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Abstract

The paper deals with the theoretical investigation of the phenomenon, which consists
in generation – by wind – of the movement of water, the bodies of air and of water
being separated by a horizontal, plane interface, which is identical with the free
surface of water. A set of assumptions defining a physical model of the phenomenon,
borrowed from Lock (1951), is introduced, as well as the mathematical description
of this model. It reduces to a composite ordinary differential problem, containing
two non-linear equations of the third order, which have to satisfy some boundary
conditions.

A novel method of solution of the differential problem just mentioned is presented
in the paper. In the method use is made of exact formulae for coefficients of series
representing the solution. The method seems to be competitive with the one given in
the paper by Lock (1951).

Key words: interface, almost parallel streams of two fluids, boundary layers, or-
dinary differential equations, asymptotic and matching conditions.

1. Introduction

The composite differential problem mentioned in the former Section will be de-
rived, basing essentially on the paper by Lock (1951).

1.1. Fundamental Assumptions

The two fluids taken into account in the present considerations, are assumed as
incompressible, and viscous, both properties being constant:

²a D const; ¼a D const; ²w D const; ¼w D const: (1)

The symbols ² and ¼ stand for density, and dynamical viscosity, respectively Ana-
logically, the indices a and w refer to air and water.
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The domain of solution consists of a plane, wherein a rectangular system of
coordinates x , y is introduced, oriented with respect to the gravity field:

Eg D const; (2)

as shown in Fig. 1. Namely, the axes x , y are perpendicular, and parallel to Eg ,
respectively.

Fig. 1. Velocity distribution in vicinity of the interface between air and water

Furthermore, it is assumed that the x -axis separates the x , y plane into two
sub-domains:

y ½ 0; (3a)

y � 0; (3b)

each fluid occupying just one of the sub-domains. More exactly, air occupies the
“upper” sub-domain (3a), and water – the remaining one (3b). Consequently, no
waves appear on the interface, separating the fluids.

The problem to be investigated in the paper consists in determination of the
velocity fields in both sub-domains, the fields being defined by means of the rect-
angular velocity components:

ua D ua .x ; y/ ; va D va .x ; y/ ; (4a)

uw D uw .x ; y/ ; vw D vw .x ; y/ : (4b)

These components and their derivatives have to satisfy boundary conditions
of two kinds. Namely, the asymptotic conditions describe behaviour of fluids at
infinite distances of the interface:
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lim
y!C1

ua .x ; y/ D V1; lim
y!C1

va .x ; y / D 0; (5a)

lim
y!�1

uw .x ; y/ D 0; lim
y!�1

vw .x ; y/ D 0; (5b)

the symbol V1 being explained by means of Fig. 1. On the other hand, the con-
ditions of compatibility follow from the requirement that – on every point of the
interface – the velocity of both flows and the tangential stresses must be equal:

ua .x ; 0/ D uw .x ; 0/ D ur ; (5c)

¼a
@ua

@y

þ

þ

þ

þ

yD0

D ¼w

@uw

@y

þ

þ

þ

þ

yD0

; (5d)

the symbol ur denoting velocity at the interface; see the jump of the gradient of
the velocity component u in Fig. 1.

Finally, it is assumed, that flow of both fluids is governed by Navier-Stokes
equations.

1.2. Possibility of Application of Poiseuille’s Flows

One of the important results of Theoretical Fluid Mechanics, referred to as the
plane Poiseuille flow, should be recalled here. Its generalised form is shown in
Fig. 2, where the applied symbols are self-evident. It should be added, perhaps,
that the domain of solution is defined, as

0 � y � h; (6)

that the “walls” of such a domain, forming an infinite “channel”, are impermeable,
and all the streamlines are parallel to the x -axis. The velocity components of the
walls: U0, Uh are given, as is width h of the channel.

