
Archives of Hydro-Engineering and Environmental Mechanics
Vol. 51 (2004), No. 2, pp. 183–200

Comparison of Five Depth-Averaged 2-D Turbulence Models

for River Flows

Weiming Wu, Pingyi Wang, Nobuyuki Chiba

National Center for Computational Hydroscience and Engineering

The University of Mississippi, MS 38677, email: wuwm@ncche.olemiss.edu

(Received March 09, 2004; revised May 12, 2004)

Abstract

In this study, five depth-averaged 2-D turbulence models for river flows, including the
depth-averaged parabolic eddy viscosity model, modified mixing length model, stand-
ard k-" turbulence model, non-equilibrium k-" turbulence model and re-normalized
group (RNG) k-" turbulence model, are compared in the simulation of flows around
a spur-dyke, in a sudden-expanded flume and in two natural rivers. It is shown that in
the two field cases where the channel geometries are simple, all five models can give
generally good predictions for the main flow features. However, in the two laboratory
cases where the channel geometries are complex, differences have been found among
these models. The depth-averaged parabolic eddy viscosity model over-predicts the
recirculation flows behind the spur-dyke and the flume expansion. The modified mix-
ing length model gives better prediction than the depth-averaged parabolic model.
The standard k-" turbulence model predicts well for the recirculation flow in the
sudden-expended flume, but under-predicts the length of recirculation zone behind
the spur-dyke, while the non-equilibrium and RNG k-" turbulence models provide
good results for both laboratory cases.

Key words: turbulence model, depth-averaged two-dimensional model, river flow,
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1. Introduction

Many turbulence models based on Reynolds-averaged Navier-Stokes equations,
such as zero-equation turbulence model, one-equation turbulence model, two-
equation turbulence model and Reynolds stress/flux model, have been success-
fully applied to the simulation of turbulent flows in computational fluid dynamics
(CFD). In recent years, the large eddy simulation and direct numerical simulation
of turbulent flows have also progressed remarkably. These turbulence modelling
techniques have been gradually applied in the simulation of river flows. However,
because the computational domain in natural rivers is very irregular and even
moveable, the simulation of turbulent flow in rivers is less developed and mostly
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stays on the level of two-equation turbulence models or simpler ones. For the
depth-averaged simulation of river flows, one of the most often used two-equation
turbulence models is Rastogi and Rodi’s (1978) depth-averaged standard k-" tur-
bulence model. In the present study, Chen and Kim’s (1987) non-equilibrium k-"
turbulence model and Yahkot et al’s (1992) RNG k-" turbulence model, which
are widely used in CFD, are extended to the depth-averaged 2-D simulation of
river flows. These two k-" turbulence models are compared with other three
depth-averaged turbulence models: the depth-averaged parabolic eddy viscosity
model, the modified mixing length model, and Rastogi and Rodi’s depth-averaged
standard k-" model.

2. Governing Equations

The depth-integrated continuity and momentum equations of turbulent flow in
rivers are:
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where t is the time; x and y are the horizontal Cartesian coordinates; h is the flow
depth; U and V are the depth-averaged flow velocities in x - and y-directions; zs

is the water surface elevation; g is the gravitational acceleration; ² is the density
of flow; Tx x ; Tx y ; Ty x and Tyy are the depth-averaged turbulent stresses; −bx and

−by are the bed shear stresses that are determined by −bx D ²c f U
p

U2 C V2 and

−by D ²c f V
p

U2 C V2, in which c f D gn2
Ž

h1=3 and n is the Manning’s roughness
coefficient.

It should be noted that Eqs. (2) and (3) do not include the dispersion terms
that exist due to the vertical non-uniformity of flow velocity. Their effect is as-
sumed to be negligible in this study, but the treatment of these terms has been
studied by Flokstra (1977), Wu and Wang (2004) and others.

The turbulent stresses are determined by Boussinesq’s assumption
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where ¹ is the kinematic viscosity of water; ¹t is the eddy viscosity due to turbu-
lence; k is the turbulence energy. The k in Eqs. (4a) and (4c) is dropped when
the zero-equation turbulence models are considered.

