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Abstract

A lattice-gas automaton of hydrodynamics was used to calculate the kinematics of
non-cohesive granular materials during 3 different complex two-dimensional prob-
lems: granular pile, granular flow in a vertical channel and granular flow in a par-
allel/converging silo. In the model, collisions and dissipation of particles were taken
into account. The simulation results were qualitatively compared with experimental
results.
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1. Introduction

The behaviour of granular bodies is highly complex due to their discrete and
heterogeneous structure, strong anisotropy, non-linearity and occurrence of strain
localisation in the form of shear zones. Different continuum and discrete models
are used to describe their behaviour. In continuum mechanics, elasto-plastic (Lade
1977, Vermeer 1982, Pestana and Whittle 1999) and hypoplastic (Darve et al. 1995,
Gudehus 1996, Bauer 1996, von Wolffersdorf 1996, Lanier et al. 2004) models are
applied. To describe shear localization, continuum models can be extended by
micro-polar (Mühlhaus 1990, Tejchman and Wu 1993, Tejchman and Gudehus
2001), non-local (Brinkgreve 1994, Maier 2003, Tejchman 2004), second gradient
(Sluys 1992, Pamin 1994, Maier 2003, Tejchman 2004) and viscous terms (Loret
and Prevost 1990, Sluys 1992).

In the case of discrete methods, granular dynamics algorithms (Gutfraind and
Pouliquen 1996, Luding et al. 1996, Kafui and Thornton1997, Rojek 2003), kinetic
theories (Haff 1983, Lun and Savage 1987, Fütterer 1991) and cellular automata
(Ulm 1952, Litwiniszyn 1956, Chopard and Droz 1998, Zhou 2004) are applied to
capture the salient properties of granulates.
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In this paper, a lattice-gas automaton formulated by Frisch et al. (1986) which
belongs to the group of cellular automata frequently used in physics, chemistry
and biology to describe flow of fluid and gas was used. It has also been used
successfully to model the behaviour of granular media (Peng and Herrmann 1994,
Alonso and Herrmann 1996, Katsura et al. 2001, Kozicki and Tejchman 2005a),
having both advantages and disadvantages relative to other modelling techniques
such as FEM or DEM. The advantages include: a large number of particles,
lack of restrictions for deformations, implementation simplicity, small amount
of computer time needed to describe flow (the behaviour is described not by the
terms of differential equations) and consideration of particle collisions and energy
dissipation. The disadvantage is that it is a purely kinematic approach (no flow
dynamics is involved).

The intention of simulations presented in this paper was to show the capabil-
ity of a lattice-gas automaton to describe the behaviour of granular materials in
3 different two-dimensional boundary value problems: sandpile, flow in a vertical
channel and flow in a silo consisting of parallel and convergent walls. The simu-
lation results were qualitatively compared with corresponding laboratory tests.

2. Characteristics of the Model

In a lattice-gas automaton used in the paper, each site of a hexagonal lattice
can be occupied by one or more particles, boundary wall or empty. The particles
move on the nearest-neighbour bonds (with unit velocity) and second-nearest
neighbours of the lattice (with unit velocity multiplied by the factor

p
3/. Each

particle at each site has 13 Boolean states which are related to the velocity vectors
vi .i D 0; 1; 2; :::; 12/, Fig. 1. The direction of motion of a particle v can be towards
any of its 12 nearest neighbours (i D 1; 2; :::; 12) or be at rest (vo D 0). Thus, at
the beginning of calculations, the number of particles per site has a maximum
value of 13 and a minimal value of 0. The time evolution consists of one collision
step and two propagation steps. In the collision step, the particles both change
their velocities due to collisions or remain at rest in the site by losing the total
kinetic energy due to dissipation. In the first propagation step, particles without
a velocity (more particles than one) are scattered randomly to the nearest empty
sites including a low quantity of particles. In the second propagation step, colliding
particles (after changing their velocities) are transferred in the direction of their
velocities to the nearest sites where they collide again (Fig. 2). In general, collisions
conserve mass and momentum. The system is updated in parallel. The following six
material parameters were assumed in the model: two collision parameters (p; q/,
two gravity parameters (g ; h/ and two friction parameters (b; k/. All probabilistic
parameters were chosen in the range of from 0 to 1.

The collision parameter p determines the number of particles n; which were at
rest after the collision (due to energy dissipation). The parameter n is calculated
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Fig. 1. Vectors of particle velocities at each site (lattice-gas automaton)

Fig. 2. Examples of calculated velocity vectors for particles after collisions using a lattice-gas
automaton (V – resultant velocity)
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from the formula p.nC1/ < r1 < pn (r1 is a random number). Due to the fact that
some particles are stopped after collisions, other particles can leave the sites at
a higher velocity due to the conservation of momentum. When more than one
particle is stopped and the conservation of momentum can not be fulfilled, the
particles move in random directions. In turn, the parameter q describes the loss
of energy during each collision. The number of random particles l (which are not
considered when calculating the resultant velocity) is obtained from the formula
q.lC1/ < r2 < ql (r2 is a random number). Due to the loss of energy, the particles
leave the sites at a lower velocity. The total number of possible combinations for
collisions is equal to 212 D 4096 and the number of possible velocity directions is
108. To speed up the calculation process, the appropriate table of collisions has
been generated (Fig. 3). If parameters p and q are equal to zero, the sum of
outgoing velocity vectors from each site is equal to the sum of incoming velocity
vectors (elastic collisions take place).