The flow is assumed to be steady and plane; moreover – it is governed by the
system of Navier-Stokes equations in the following form:

ux C vy D 0;

²
�

uux C vuy

Ð

D �px C ¼
�

ux x C uyy

Ð

;

²
�

uvx C vvy

Ð

D �py C ¼
�

vx x C vyy

Ð

;

9

=

;

(7a)

where the symbols

u; v; p; ²; ¼ (7b)

denote velocity components, pressure, density and viscosity, respectively.
The assumption concerning the velocity field:
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Fig. 2. Viscous, plane and steady flow between parallel “walls” moving with given velocities

v .x ; y/ D 0; (7c)

allows to obtain the solution in the form of exact formulae. Namely, by virtue of
(7c) the following results can be drawn:

u D u .y/ ; (8a)

p D p .x/ ; (8b)

px D ¼ uyy : (8c)

Next, substitution of the following conditions

p .0/ D p0; u .0/ D U0; u .h/ D Uh (8d)

into (7a), yields the well known exact solution:

p .x/ D p0 C K x ; (9a)

u .y/ D
1

¼

�

1

2
K y2 C C0y C C1

�

; (9b)

where the newly introduced constants have the following meaning:

C0 D ¼ .Uh � U0/
Ž

h � K h
Ž

2; (9c)

C1 D ¼ U0; (9d)

K D
dp

dx
D const: (9e)
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As already mentioned in this Section, the flow described by the formulae (9)
is usually referred to as the plane Poiseuille flow.

Now let us adopt this flow to the requirements posed by the composite phe-
nomenon presented in Fig. 1. Realisation of this idea is explained in Fig. 3, where
each of the combined flows is represented by the solution (9) with proper values
of the constants (9c)–(9e).

Fig. 3. On incompatibility of two Poiseuille flows with different viscosities

We have checked the idea on a number of examples, collected in an internal
report (Prosnak, Cześnik 2003). Unfortunately, the general conclusion turned out
to be negative. Namely, discontinuity of pressure on the interface occurs in the
flow, which is incompatible with the fundamental physical property of the inter-
face.

1.3. Combination of Two Boundary Layers. Selfsimilarity

The composite model of the flow introduced by Lock (1951) can be illustrated also
by Fig. 3: the general scheme of the velocity fields remains the same. However,
instead of the Poiseuille flows, discussed in the former Subsection, two special
boundary layers appear in this case.

The upper layer is almost identical with the one generated by uniform stream
on a flat plate, which we will refer to as the Blasius solution (Prandtl 1944, Prosnak,
Cześnik 2003). The flow in such a boundary layer is governed by so-called Prandtl’s
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equations, representing a simplified form of the Navier-Stokes’ ones. In the system
of coordinates shown in Fig. 2 they can be written as:

ux C vy D 0; (10a)

uux C vuy D ¹ uyy ; (10b)

the indices referring to the sub-domain (3a) being omitted, and

¹ D
¼

²
(10c)

denoting the kinematic viscosity.
The important property of such a boundary layer concerns the constancy of

pressure:

p .x ; y/ D const; (10d)

so that the “obstacle” for combination of two flows does not occur here at all.
The boundary condition for the asymptotic behaviour of the velocity field says:

lim
y!1

u .x ; y/ D V1: (10e)

On the interface, obviously, the velocity components have to satisfy the fol-
lowing conditions:

u .x ; 0/ D ur ; (10f)

v .x ; 0/ D 0; (10g)

the right-hand side in (10f) denoting velocity component on the interface – see
Figs. 1 and 3.

Leaving aside the analogous description of the second boundary layer, the one
occupying the “lower” sub-domain (3b), we shall transform the partial differential
equations presented so far in this Subsection, onto ordinary ones.