3. Turbulence Models for Eddy Viscosity

3.1. Depth-Averaged Parabolic Eddy Viscosity Model

Averaging the eddy viscosity, which approximately yields a parabolic profile, over
the flow depth, one can obtain the depth-averaged parabolic model for the eddy
viscosity:

¹t D ÞtUŁh (5)

where UŁ is the bed shear velocity, UŁ D
ð

c f

�
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ÐŁ1=2

; and Þt is an empirical
coefficient. Theoretically, Þt should be equal to �=6, with � being the van Karman’s
constant. However, different values have been given to Þt , which may be due to the
anisotropic features of turbulence structures in horizontal and vertical directions.
It is commonly accepted that Þt is related to the ratio of channel width and flow
depth, having values between 0:3 ¾ 1:0 (Elder 1959, Fischer et al 1979).

3.2. Modified Mixing Length Model

Eq. (5) is very simple. It is applicable in the region of main flow, but does not
account for the influence of the horizontal gradient of velocity. Significant errors
may exist when it is applied in the region close to rigid walls. Improvement can be
achieved through the combination of Eq. (5) and Prandtl’s mixing length theory,
which reads:
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6; lh is the horizontal mixing length, and is determined
by lh D � min .cmh; y/, with y being the distance to the nearest wall, and cm an
empirical coefficient.

3.3. Standard k-" Turbulence Model

Rastogi and Rodi (1978) established the depth-averaged k-" turbulence model
through depth-integrating the 3-D standard k-" model. The eddy viscosity ¹t is
calculated by

¹t D c¼k2="; (7)
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where c¼ is an empirical constant. The turbulence energy k and its dissipation
rate " are determined with the following model transport equations:

@k

@t
C U

@k

@x
C V

@k

@y
D @

@x

�

¹t

¦k

@k

@x

�

C @

@y

�

¹t

¦k

@k

@y

�

C Ph C Pk¹ � "; (8)

@"

@t
C U

@"

@x
C V

@"

@y
D @

@x

�

¹t

¦"

@"

@x

�

C @

@y

�

¹t

¦"

@"

@y

�

C c"1
"

k
Ph C P"¹ � c"2

"2

k
; (9)

where Ph D ¹t

þ

þ NS
þ

þ

2
; Pk¹ D c

�1=2
f U3

Ł
.

h; P"¹ D c"0c"2c
1=2
¼ c

�3=4
f U4

Ł
.

h2; c"1, c"2, c"0,

¦k and ¦" are empirical coefficients. The standard values of these coefficients are:

c¼ D 0:09, c"1 D 1:44, c"2 D 1:92, ¦k D 1:0, ¦" D 1:3, and c"0 D 1:8 � 3:6.

3.4. Non-equilibrium k-" Turbulence Model

Chen and Kim (1987) modified the standard k-" turbulence model to consider the
non-equilibrium between the generation and dissipation of turbulence. A second

time scale of the production range of turbulence kinetic energy spectrum is ad-
ded to the dissipation rate equation, which results in a functional form of coeffi-
cient c"1 as c"1 D 1:15 C 0:25Ph=". The other parameters are c¼ D 0:09, c"2 D 1:90,
¦k D 0:8927, and ¦" D 1:15. The modified model was called the non-equilibrium

k-" turbulence model (Shyy et al 1997), which has been tested in a compress-
ible recirculating flow with improved performance over the standard model. By
using Rastogi and Rodi’s (1978) depth-averaging approach, the depth-averaged

non-equilibrium k-" model can be derived from the 3-D version. The formulations
of k- and "-equations are still the same as Eqs. (8) and (9), with only the model
coefficients being replaced accordingly.

