliminary results concerning comparison with laboratory experiments are also

available (Lewandowska et al. 2005).
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Apart from the derivation of a complete macroscopic description, a large
amount of research has been focused solely on the estimation of the effective
conductivity Ke f f for heterogeneous media. From the point of view of the mac-
roscopic description, such information is sufficient for steady flow. An overview
of the methods employed to calculate the effective hydraulic conductivity (or
permeability) is presented in the papers by Wen & Gomez-Hernandez (1996)
and Renard & de Marsily (1997). The most popular approaches include direct
numerical solution of the flow equation in a REV domain (Harter & Knudby
2004), renormalization (King 1989) and self-consistent methods (Dagan 1989, Po-
ley 1988). One should note that the problem of calculating the effective transport
properties concerns all physical processes described by equations similar to Eq.
(1), e.g. thermal or electric conduction, diffusion, etc. – see for example, the works
of Markov (1999) or Berryman (1995).

This paper aims to present the numerical calculation of the effective conduct-
ivity according to the asymptotic homogenization theory. The numerical results
obtained for model soils of periodic structure with two- or three- dimensional
inclusions will be compared with some analytical estimations available in the lit-
erature.

The following notation will be used throughout the paper. The conductivities
of the two components are denoted by K1 and K2 (tensors) if the materials are
anisotropic or K1 and K2 (scalars) if they are isotropic. The effective conductivity

tensor is denoted by Ke f f and its elements by K
e f f
i j . If the effective conductivity

is isotropic it is denoted as scalar K e f f .

2. Analytical Estimations of the Effective Conductivity

Consider a heterogeneous soil composed of two isotropic materials with the con-
ductivity of K1 and K2, and volumetric fractions f1 and f2, respectively. For any
spatial arrangement of the materials the elements of the effective conductivity
tensor are bound in the following manner (e.g. Markov 1999):

�

f1 K�1
1 C f2 K�1

2

��1
D Kh � K

e f f
i j � Ka D f1 K1 C f2 K2: (2)

The bounds (2) are known as Wiener or Voigt-Reuss bounds. The upper and
lower bounds correspond respectively to the weighted arithmetic mean Ka and
weighted harmonic mean Kh of the components’ conductivities. These two means

are the exact values of K
e f f
i j in perfectly layered soil, respectively for flow in

the direction parallel (Ka/ or orthogonal (Kh/ to the layers. Thus, a layered

arrangement of components shows the largest anisotropy. In all other cases K
e f f
i j

is somewhere between the harmonic and arithmetic mean. Obviously, the larger
the difference between the components’ conductivities, the wider the range of the
admissible values of the effective conductivity.
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The effective conductivity of heterogeneous media is commonly estimated us-
ing the effective medium theory. It focuses on the analysis of the perturbation
of the potential field (pressure field in this case) caused by the presence of a
single inclusion of different conductivity in a homogeneous material. On this

basis, the effective conductivity for a material containing random dispersion of
inclusions is estimated. Different variants of the effective medium methods exist
(e.g. self-consistent or differential approach). Their application is described, for
example, in the contributions of Markov (1999), Dagan (1989), Giordano (2003),
Jones & Friedman (2000) or Fokker (2001).

One of the well-known results concerns macroscopically isotropic medium with
3D spherical or 2D circular inclusions. The effective conductivity is given by the
following formula (e.g. Markov 1999):

K e f f D K1
K2 C .D � 1/ K1 � .D � 1/ f2 .K2 � K1/

K2 C .D � 1/ K1 C f2 .K2 � K1/
; (3)

where indices 1 and 2 denote matrix and inclusion parameters respectively and
D is the number of dimensions (D = 2 or 3). Eq. (3) is known as Maxwell’s
formula for D = 3 or Raleigh’s formula for D = 2 (different names are also
used). Hashin & Shtrikman (1962) showed that, for a macroscopically isotropic
medium composed of two materials of the conductivity K1 and K2, arbitrarily
arranged in space, Eq. (3) provides the maximum value of K e f f when K1 > K2

and the minimum value of K e f f when K1 < K2. Thus, the values obtained from
Eq. (3) are known as Hashin-Shtrikman bounds. The other bounding value for
each case mentioned can be obtained by interchanging K1 with K2 and f1 with
f2 in Eq. (3).