Following Lock (1951), we will introduce the stream function:

9 D 9 .x ; y/ ; (11a)

defined by the velocity components:

u D
@9

@y
; v D �

@9

@x
: (11b)

Next, using selfsimilarity, we introduce a new independent variable:
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� D

�

V1

¹ Ð x

�
1
2

y; (11c)

and a new unknown function

f D f .�/ : (11d)

Consequently, the new and the old functions are interconnected by means of
the following expressions:

9 D .¹V1x /
1
2 Ð f .�/ ; (11e)

u D V1 f 0 .�/ ; (11f)

v D
1

2

�

V1¹

x

�
1
2

ð

� Ð f 0 .�/ � f .�/
Ł

; (11g)

@u

@y
D V1

�

V1

¹x

�
1
2

Ð f 00 .�/ ; (11h)

as well as by the sought-for ordinary equation:

f 000 C
1

2
f f 00 D 0; (11i)

stemming from (10a), (10b).

2. The Composite Problem

The Section contains the formulation of two differential equations, describing
flows in the sub-domains (3a) and (3b), as well as suitable conditions. Ideas con-
cerning the solution of these two problems and matching of their solutions are
also presented.

2.1. The Differential Problem in the Sub-Domain Occupied by Air

The problem consists of two elements:

– the equation:

f 000
a C

1

2
fa f 00

a D 0; fa D fa .�/ ; � � �a; � ½ 0; (12a)
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– and boundary conditions:

fa .0/ D 0; (12b)

f 0
a .0/ D ca1; ca1 D

ur

V1
; (12c)

lim
�!1

f 0
a .�/ D 1: (12d)

2.2. The Differential Problem in the Sub-Domain Occupied by Water

The problem consists – analogically as the previous one – of:

– the equation:

f 000
w C

1

2
fw f 00

w D 0; fw D fw .�/ ; � � �w; � � 0; (13a)

– and boundary conditions:

fw .0/ D 0; (13b)

f 0
w .0/ D cw1; cw1 D

ur

V1
; (13c)

lim
�!�1

f 0
w .�/ D 0: (13d)

2.3. The Compatibility Conditions

The streams of air (12) and water (13) have to satisfy some compatibility condi-
tions on the interface. These conditions express equality of velocities and stresses
on this plane, and can be formulated as follows.

As it stems from (12c) and (13c) the equality of non-dimensional velocities
(11f) of the two fluids at the interface can be expressed as:

ca1 D cw1 D const; const D c1; (14a)

the newly-introduced symbol c1 denoting the common velocity. In Fig. 1 the di-

mensional common velocity is denoted as ur . Moreover – as can be seen in Fig. 1
– the common velocity must satisfy the condition:

0 < ur < V1

in dimensional values, or the condition:
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0 < c1 < 1 (14b)

in non-dimensional ones.
Equality of tangential, dimensional stresses at the interface can be expressed

as

¼a
@ua

@y

þ

þ

þ

þ

0

D ¼w

@uw

@y

þ

þ

þ

þ

0

(14c)

– before application of the transformation following selfsimilarity. The condition
(14c) yields

¼a V1

�

V1

¹ax

�
1
2

f 00
a .0/ D ¼w V1

�

V1

¹wx

�
1
2

f 00
w .0/ ;

as the result of the transformation. After introduction of the three auxiliary sym-
bols:

ca2 D f 00
a .0/ ;

cw2 D f 00
w .0/ ;

¦

(14d)

k²¼ D

�

²a¼a

²w¼w

�
1
2

(14e)

the second compatibility condition (14c) can be rewritten as:

k²¼ ca2 D cw2; (14f)

where the symbol k²¼ from (14e) denotes the constant, characterising the two
fluids.

Therefore, the formula for the error of the approximation of the unknown c1

can be assumed as:

er D cw2 � k²¼ ca2: (14g)

It depends on the second derivatives (14d) of the velocity distributions at the
interface.

2.4. Plan for Solution of the Composite Problem

The three former Subsections lead, in the natural manner, to the plan of solution
of the composite differential problem, the plan being illustrated by the block
diagram, presented in Fig. 4.

It should be clearly seen, that the solution to the problem consists in deter-
mination of the non-dimensional value c1 of the “common” velocity of both fluids
at the interface.
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Fig. 4. The block diagram for the iterative process, applied for matching two viscous flows on
their interface

This value is arrived at by means of an iterative process, wherein seven ele-

ments can be distinguished corresponding to the seven “boxes” of the diagram.