3.5. RNG k-" Turbulence Model

Yakhot et al (1992) re-derived the "-equation (9) using the re-normalized group
(RNG) theory. One new term was introduced to take into account the highly
anisotropic features, usually associated with regions of large shear, and to modify
the viscosity accordingly. This term was claimed to improve the simulation ac-

curacy of the RNG k-" turbulence model for highly strained flow. By analogy to
the above non-equilibrium turbulence model, the depth-averaged 2-D RNG k-"
turbulence model can also be derived, whose k- and "-equations are the same
as Eqs. (8) and (9), with the new term being included in the coefficient c"1 as

c"1 D 1:42 � � .1 � �=�0/
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Ð

. Here, þ D 0:015, � D
þ
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The other coefficients are c¼ D 0:085, c"2 D 1:68, ¦k D 0:7179, and ¦" D 0:7179.
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4. Boundary Conditions

Near rigid wall boundaries, such as banks and islands, the wall-function approach

is employed. By applying the log-law of velocity, the resultant wall shear stress E−w

is related to the flow velocity
!
V P at centre P of the control volume close to the

wall, by the following relation:

E−w D �½
!
V P ; (10)

where ½ is a coefficient. In the k-" turbulence models, ½ is determined by
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In three k-" turbulence models, the turbulence generation Ph and the

dissipation rate near the wall are determined by Ph;P D − 2
w

Ž

�¼yC
P and "P D

c
3=4
¼ k

3=2
P

.

�yP .

In the simulation of the flow in an open channel with sloped banks, sand bars

and islands, the computational domain may be partly wet or dry, due to water

surface change. In the present model, a threshold flow depth (a small value such

as 0.02 m in natural rivers) is used to judge drying and wetting. If the flow depth in

a node is larger than the threshold value, this node is considered to be wet, and if

the flow depth is lower than the threshold value, it is dry. The above wall-function

approach is applied in the water edge between the wet and dry nodes.

5. Numerical Methods

The above turbulence models are implemented in the depth-averaged 2-D model

for shallow water flow in open channels developed by Wu (2004) on the basis

of the general 2-D flow model of Zhu (1992). The governing equations are dis-

cretized using the finite volume method on a curvilinear, non-staggered grid. The

convection terms are discretized by the HLPA scheme (Zhu 1991). The diffusion

terms are discretized by the central difference scheme. The pressure and velo-

city coupling is achieved by using a SIMPLEC algorithm with Rhie and Chow’s

(1983) momentum interpolation technique. The resulting algebraic equations are

solved by Stone’s (1968) strongly implicit procedure (SIP). The details of numer-

ical methods can be found in Wu (2004).
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6. Simulation Results

Case 1: Flow around a Spur-Dyke

Rajaratnam and Nwachukwu (1983) measured the flow around a spur-dyke. The
experiments were conducted in a straight tilting rectangular flume, 37 m long,
0.92 m wide and 0.76 m deep. The experimental run A1 is simulated here. The
flume bed and walls were smooth, and the spur-dyke used in this case was an
aluminum plate with a thickness of 3 mm and a projection length of 0.152 m.
The flow discharge was 0.0453 m3/s, and the approach flow depth was 0.189 m.
The computational mesh consists of 103 ð 32 nodes in longitudinal and transverse
directions, part of which around the spur-dyke is shown in Fig. 1.

Fig. 1. Computational Mesh around a Spur-Dyke

Fig. 2 shows the flow patterns calculated by using these five turbulence models,
and Fig. 3 shows the comparison of the measured and calculated flow velocities
in cross sections located at x=b D 2, 4, 6 and 8. Here, b is the length of the
spur-dyke. The coefficient Þt in the depth-averaged parabolic model given as 1.0.
cm D 0:4 is used in the modified mixing length model. c"0 D 3:6 is used for all
three k-" turbulence models. All five turbulence models reasonably predict the
main flow around the spur-dyke. However, the recirculation flows simulated by
the five models do have significant differences. The depth-averaged parabolic
model over-predicts the strength of the backward flow near the wall around the
cross section of x=b D 6. The modified mixing length model provides a better
prediction for the velocity than the depth-averaged parabolic model. The standard
k-" turbulence model under-predicts the length of the recirculation zone. The
results of the non-equilibrium and RANG k-" turbulence models are very close
to each other, and better than the results from the standard k-" model.
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Fig. 2. Simulated Flow Patterns around a Spur-Dyke