The effective medium theory has also been applied to anisotropic media. The
effective conductivity coefficient for a medium containing a dispersion of uniformly
aligned ellipsoids is given by the following formula (Berryman 1995, Giordano
2003):

K
e f f
i i D K1 C f2 .K2 � K1/

h

1 C f1 pi .K2 � K1/ .K1/�1
i�1

; (4)

where pi is the depolarising factor in the direction i , assuming values from the
range h0; 1i, while p1 C p2 + p3 = 1. Note that in this case the effective conduct-
ivity is a diagonal tensor, the main anisotropy axes being parallel to the ellipsoids’
axes. The depolarising factors depend on the shape of the ellipsoid and are defined
by the following elliptic integral:

pi D
a1a2a3

2

Z C1

0

du
�

u C a2
i

Ð

q

�

u C a2
1

Ð �

u C a2
2

Ð �

u C a2
3

Ð

i D 1; 2; 3; (5)
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where a1, a2 and a3 denote the lengths of the ellipsoid axes parallel to the respect-

ive directions. The computation of the depolarising factors for various geometries

is presented in detail by Markov (1999) and Giordano (2003). For ellipses they
can be calculated from Eq. (5), assuming that a3 ! 1. In this case p1 + p2 =

1, while p3 = 0. For inclusions in the form of a circle (p1 D p2 D 1=2/ or sphere

(p1 D p2 D p3 D 1=3/ Eq. (4) reduces to Eq. (3). For inclusions in the form of lay-

ers orthogonal to p1 direction p1 D 1; p2 D p3 = 0 and Eq. (4) gives the harmonic
mean of K1 and K2. One should note, however, that for anisotropic ellipses and

ellipsoids Eq. (4) does not define bounds of the effective conductivity, contrary to

Eq. (3).

Both presented formulae have been derived for the assumption that the volu-
metric fraction of inclusions is small ( f2 − 1), and the interaction between inclu-

sions can be neglected. For larger volumetric fraction of inclusions one can use

Bruggemann’s formula in the following form (Berryman 1995, Giordano 2003):

f1 .K2 � K1/ .K1/�pi D
�

K2 � K
e f f
i i

� �

K
e f f
i i

��pi

: (6)

In this case K
e f f
i i is given implicitly and Eq. (6) has to be solved by a numerical

method.

3. Definition of the Effective Conductivity According to the

Homogenization Theory

Consider a soil composed of two materials (anisotropic in a general case) of the
conductivities K1 and K2 and the volumetric fractions f1 and f2. The soil has

periodic structure. The REV (representative elementary volume, equivalent to

period) is denoted by �, its parts occupied by the two materials by �1 and �2,

respectively, and the interface between them by 0. The dimension of the REV
is very small compared to the dimensions of the considered macroscopic domain

(Fig. 1), i.e. the following relation holds:

" D
l

L
− 1; (7)

where " is scale parameter, l is the REV dimension, L is the dimension of the

macroscopic domain. Eq. (1) represents a necessary condition for the existence
of a macroscopic model. According to the homogenization theory the effective

conductivity of such medium is defined as (Lewandowska & Laurent 2001):

Ke f f D
1

j�j

�Z

�1

�

K1r
�

�
I C y

��

d� C
Z

�2

�

K2r
�

�
II C y

��

d�

½

; (8)



116 A. Szymkiewicz

where j�j is the REV volume, y = [y1, y2, y3] is the local spatial coordinate
associated with the REV and the vector function � = [�1, �2, �3] is the solution
of the following equation:

r Ð K1 r
�

�
I C y

Ð

D 0 in �1; (9a)

r Ð K2 r
�

�
I I C y

Ð

D 0 in �2; (9b)

with � D �
I in �1 and � = �

I I in �2. At the interface 0 the function � and its
“flux” Kr .� C y/ are continuous:

�
I D �

I I on 0; (10)

K1 r
�

�
I C y

Ð

N D K2 r
�

�
I I C y

Ð

N on 0; (11)

where N is a unit vector normal to 0. The function � is y-periodic:

� .yi / D � .yi C li / ; (12)

where li is the REV dimension in the specific direction yi . For such boundary
problem an infinite number of solutions exists, which differ by a constant value.
In order to obtain a unique solution we assume that the average of function � in
� is equal to zero:

1

j�j

Z

�

� d� D 0: (13)

Equations (9a, b) with the conditions (10)–(13) are known as the local bound-
ary value problem. Its solution can be considered as equivalent to the solution of
steady flow equation in a single REV with unit pressure gradient in directions y1,
y2 and y3, respectively. In scalar notation one obtains three equations – one for
each component of �. If both materials are locally isotropic, the equations have
the following form:

@

@y1

�

K
@�1

@y1
C K

�

C
@

@y2

�

K
@�1

@y2

�

C
@

@y3

�

K
@�1

@y3

�

D 0; (14)

@

@y1

�

K
@�2

@y1

�

C
@

@y2

�

K
@�2

@y2
C K

�

C
@

@y3

�

K
@�2

@y3

�

D 0; (15)

@

@y1

�

K
@�3

@y1

�

C
@

@y2

�

K
@�3

@y2

�

C
@

@y3

�

K
@�3

@y3
C K

�

D 0; (16)

where K D K1, � D �
I in �1 and K D K2, � D �

I I in �2. In this case the elements
of the conductivity tensor:
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Ke f f D

2

6

6

6

6

4

K
e f f
11 K

e f f
12 K

e f f
13

K
e f f
21 K

e f f
22 K

e f f
23

K
e f f
31 K

e f f
32 K

e f f
33

3

7

7

7

7

5

; (17)

are defined in the following manner:

K
e f f
i j D

1

j�j

�Z

�1

�

K1
@�i

@y j
C K1

�

d� C
Z

�2

�

K2
@�i

@y j
C K2

�

d�

½

i D j; (18)

K
e f f
i j D

1

j�j

�Z

�1

�

K1
@�i

@y j

�

d� C
Z

�2

�

K2
@�i

@y j

�

d�

½

i 6D j: (19)

The effective conductivity is a function of the conductivities of both materials
and of the local geometry. The influence of the REV geometry is represented
by the function �. Note that for a perfectly layered soil analytical solution of the

problem (9)–(13) is possible, yielding K
e f f
i j equal to the arithmetic or harmonic

mean of the components’ conductivities, which coincides with Eq. (2).
The definition (8)–(13) was obtained under the assumption that the hydraulic

conductivities of the two materials K1 and K2 are of the same order (Lewandowska
& Laurent 2001). However, it can be shown that the definition has a more general
character and is applicable regardless of the local conductivity ratio (Szymkiewicz
2004). It is valid for soils with inclusions, as well as for soils composed of two
interconnected materials. Similar definitions of the effective conductivity were
proposed by other authors for single-phase and two-phase flow, using asymptotic
homogenization (e.g. Saez et al. 1989) or volume averaging (e.g. Quintard &
Whitaker 1988).

For flow in partially saturated conditions K1 and K2 as well as Ke f f are func-
tions of the pressure head h. A single point of the Ke f f .hi / function is obtained
assuming the same value of the pressure head hi in �1 and �2, and solving the
local boundary value problem (9)–(13) with K1 = K1.hi / and K2 = K2.hi /. Re-
peating this procedure for several values of hi one obtains the function Ke f f .h/

in tabularized form (Lewandowska & Laurent 2001).

4. Numerical Solution of the Local Boundary Value Problem

The results presented in this paper were obtained using a numerical code de-
veloped by the author, based on the finite volume method (FVM). FVM is relat-
ively simple in implementation and well suited for elliptic equations with discon-
tinuous coefficients (Crumpton et al. 1995).