Box No. 1 symbolises input of an initial value of c1, which has to be guessed

within the interval (14b).

Box No. 2 refers to solution fa .�/ of the differential problem (12), formulated

in Subsection 2.1., the result of the solution being represented by the numerical

value

ca2 D fa .0/

of the second derivative of the function just determined – see (12a).
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Box No. 3 – analogically – refers to solution fw .�/ of the differential problem

(13), formulated in Subsection 2.2., the result being expressed by the numerical
value

cw2 D fw .0/

of the second derivative of the function just determined – see (13a).

Box No. 4 indicates the calculation of error er of the sought-for unknown c1,
defined by the formulae (14g).

Box No. 5 denotes:

– checking the accuracy of the unknown c1, basing on the value of the error,

and

– comparing this value with the admissible one, symbolised by ". If

jer j � "; (15a)

then control goes to box No. 6, and the iterative process is concluded. If – oppos-
itely:

jer j > "; (15b)

then control goes to box No. 7, where a new approximation of the unknown c1

has to be determined; afterwards the control returns to box No. 2.

Evaluation of consecutive values of c1 is performed in two phases. During

the exploratory one the calculations of c1 are repeated, and stored, until errors
belonging to two consecutive approximations n, n+1 have opposite signs:

.er /n Ð .er /nC1 < 0: (15c)

During the refinement phase the consecutive values of c1 are evaluated al-
ternatively – by the rule of the false position, and by halving the distance between

two “latest” values of the unknown.

The iterative process so defined turned out to be convergent, the convergence
of the refinement phase being obvious. The exploratory phase can be made con-

vergent also, simply by keeping the consecutive approximations within the interval
(14b). In any case, no troubles with the iterative process appeared in our experi-

ments.

As usual, the convergence can be accelerated, if one assumes as the first

approximation of c1 a value following from the already solved case, corresponding
to such a value (14e), which is close to the one under consideration.
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3. Determination of Flow in Each Particular Sub-Domain

As follows from the adopted plan of solution for the composite problem (Fig. 4),
determination of flow in the “upper” sub-domain is performed quite independ-
ently of the determination of the flow in the “lower” one. The method of solution
can therefore differ greatly in each case, so that – in fact – the solutions could be
obtained parallelly on a suitable computer.

In the present paper, the methods of solving these “subproblems” are based
on approximation of each unknown function by a series developed with respect
to a proper “small parameter”.

3.1. The Case of the “Upper” Sub-Domain

The differential problem concerning flow in the sub-domain occupied by air, was
formulated in Subsection 2.2., the corresponding set of formulae being denoted as
(12). This set will be presented in a slightly different form, wherein the subscript
a is omitted. It yields:

f D f .�/ ; � ½ 0; (16a)

f 000 C
1

2
f f 00 D 0; (16b)

f .0/ D c0 D 0; (16c)

f 0 .0/ D c1; 0 < c1 < 1; (16d)

lim
�!C1

f 0 .�/ D 1: (16e)

The “small” parameter

"g D c1 � 1 (17a)

will now be introduced, which enables approximation of the unknown function
(16a) by means of the power series:

f .�/ D .c0 C �/ C
1
P

tD1

"t
g f [t] .�/ : (17b)

The symbol:

f [t] .�/ ; t D 1; 2; : : : (17c)
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denotes functional coefficients. Determination of the approximating function
(17b) reduces – of course – to determination of the functional coefficients (17c).
This can be done in the following manner:

1. approximation (17b) is substituted into equation (16b), which yields:

1
X

tD1

"t
g

d3 f [t]

d�3
C

1

2

"

� C
1

X

tD1

"t
g f [t]

#

Ð
1

X

tD1

"t
g

d2 f [t]

d�2
D 0; (17d)