Fig. 4 shows the contours of eddy viscosities calculated by five turbulence
models. The patterns of the viscosity contours from three k-" turbulence models
are very similar. The eddy viscosity calculated by the non-equilibrium and RNG
k-" turbulence models are very close to each other, but the eddy viscosity by the
standard k-" turbulence model is larger. The eddy viscosity by the depth-averaged
parabolic model has larger values in the main flow than those calculated by the
other four models, while the modified mixing length model gives very large eddy
viscosity around the tip of the spur-dyke.
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Fig. 3. Measured vs. Calculated Flow Velocities around a Spur-Dyke

Case 2: Flow in a Sudden-Expanded Flume

The flow in a sudden-expanded flume was measured by Xie (1996) and her col-
leagues. The experiment was conducted in a cement-coated flume, with a length
of 18 m, width of 1.2 m and slope of 1/1000. Half the flume width in the upper
part was blocked, forming an expansion of the flume width from 0.6m to 1.2 m at
the location of 7.7 m from the entrance. The flow discharges were 0.01815 m3/s
and 0.03854 m3/s in two experimental runs. The computational mesh has 121ð36
nodes, part of which around the expansion is shown in Fig. 5. Figs. 6 and 7 show
the comparisons of the measured and calculated depth-averaged velocity profiles
along six cross sections in two experimental runs. The non-equilibrium and RNG
k-" models generally provide good results. They perform the same in this case and
the previous spur-dyke case, with the same coefficients being used. The standard
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Fig. 4. Calculated Viscosities Velocities around a Spur-Dyke

Fig. 5. Computational Mesh in the Sudden-Expanded Flume
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Fig. 6. Measured vs. Calculated Flow Velocities in the Sudden-Expanded Flume

(Q = 0.01815 m3/s)

k-" model also provides good predictions in this case. The depth-averaged para-
bolic model still over-predicts the strength of the backward flow in the recircu-
lation zone. The modified mixing length model gives better prediction than the
depth-averaged parabolic model, after its empirical coefficient cm is adjusted to
1.1.

Case 3: Flow in the Fall River

The Fall River is located in Rocky Mountain National Park, Colorado. The study
reach was about 100 m long, consisting of two opposite bends. The radius of
curvature of the first and second bends was 11.0 m and 13.5 m, respectively. The
channel width at bankfull stage was about 9 m (Thorne et al 1985). The river was
covered with coarse sand. The flow discharge was 4 m3/s, which was at bankfull
stage. The water surface level at the outlet was 2.61 m. Fig. 8 shows the river
planform and the computational mesh.
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Fig. 7. Measured vs. Calculated Flow Velocities in the Sudden-Expanded Flume

(Q = 0.03854 m3/s)

Fig. 8. Computational Mesh (Coarse) in the Study Reach of the Fall River
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Fig. 9. Flow Field in the Fall River Calculated using the Standard k-" Model

In this case, the coefficient Þt in the depth-averaged parabolic model is given
as 0.6. cm in the modified mixing length model it is specified as 1.2. The c"0 in
three k-" turbulence models is set as 1.8. Fig. 9 shows the flow pattern calculated
by using the standard k-" turbulence model. The main flow is specified along
the left bank in the entrance, and it does not change in the first bend and in
the transitional stretch, but it turns to the right bank (outer bank) in the second
bend at just about the bend apex. Two recirculation zones are produced. A very
small one is in the transitional stretch, and a bigger one is located behind the
apex along the inner bank of the second bend. The flow patterns calculated by
using four other turbulence models are similar to that shown in Fig. 9. All five
turbulence models capture the major features of the flow.

Fig. 10 shows the comparison of the eddy viscosities along the cross section
CS-5A calculated by the five turbulence models. The eddy viscosities calculated
by the three k-" models are very close to each other, but significant differences
are found among the k-" models and the zero-equation turbulence models. Fig.
11 shows the comparison of the measured and calculated flow velocities in six
cross sections. Because the convection is dominant in this case, even though the
eddy viscosities calculated by the five turbulence models are obviously different,
the velocities predicted by using the five models are close to each other. All the
simulated velocities agree reasonably well with the measured values.