The REV domain � is divided into M D M1 ð M2 ð M3 uniform cuboids (fi-
nite volumes or cells) of the dimensions 1y1 ð 1y2 ð 1y3 (Fig. 2). Each volume
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is characterized by a scalar hydraulic conductivity K1 or K2. The values of � are

sought for at the geometrical centres of the volumes. The solution procedure is
outlined on the example of Eq. (14) defining the component �1.

c1(i,j,k) c1(i+1,j,k)

c*Dy1

Dy3
Dy2

l1

l2

l3

i = 1 i = M1

j = M2

k = M3

j = 1
k = 1

K(i,j,k) K(i+1,j,k)

Fig. 2. Discretization of the REV domain for the solution of the local boundary value problem

According to the standard FVM procedure Eq. (14) can be written for each
finite volume in the following conservative form:

Z

V

.r Ð K r .�1 C y1// dV D
Z

S

.K r .�1 C y1// ndS D
X6

lD1
ql Al ; (20)

where K stands for either K1 or K2, V and S denote the volume and the external
surface of the cell, n is a unit vector normal to S, ql is the „flux” at each of the 6

sides of the cell, and Al the side’s surface. At the sides orthogonal to the y1 axis
q is equal to:

q D K
@�1

@y1
C K; (21)

while at the other sides:

q D K
@�1

@yi
; (22)

where i = 2 or 3. The fluxes ql are approximated using the continuity conditions

for the function �1 and its flux (10)–(11). For the flux q between the cells (i; j; k/

and (i + 1, j , k/ having (in a general case) different hydraulic conductivities K.i; j;k/

and K.iC1; j;k/ (Fig. 2) the continuity conditions yield:
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K.i; j;k/

�Ł � �1.iC1; j;k/

1
21y1

C K.i; j;k/ D q D K.iC1; j;k/

�1.iC1; j;k/ � �Ł

1
21y1

C K.iC1; j;k/; (23)

where �* is the value of �1 at the side’s centre. The formula for q resulting from
(23) is:

q D
2K.i; j;k/ K.iC1; j;k/

K.i; j;k/ C K.iC1; j;k/

�.iC1; j;k/ � �.i; j;k/

1y1
C

2K.i; j;k/ K.iC1; j;k/

K.i; j;k/ C K.iC1; j;k/

: (24)

As can be seen, the hydraulic conductivity at the cell’s side is equal to the
harmonic mean of the neighbouring cells’ conductivities. The fluxes at the other
sides of the cell are approximated in the same manner. For the cells adjacent to the
external boundary of the domain � one makes use of the periodicity conditions.
Consider, for example, the approximation of fluxes in y1 direction. The formula
analogous to Eq. (24) written for the external sides of boundary cells (1, j , k/ and
(M1, j , k/ would involve the values of �1.0; j;k/ and �1.M1C1; j;k/ corresponding to the
fictional cells adjacent to the boundary, but lying outside the solution domain. Due
to periodicity conditions these values can be replaced by their counterparts from
the opposite boundary: �1.0; j;k/ D �1.M1; j;k/ and �1.M1C1; j;k/ D �1.1; j;k/. Finally, in
order to obtain a unique solution of Eq. (14) (and to satisfy Eq. (13)) the value
�1 = 0 should be specified at a single point of the solution domain.

Spatial discretization of Eq. (14) performed in the manner presented above
leads to a system of linear algebraic equations with sparse and banded coefficient
matrix (the maximum number of non-zero elements in a single row is 5 for a 2D
problem and 7 for a 3D problem). The system is solved using the conjugated
gradient method (Björck & Dahlquist 1974). Having obtained the values of �1.i; j;k/

one can compute the integrals (18) and (19). The gradients of �1 appearing in
the integrals are approximated numerically according to Eqs. (21)–(24).

5. Examples

5.1. Local Geometry and Numerical Parameters

The calculations were performed for soils of periodic structure. The representat-
ive elementary volume (period) is a rectangle of dimensions l1 ð l2 or a cuboid of
dimensions l1 ð l2 ð l3. The soil is composed of the base material (matrix) with the
conductivity of K1 and embedded inclusions with the conductivity of K2 (both ma-
terials are locally isotropic). In three-dimensional case the inclusions have forms
of cuboids, ellipsoids and octahedra (bipyramids) (Fig. 3). Their 2D analogues are
rectangles, ellipses and rhombi. The inclusions are of uniform size and orientation,
their dimensions in the directions y1, y2 and y3 being denoted by a1, a2 and a3.
Two types of arrangements are studied (Fig. 3): simple arrangement (the centres
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of inclusions are placed in the corners of the REV) and centred arrangement (the

centres of inclusions are placed in the corners and in the centre of the REV).