2. the expression so obtained is presented as the power series developed with
respect to "t

g , the consecutive terms of the series, corresponding to expo-
nents:

t D 1; 2; 3; : : : ; n (17e)

appearing as:

d3 f [1]

d�3
C

1

2
�

d2 f [1]

d�2
D 0; (17f)

d3 f [2]

d�3
C

1

2
�

d2 f [2]

d�2
D �

1

2
f [1] d

2 f [1]

d�2
; (17g)

d3 f [3]

d�3
C

1

2
�

d2 f [3]

d�2
D �

1

2

"

f [1] d
2 f [2]

d�2
C f [2] d

2 f [1]

d�2

#

; (17h)

..................................................................................

d3 f [n]

d�3
C

1

2
�

d2 f [n]

d�2
D �

1

2

n�1
X

tD1

f [t] d
2 f [n�t ]

d�2
: (17i)

The equation (17f) for f [1] .�/, provided with proper boundary conditions, can
be presented as the following differential problem for the fundamental coefficient
just mentioned:

f [1]000 C
1

2
� Ð f [1]00 D 0; (18a)

f [1] .0/ D 0; (18b)

f [1]0 .0/ D 1; (18c)
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lim
�!C1

d f [1]

d�
D 0: (18d)

The solution to this problem, or – more exactly – the unknown function f [1] .�/,
together with its derivatives f [1]0 .�/ and f [1]00 .�/, are drawn in Fig. 5.

Fig. 5. The function f [1] as well as its first f [1]0

and second f [1]00

derivatives, exemplifying one
element of the function (17b), i.e. of the velocity distribution in the “upper” sub-domain

It should be seen, that the equation (18a) is linear and can be solved exactly.
The differential problems for the functional coefficients for t > 1 can be

presented recurrently as:

f [n]000

C
1

2
� Ð f [n]00

D �
1

2

n�1
X

tD1

f [t] f [n�t]00

; (19a)

f [n] .0/ D 0; (19b)

f [n]0

.0/ D 0; (19c)

lim
�!C1

d f [n]

d�
D 0; .t > 1/: (19d)

All of them are also linear, and can be solved in an exact manner.
Two further functional coefficients: for t D 3 and t D 15, are shown in Figs.

6 and 7, respectively, in order to illustrate their behaviour for increasing t , and
their convergence.

On the other hand, Fig. 8 represents the final solution to the problem
(16a)–(16e) – in the form of the function (17b) and its two derivatives.

It should be emphasised, that all the functional coefficients are expressed by
exact formulae, containing truncated Tchebyshev series.
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Fig. 6. The function f [3] as well as its derivatives f [3]0

and f [3]00

, exemplifying a further element of
the function (17b), i.e. of the velocity distribution in the “upper” sub-domain

Fig. 7. The function f [15] as well as its derivatives f [15]0

and f [15]00

, exemplifying the last element
of the truncated function (17b), i.e. of the velocity distribution in the “upper” sub-domain. Note:
the diagram of the function and its derivatives do not differ from the �-axis in the Fig. 7, due to

the adopted scale

Fig. 8. The series (17b) truncated at the 15th term, presented together with its two derivatives
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3.2. The Case of the “Lower” Sub-Domain

The same approach as in the former Subsection will be applied to the problem
formulated in Subsection 2.3., and described by the set of formulae (13). For the
sake of convenience the unknown function fw .�/ will be now denoted as F .�/,
so that the problem to be considered can be presented as follows:

F D F .�/ ; � � 0; (20a)

F 000 C
1

2
F F 00 D 0; (20b)

F .0/ D 0; (20c)

F 0 .0/ D c1; 0 < c1 < 1; (20d)

lim
�!�1

F 0 .�/ D 0: (20e)

Now, instead of (17a) another “small” parameter is introduced:

" D c1: (20f)

The difference between the small parameters (20f) and (17a) causes unexpec-
tedly large differences between the two sets of results – as will be seen.

The approximating function, analogous to (17b), now appears in the form:

F .�/ D
1
P

tD1

"t F[t] .�/; (20g)

where

F[t] .�/ ; t D 1; 2; : : : (20h)

denote functional coefficients. It should be stressed, that no “special” equation
appears now for any value of t , contrary to the former case.