It should be noted that a relatively coarse mesh is used in the simulation.
This is due to the consideration that the flow in a natural river is simulated. In
order to investigate the influence of mesh size, a refined mesh is also used. This
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Fig. 10. Calculated Eddy Viscosities in CS-5A

Fig. 11. Measured vs. Calculated Velocity in the Fall River



196 W. Wu, P. Wang, N. Chiba

is obtained from the coarse mesh by adding one node between each two nodes in
longitudinal and transverse directions. However, the flow patterns and velocities
calculated using these two meshes have no significant difference.

Case 4. Flow in the Dommel River

The study reach in the Dommel River in the Netherlands is 285 m long, containing
two opposite bends of almost 90o, with a short straight reach in between and long
straight reaches upstream and downstream. The channel width is almost constant,
approximately 8 m at bankfull stage. Fig. 12 shows the planform of the study
reach. The computational mesh consists of 151 ð 26 nodes. The flow discharge is
1.4 m3/s, and the water elevation at the outlet is 26.55 m. The flow was measured
by de Vriend and Geldof (1983).

Fig. 12. Sketch of the Study Reach of the Dommel River
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Fig. 13. Calculated Flow Field in part of the Dommel River (Standard k-" Model)

Fig. 13 shows the flow pattern through the two bends calculated by the stand-

ard k-" turbulence model. The flow occurs in the central part while the blank

parts along two banks are dry zones. Four other models give very similar results.

Fig. 14 shows the comparison of the measured and calculated depth-averaged

velocities in six cross-sections, the locations of which are shown in Fig. 12. The

coefficients of the five models in this case are the same as those used in the case

of the Fall River, as presented in Table 1. Again, the velocities predicted by the

five models are very close to each other, having reasonable agreement with the

measured data.

Table 1. Summary of Model Coefficients used in Test Cases

Depth-Av. Modified Standard Non- RNG
Test Cases Parabolic Mixing k-" equilibrium k-"

Model Length Model Model k-" Model Model
Spur-Dike Þt D 1:0 cm D 0:4 c"0=3.6 c"0=3.6 c"0=3.6

Sudden-Expansion Þt D 1:0 cm=1.1 c"0=3.6 c"0=3.6 c"0=3.6
Fall River Þt D 0:6 cm=1.2 c"0=1.8 c"0=1.8 c"0=1.8

Dommel River Þt D 0:6 cm=1.2 c"0=1.8 c"0=1.8 c"0=1.8
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Fig. 14. Measured vs. Calculated Velocities in the Dommel River

7. Conclusions

Two zero-equation turbulence models and three k-" turbulence models for

depth-averaged 2-D river flows have been compared in this study. The two

zero-equation turbulence models are the depth-averaged parabolic eddy viscosity

model and the modified mixing length model. The three k-" turbulence models

are the Rastogi and Rodi’s (1978) depth-averaged 2-D standard k-" turbulence

model, as well as the depth-averaged 2-D non-equilibrium and RNG k-" turbu-

lence models derived from Chen and Kim’s (1987) and Yakhot et al (1992) 3-D

turbulence models following Rastogi and Rodi’s depth-averaging approach.

The comparison in two natural rivers with simple channel geometry shows that

the flow velocity distributions predicted by the five turbulence models are very sim-

ilar. However, the simulated secondary flow features around a spur-dyke and in

a sudden-expanded flume calculated by the five turbulence models are found
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to be obviously different. The depth-averaged parabolic eddy viscosity model
over-predicts the strength of the backward flow in the recirculation zone, while
the modified mixing length model gives reasonable prediction if its coefficient is
adjusted. The standard k-" turbulence model under-predicts the length of recir-
culation zone behind the spur-dyke, but provides good prediction in the case of

sudden-expanded flume. The non-equilibrium and RNG k-" turbulence models
provide better results for the flow with high shear strain than the standard k-"
turbulence model.
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