The inclusions are allowed to overlap. Note that all geometries are symmetric

with respect to the coordinate axes (or planes). Thus, the effective conductivity

tensor has off-diagonal elements equal to zero. The effective conductivity does

not depend on the unit system, so in most of the examples dimensionless values

will be used.

a1

a2

a3

l3

l1

l2

simple arrangement centred arrangement

Fig. 3. Three-dimensional inclusion shapes (cuboids, ellipsoids and octahaedra) and arrangements
(simple and centred) used in numerical examples

In order to minimize the numerical error and investigate the convergence of

the solution, numerical tests were carried out for different mesh densities. The

tests showed that for the geometries considered in this study sufficient accuracy of

the solution is obtained with 40 cells in each direction – the results presented in

the following sections were obtained for such numerical mesh. Further increasing

of the number of cells does not significantly influence the solution (relative errors

below 3%).

A typical example of the solution of the local boundary value problem for

a two-dimensional case is presented in Fig. 4. The figure shows distributions of

�1.y1,y2/ and �2.y1,y2/ functions for weakly conductive rectangular inclusions in

centred arrangement (K2/K1 = 10�4/. The periodicity and anti-symmetry of both

functions are clearly visible. Minimum and maximum values occur in the vicinity

of the parts of inclusion – matrix interface which are orthogonal to the respective

flow direction (y1 or y2/.
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y1

y1

y2

y2

c2 (y1,y2)

c1 (y1,y2)

K1=1

K2=10-4

Fig. 4. Example of the distribution of �1 and �2 functions for a 2D geometry with weakly
conductive inclusions

5.2. Influence of the Local Conductivity Ratio

The influence of the components’ conductivity ratio on the effective conductiv-

ity of a heterogeneous soil is shown on two-dimensional examples. They concern

square inclusions in simple arrangement ( f2 = 0.49) and rectangular inclusions

in simple arrangement ( l1= l2 = 1, a1 = 0.9, a2 = 0.5, f2 = 0.45). The relation

between the effective conductivity and the inclusion conductivity K2 is shown in

Fig. 5. The values of both coefficients are calculated with respect to the matrix

conductivity K1. For rectangular inclusions both components of the effective con-

ductivity tensor are shown. The obtained functions have sigmoidal shape, reaching

constant values for large conductivity contrast. This means that for inclusions much

more or much less conductive than the matrix (K2/K1 < 10�3 or K2/K1 > 103/ the

effective conductivity becomes a linear function of the matrix conductivity. The

linear coefficient depends on the geometry of the medium. For smaller difference

of the components’ conductivities the effective conductivity depends on both K1

and K2. Similar results (not shown here) were obtained for three-dimensional

geometries.
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Fig. 5. Relation between the effective conductivity and the inclusion – matrix conductivity ratio
K2/K1 for 2D inclusions

In partially saturated conditions the conductivities of both materials and their

ratio are highly non-linear functions of the water pressure head h. Consequently,
the effective conductivity also depends on h. This relation is shown on the example

of a heterogeneous soil composed of loamy sand and silty clay. The calculations
were performed for a 2D isotropic geometry with square inclusions in simple

arrangement ( f2 = 0.49, a1/a2 D l1/l2 = 1, a1/l1 = 0.7). Parameters of the two
materials are taken after (Carsel & Parrish 1988). The conductivity curves K.h/

of sand and clay cross and the parameter ratio varies in a wide range (Fig. 6). The
effective conductivity function K e f f .h/ has been computed for two different cases:

loamy sand matrix with silty clay inclusions and silty clay matrix with loamy sand
inclusions. As one can see, the functions differ substantially from each other,

since the effective conductivity strongly depends on the continuity of the most
conductive material. Both effective curves have a characteristic shape – for each

one two segments can be distinguished corresponding to the zones where the
inclusion – matrix conductivity ratio is greater or less than one.