The gravity parameter g is taken into account during each collision in such
a way that the vertical velocity v4 (Fig. 1) is added to the resulting velocity vector
of outgoing particles with a probability of g . Thus, the particles are accelerated
downwards after each collision. In turn, the gravity parameter h is introduced to
improve the direction of the resultant velocity vector so that the direction would
become parabolic for single particles (Fig. 4). The particle at rest at the given site
(v0/ can move downwards to the state v0 in the neighboring empty site without any
velocity in only one of the chosen directions v3, v4, v5, v9 and v10 (Fig. 1). If h D 1,
particles without velocities move downwards (density becomes more uniform). In
turn, if h D 0, particles without velocities do not move.

The friction parameter k describes the internal interaction between particles.
If the parameter k is different from zero, certain migration directions become
dominant (to induce movement in one specific direction). In our simulations,
the horizontal direction is assumed to be dominant. Thus, the resulting velocity
vector of outgoing particles is replaced by the sum of random velocity vectors in
directions v2, v3, v5, v6;; v8 and v11 with a probability of k (Fig. 1). The friction
parameter b describes the wall roughness. If particles hit the wall, they are stopped
with a probability of b (the increase of wall roughness corresponds to the increase
of parameter b/. Afterwards, they are scattered randomly to the nearest empty
sites with low contents of particles.

The initial density of the granulate is generated at the onset of flow depending
upon parameters p; q; g and k. The density increases with increasing p and g and
decreasing q and k.

The model used is based on the lattice-gas automaton proposed for granu-
lar materials by Peng and Herrmann (1994) and Alonso and Herrmann (1996).
However, it includes some improvements. The innovations are the following: the
model is also applied to silo flow, the number of possible vector directions is en-
hanced (13 instead of 7), material density is not used as an additional parameter,
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Fig. 3. Examples of collision rules for 4 particles flowing to one random site (arrows represent the
directions of moving particles and full dots stand for particles)
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Fig. 4. Examples of calculated traces of single particles in the gravity field thrown from the same
point in the direction of v7 of Fig. 1 (line a denotes a parabolic trajectory)

gravitation is depicted with two parameters (instead of one), rough walls are able
to stop flowing particles, the method describing collisions enables any number of
particles to stop, and the new parameter is introduced to describe the internal
interaction between particles.

During simulations, the following values of the material parameters were as-
sumed: p D 0:2, q D 0:2, b D 0:05, k D 0:05; g D 0:2 and h D 0:05.

3. Results

3.1. Granular Pile

The 2D-results of simulations of a granular pile including 15000 cells (particles)
are demonstrated in Fig. 5. During the simulation, the particles were slowly added
at a fixed rate from the top of the system to the bottom. Gravity moved these
particles down until they collided with a rigid wall at the bottom, then forming
a heap.

The profile of the heap created is similar to a cone with a well defined angle
of repose equal to 30Ž (determined by the geometry of the underlying lattice). As
compared with a perfect cone, it shows, however, small kinks along the surface
and a slightly curved tail (with a slope inclination of less than 30Ž/ which is in
accordance with the experimental results by Alonso and Herrmann (1996).

3.2. Granular Flow in a Vertical Channel

The time evolution of the density in a vertical channel during 2D-simulations with
35000 cells is demonstrated in Fig. 6. Periodic boundary conditions were used in
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Fig. 5. Formation of a granular pile in the iteration: a) 60, b) 180, c) 300, d) 420, e) 720, f) 1020,
g) 1320 and h) 1800
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the vertical direction. In this way, the channel was continuously filled. The darker

regions are associated with higher densities, and the lighter regions are associated

with lower densities of the silo fill.

Fig. 6. Evolution of density waves during granular flow in a vertical channel in the iteration: a) 60,
b) 180, c) 300, d) 420, e) 540, f) 660, g) 900, h) 1140, i) 1380, j) 1620, k) 1860 and l) 2160

Initially, the density was overall non-homogeneous. During continuous flow,

layers of high and low density were gradually formed out of the system. These

layers created permanent density waves. The shape of density waves is in accord-

ance with experiments by Cowin and Comfort (1982) carried out in a rectangular

rough-walled cylinder with sand, wherein x-rays were used to detect zones of

increased porosity.
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The density waves were not numerically obtained during granular flow, if the
collisions parameters and the wall roughness parameter were equal to zero.