In a manner similar to that in Subsection 3.1. the unknown function (20g)
is now substituted into the equation (20b), and – after developing the obtained
result into power series, with respect to "t – one arrives at the following, recurrent
system of equations for the functional coefficients:

F[t]000 D �
1

2

t�1
X

kD1

F[k] Ð F[t�k]00 ; t D 1; 2; : : : : (20i)
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The boundary conditions for t D 1 appear as:

F[1] .0/ D 0; (20j)

F[1]0 .0/ D 1; (20k)

F[1]0 .�min/ D 0; �min D �5; (20l)

and the solution to this differential problem is presented in the form of three lines

in Fig. 9.

Fig. 9. The function F[1] as well as its first F[1]0

and second F[1]00

derivatives, exemplifying
element of the function (20g), i.e. of the velocity distribution in the “lower” sub-domain

The boundary conditions are identical for all consecutive values of t > 1:

F[t] .0/ D 0; (20m)

F[t]0 .0/ D 0; (20n)

F[t]0 .�min/ D 0; �min D �5: (20o)

Solution for a further functional coefficient, namely t D 3, is presented in
Fig. 10.

Results obtained in Section 3 will be discussed in the final one. Here we
confine ourselves to the illustration of the solution (20g), represented as the sum
of 15 terms: see Fig. 11.
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Fig. 10. The function F[3] as well as its derivatives F[3]0

and F[3]00

, exemplifying a further element
of the function (20g), i.e. of the velocity distribution in the “lower” sub-domain

Fig. 11. The series (20g) truncated at the 15th term, presented together with its two derivatives

4. Examples of Solutions to Composite Problems

In accordance with the block diagram shown in Fig. 4, the two particular solutions

(17b) and (20g) have to be matched – by the use of the compatibility condition
for stresses (14f). In order to satisfy this condition, the value c1 of velocity on the
interface has to be determined.

Consequently, the solution of the composite problem consists of two functions:

f .�/ D � C
Na

X

tD1

.c1 � 1/
t f [t] .�/; � 2 [0; �max]; (21a)

F .�/ D
Nw
X

tD1

ct
1 F[t] .�/; � 2 [�min; 0]: (21b)

A computer program, determining automatically the solution (21a), (21b), can
be found in our internal report: Prosnak, Cześnik (2003).

An example of the solution, illustrating the functions (21a), (21b) and their
derivatives, is shown in Fig. 12.

It corresponds to

k²¼ D 1; c0 D 0; �max D 5; �min D �5: (21c)
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Fig. 12. Both functions f .�/, F .�/ matched at the interface, representing the sought for velocity
distribution in the whole domain of solution (the case corresponding to k²¼ D 1; see Table 1)

Selected functional coefficients of this solution have been shown in Figs. 5, 6,

7, 9 and 10. On the other hand, Figs. 8 and 11 represent the right and the left

part of Fig. 12, respectively.

Fig. 13. Both functions f .�/, F .�/ matched at the interface, representing the sought for velocity
distribution in the whole domain of solution (the case corresponds to k²¼ D 0:1; see Table 1)

It should be noted, that the functions (21a) and (21b) are continuous – see

Fig. 12. The same is true as far as their derivatives are concerned. The reason

of this behaviour is obvious. The value k²¼ D 1 can be interpreted as identity of

both fluids with respect to density and viscosity. There is therefore no reason for

discontinuities of these properties on the interface.
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Fig. 14. Both functions f .�/, F .�/ matched at the interface, representing the sought for velocity
distribution in the whole domain of solution (the case corresponds to the combination of air over

water, i.e. to k²¼ D 0:004 701 276; see Table 1)

Two further examples of solution to composite problems are presented in Figs.

13 and 14. They are quite analogous to Fig. 12, the only difference being, that

the applied system of coordinates was borrowed from Lock (1951), which makes

comparison of his results with ours fairly easy.