5.3. Influence of the Local Geometry – Isotropic Case

In this section the influence of the shape and volumetric fraction of inclusions on

the effective conductivity of an isotropic medium is investigated. The calculations
have been performed for 2D geometry (a1 D a2, l1 D l2/ and 3D geometry (a1 D
a2 D a3, l1 D l2 = l3/. The inclusions were either much more conductive or much
less conductive than the matrix (K2/K1 = 104 or K2/K1 = 10�4/. The volumetric

fraction of inclusions f2 ranged from 0 to 1, i.e. overlapping of inclusions was
allowed. The limit value of f2, for which the inclusions become connected depends

on their shape and arrangement (Tabl. 1). In the two-dimensional case when
the inclusions become connected the matrix loses its continuity, thus the two
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Fig. 6. Effective conductivity of an heterogeneous soil as a function of the capillary pressure head

materials interchange their roles. In the three-dimensional case the matrix keeps
its continuity even for overlapping inclusions. In this case the continuity of the

matrix is lost for f2 close or equal to 1 (minimum values are 0.83 for octahedra

in simple arrangement and 0.95 for ellipsoids in simple arrangement). For each

analyzed case the effective conductivity calculated from the formulae (2), (4) and
(6) are also shown.

Table 1. Limit value of the volumetric fraction of inclusions f2 for which the inclusions become

connected

Arrangement

Shape simple centered

rectangle 1 1=2

ellipse ³=4 ³=4

rhombus 1=2 1

cuboid 1 1=4

ellipsoid ³=6 ³
p

3=8

octahedron 1=6 1=3

For two-dimensional geometries (Fig. 7) K e f f calculated according to the ho-

mogenization theory are inside Wiener bounds (Eq. 2) and correspond to the

Hashin-Shtrikman bounds (Eq. 4) – upper bound for weakly conductive inclusions

and lower bound for highly conductive inclusions (note that for larger volumetric
fraction f2 inclusions and matrix interchange their roles). Bruggemann’s equation
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(6) gives values of K e f f smaller for weakly conductive inclusions and larger for

highly conductive inclusions, as compared to the values obtained by homogeniz-

ation. Thus, Eq. (4) seems to be a better approximation of effective conductivity

for 2D periodic and isotropic geometries than Eq. (6). For small volumetric frac-
tions of inclusions ( f2 < 0:3 or f2 > 0:8) Eqs. (4) and (5) give very similar values

of K e f f . The influence of shape and arrangement of inclusions on the effective

conductivity seems negligible. Note the symmetry of the K e f f . f2/ functions for

K2 > K1 and K2 < K1.

Fig. 7. Effective conductivity for 2D isotropic geometries as a function of volumetric fraction of
inclusions

In the three-dimensional case (Fig. 8) a similarity of the results obtained for
different shapes and arrangements of inclusions and calculated from Eq. (4) can

be observed when one of the materials is discontinuous. However, there is no

symmetry between the results for K2 > K1 and K2 < K1. This is due to the fact

that when both materials are continuous, the effective conductivity depends on

the conductivity of the most permeable material. When the highly conductive
inclusions become interconnected, the effective conductivity increases rapidly by

several orders of magnitude. On the other hand, when the weakly conductive

inclusions become interconnected, the effective conductivity does not change sig-

nificantly as long as the most permeable material keeps its continuity. However,

in such situation the values of K e f f are somewhat smaller compared to the values
obtained from Eq. (4). In this case Eq. (6) appears a better approximation, al-

though the influence of the shape and arrangement of inclusions is more visible.
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All values calculated according to the homogenization theory are inside Wiener
and Hashin-Shtrikman bounds. One can also notice, that for the same volumetric
fraction f2 the effective conductivity is greater for three-dimensional geometry,
than the two-dimensional one.