3.3. Granular Flow in a Silo

The 2D-simulations with a lattice-gas automaton including 35000 cells are demon-
strated in Fig. 7 with a mass flow silo and a funnel flow silo. The effect of the
parameters g, h, k, b, p and q is shown only for a mass flow silo (Figs. 8–13); their
effect in a funnel flow silo was similar (Kozicki and Tejchman 2005b). For a better
comparison, one chose small and large values of these parameters. The following
number of iterations was needed to describe the entire process of silo emptying:
5340 (Fig. 7a), 3480 (Fig. 7b), 5520 (Fig. 8a), 8860 (Fig. 8b), 13500 (Fig. 9a), 5160
(Fig. 9b), 7200 (Fig. 10a), 5340 (Fig. 10b), 5340 (Fig. 11a), 8860 (Fig. 11b), 13320
(Fig. 12a), 5460 (Fig. 12b), 6780 (Fig. 13a) and 5400 (Fig. 13b).

Fig. 7. Evolution of density waves during granular flow in a mass (a) and funnel (b) flow model
silo

In all cases, regions with a different density occur during granular flow. The
flow is non-symmetric. The shape of dilatant zones is strongly influenced by the
collision parameter p and gravity parameter h. In a mass flow silo, it is also
dependent upon the wall roughness parameter b (more particles were stopped
at the wall). With decreasing collision parameter p, the height of dilatant zones
significantly increases (material behaves more as gas). If the gravity parameter h

is large, the dilatant zones become narrower and are more concentrated in the
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Fig. 8. Flow pattern in a mass flow silo (effect of the gravity parameter g /:
a) p D 0:2, q D 0:2, b D 0:05, k D 0:05; g D 0:95, h D 0:05;

b) p D 0:2, q D 0:2, b D 0:05, k D 0:05; g D 0:05, h D 0:05

Fig. 9. Flow pattern in a mass flow silo (effect of the gravity parameter h/:
a) p D 0:2, q D 0:2, b D 0:05, k D 0:05; g D 0:2, h D 0:8,
b) p D 0:2, q D 0:2, b D 0:05, k D 0:05; g D 0:2, h D 0:0
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Fig. 10. Flow pattern in a mass flow silo (effect of the friction parameter k/:
a) p D 0:2, q D 0:2, b D 0:05, k D 0:8, g D 0:2, h D 0:05,
b) p D 0:2, q D 0:2, b D 0:05, k D 0:0; g D 0:2, h D 0:05

mid-region of the silo due to the fact that there are more empty sites in the middle

of the silo than close to the walls.

For a smaller wall roughness parameter b, the dilatant zones are more ho-

rizontal since the flow disturbance close to walls is smaller. The outflow rate

increases obviously with increasing gravity parameter g : With an increase of the

gravity parameter g ; the effect of other factors also becomes insignificant. The

inclination of the upper free surface of the material decreases with decreasing

parameters p; q and h (material behaves more as gas). The non-uniformity of the

material density increases with increasing parameter g and decreasing parameters

h, k, p and q.

The calculated flow patterns in both silos are in satisfactory agreement with the

experimental ones (Kozicki and Tejchman 2001). The shape of the propagating
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Fig. 11. Flow pattern in a mass flow silo (effect of the wall roughness parameter b/:
a) p D 0:2, q D 0:2, b D 0:8, k D 0:05; g D 0:2, h D 0:05,
b) p D 0:2, q D 0:2, b D 0:0, k D 0:05; g D 0:2, h D 0:05
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Fig. 12. Flow pattern in a mass flow silo (effect of the collision parameter p/:
a) p D 0:8, q D 0:2, b D 0:05, k D 0:05; g D 0:2, h D 0:05,
b) p D 0:0, q D 0:2, b D 0:05, k D 0:05; g D 0:2, h D 0:05
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Fig. 13. Flow pattern in a mass flow silo (effect of the collision parameter q/:
a) p D 0:2, q D 0:8, b D 0:05, k D 0:05; g D 0:2, h D 0:05,
b) p D 0:2, q D 0:0, b D 0:05, k D 0:05; g D 0:2, h D 0:05
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dilatant zones inside the flowing material is similar to the experimental results
by Lavrikov and Revuzhenko (1990). However, it differs from the experimental
ones by Michalowski (1984, 1990) where a symmetrical pair of curvilinear dilatant
rupture zones was created in the neighbourhood of the outlet during mass flow.
The zones propagated upward, crossed each other around the symmetry of the
silo, reached the walls and were subsequently reflected from them. This process
repeated itself until the zones reached the free boundary in the converging hopper
or the transition zone in the parallel-converging silo. In the case of a funnel flow
silo, the curvilinear dilatant zones in the material core were symmetric about
a vertical mid-line. Some of them crossed each other.

4. Conclusions

The lattice-gas automaton is a purely kinematic discrete model wherein flow dy-
namics is not taken into account. It offers the advantage of the guaranteed nu-
merical stability coupled with the extreme computational simplicity. Despite this
simplicity, it is apt to realistically describe the behaviour of granular materials.
The calculated shape of granular heaps and density waves in a vertical channel
were similar to those in the experiment. The form of the flow pattern in a silo
was also realistic. However, the shape of density waves in a silo fill affected by
gravity, collision and friction parameters was different from that obtained in some
laboratory experiments.

Further numerical studies checked with experiments are necessary to verify
the model.
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