Table 1. Collection of the investigated cases

No. k²¼ c1 ca2 cw2

1 1 0.585 352 556 0.200 465 971 0.200 465 971

2 0.5 0.430 899 834 0.255 672 565 0.127 836 283

3 0.3 0.326 864 336 0.285 708 421 0.085 712 526

4 0.2 0.255 757 209 0.302 513 303 0.060 502 661

5 0.1 0.160 683 760 0.319 669 180 0.031 966 918

6 0.05 0.095 877 185 0.327 436 608 0.016 371 830

7 0.01 0.024 217 338 0.331 746 217 0.003 317 462

8 0.004 701 276 0.011 920 257 0.331 982 424 0.001 560 741

9 0.004 092 700 0.010 436 352 0.332 000 245 0.001 358 777

Final results of some further examples are collected in Table 1, demonstrating

dependence of the velocity c1 and the stresses ca2, cw2 at the interface – on

values of the constant k²¼. Results Nos. 8 and 9 correspond to air and water,

the difference of the results stemming from the sources, from which values of

densities and viscosities have been borrowed.
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5. Conclusions and Comments

The paper is motivated by the same needs, which occurred in connection with
a problem of flow, wherein free surface of water represents an important ele-
ment. We started with the study of one of the first publications concerning this
element, i.e. the paper by Lock (1951). In fact, the present investigation could be
alternatively entitled as:

Lock’s paper – revisited

The physical model applied in his paper (1951) consists of two boundary layers,
separated by a plane, horizontal interface. Therefore, the streamlines are not
exactly parallel to the interface, and the word “parallel” appearing in the title of
Lock’s paper – is misleading. The same error can be found in another paper –
by Lessen (1949), wherein the physical model of the phenomenon consists also of
a couple of boundary layers.

The mathematical description of the model makes use of self-similarity of flow,
this property enabling to transform all the partial derivatives and equations into
ordinary ones. In consequence, the flow in each part of the solution is described
by the same ordinary differential equations (12a) and (13a), representing a special
form of the Falkner-Skan equation: (Falkner, Skan 1931, Prosnak 1961, 1962, 1969,
Prosnak, Czerwińska 1995). These two flows must be matched on the interface,
where the velocities of each flow and their stresses must be equal.

The differential problem consisting of two differential equations, and an it-
erative algorithm for their matching – is called the composite problem in our
paper.

To solve this problem, Lock (1951) applies the well-known method of Blasius,
which – we believe – does not have to be explained here. In the present paper we
have used our own method (Prosnak 1961, 1962, 1969), basing on the introduction
of a small parameter, which does not appear in the equation (as is usually the
case), but in the boundary conditions. Each of the unknown functions, which occur
in the composite problem, is approximated by power series developed with respect
to the small parameter, which is different in each equation. The said approxim-
ations contain corresponding functional coefficients, which can be computed re-
currently by means of exact formulae. Finally, it turns out, that the solution to
the composite problem as a whole depends on the truncated Tchebyshev series.

The method presented is not difficult to program. Moreover, its ready version
written in Turbo Pascal can be found in an internal report: (Prosnak, Cześnik
2003). Some other merits of the method should be mentioned, such as its accuracy,
and arbitrarily extensive domains of existence (C�max; ��min/.

Two other versions of our method of solution have been tested, basing on the
same block diagram as the one shown in Fig. 4, but on different means for determ-
ination of the second derivatives (14d), than the one using the exact formulae, and
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described in Subsections 3.1 and 3.2. The alternative approaches are reported in
Prosnak, Cześnik (2002a, 2002b). Being workable, they are nevertheless inferior
to the one presented in this paper, and – as such – they will not be recommended
– or even presented – by ourselves.

Although the revisited paper – Lock (1951) – seems to be rather ancient,
having been published more than 50 years ago, the physical problem dealt with
can be hardly considered as such.

Some simple considerations on a slightly different approach, basing on the
Navier-Stokes equations and resembling the plane Poiseuille flow, had been dis-
cussed also – in order to indicate a possible way leading to the physical model
applied by Lock (1951), and consisting of two boundary layers.
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