5.4. Influence of the Local Geometry – Anisotropic Case

A similar series of calculations has been performed for anisotropic geometries,
assuming a1=a2 D l1= l2 = 5 for the 2D case and a1=a3 D l1= l3 = 5, a2=a3 D l2= l3 =
2 for 3D case. The depolarising factors are p1 = 0.167, p2 = 0.833 for 2D geometry
and p1 = 0.090, p2 = 0.310, p3 = 0.600 for 3D geometry. The effective conductivity
is given by a diagonal tensor. The results for two-dimensional case are presented
in Figs. 9 and 10. The figures show the effective conductivity in the direction of the

longer and shorter axis of the inclusions, respectively. The values of K
e f f
11 for K2 >

K1 and the values of K
e f f
22 for K2 < K1 obtained from homogenization are strongly

dependent on the shape and arrangement of inclusions. The difference between
Eqs. (4) and (6) is also significant in those cases. In other cases the analytical and
numerical approximations are very close. Thus, the effective conductivity seems
to be strongly related to the geometrical parameters if the flow is parallel to
the longest axis of highly conductive inclusions or parallel to the shortest axis
of the weakly conductive inclusions. In both cases the transport properties of
the composed medium are determined by the distance between the inclusions,
measured along the longest axis. In the case of highly conductive inclusions it
represents the minimum thickness of the weakly permeable layer which slows
down the flow, while for weakly conductive inclusions it represents the maximum
size of highly conductive “gaps”, which enable faster flow. One can notice some

regularity of the results for different geometries. K
e f f
i i is closer to the matrix

conductivity for simple arrangement compared to the centred arrangement. For
each of the arrangements the values closest to the matrix conductivity correspond
to rectangular inclusions, while the values closest to the inclusions conductivity
correspond to rhombic inclusions. At the same volumetric fraction f2 rhombi have
the largest dimensions, while rectangles have the smallest dimensions. Similar to
the isotropic 2D geometries a symmetry between results for K2 > K1 and K2 < K1

is observed for anisotropic 2D geometries.
The results for three-dimensional geometries are presented in Figs. 11 and

12, showing the effective conductivity in y1 and y3 directions, respectively. One
can observe similar differences between different shapes and arrangements of
inclusions as for the two-dimensional case. However, the results for K2 > K1 and
K2 < K1 do not show symmetry, due to the continuity of the highly conductive
material (as in the 3D isotropic case).

Although the relations between K
e f f
i i and f2 described by the analytical formu-

lae (4) and (6) roughly correspond to the numerical results obtained for periodic
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Fig. 8. Effective conductivity for 3D isotropic geometries as a function of volumetric fraction of
inclusions

Fig. 9. Effective conductivity in y1 direction for 2D anisotropic geometries as a function of the
volumetric fraction of inclusions
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Fig. 10. Effective conductivity in y2 direction for 2D anisotropic geometries as a function of the
volumetric fraction of inclusions

Fig. 11. Effective conductivity in y1 direction for 3D anisotropic geometries as a function of the
volumetric fraction of inclusions
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Fig. 12. Effective conductivity in y3 direction for 3D anisotropic geometries as a function of the
volumetric fraction of inclusions

geometries, they do not fit exactly to any particular geometry in the anisotropic
case. In contrast to the isotropic case some values calculated numerically according
to the homogenization theory fall outside the range defined by Eq. (4), however
they always satisfy Wiener bounds given by Eq. (2).

6. Summary and Conclusions

Although the presented analysis is far from being exhaustive, it allows us to draw
some conclusions on the effective conductivity of heterogeneous soils with peri-
odically arranged inclusions:

ž When the inclusions are much more permeable or much less permeable
than the matrix, the effective conductivity becomes a linear function of the
matrix conductivity, independent of the conductivity of the inclusions.

ž For macroscopically isotropic media with disconnected inclusions the ef-
fective conductivity obtained for periodic geometries is very close to the
effective medium approximation (i.e. Hashin-Shtrikman bounds), regardless
of the shape and arrangement of the inclusions. It means that periodic and
random media are equivalent in this case.

ž In the case of anisotropic media the results obtained for periodic geomet-
ries show significant influence of the shape and arrangement of inclusions
on the effective conductivity in some directions. None of the considered
periodic geometries corresponds exactly to the effective medium approxim-
ations, although some qualitative similarity can be observed. Discrepancy of
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the results for periodic and random media is also reported by other authors
(e.g. Harter & Knudby 2004, Fokker 2001).

Finally, one should note that the presented approach to calculate the effective
conductivity based on the homogenization theory is not limited to the simple
periodic geometries considered in this paper. The method also allows investigation
of more complex cases, e.g. random distribution of conductivity or local anisotropy
of the components.
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