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Abstract

A new mathematical model for prediction of a two-dimensional wave motion in shal-
low water is presented herein. It can be applied to investigate shoaling, diffraction,
refraction, breaking, bottom friction and wave run-up on a beach, as well as mass
transport and orbital motion. The model also includes an oblique wave approach
to the shore and irregular bottom topography. Such engineering constructions as
seawalls, breakwaters and groins are simulated numerically. Simple results of compu-
tations, shown in graphic form, indicate possible practical applications of the model.

Key words: swash zone, shallow water, wave transformation, Lagrangian approach,
two-dimensional model

Notation
c — shallow-water wave celerity,
f — bottom friction coefficient used in a quadratic formula,
bi% — Dbottom friction coeflicient used in a linear formula,
FL — sum of all forces acting on a water parcel,
g — gravitational acceleration,
h — water depth at point P(x, y),
Nimax — maximum water depth,
hyo — water depth along the onshore boundary,
hyp — water depth along the offshore boundary,
hyo — water depth along the left-side boundary,
hy — water depth along the right-side boundary,
ht — water depth at point P(x’, yl),

H — incident wave height,
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indication of a node at numerical grid in X direction,
unit vector parallel to X direction,

indication of a node at numerical grid in Y direction,
unit vector parallel to Y direction,

wave number,

length of the left- and right-side boundary,

length of the onshore and offshore boundary,
incident wavelength,

mass of a water parcel,

water pressure at point P(x,y),

air pressure,

water pressure at point P(x%, yb),

momentum of a water parcel,

position of a parcel till initial instant ¢t = 0,
position of a parcel at time ¢,

wave radius,

maximum wave run-down height,

maximum wave run-up height,

critical surface steepness of a wave front,

surface projection of a water parcel on XY plane,
still water level,

time,

wave period,

flow velocity at point P(x, y),

flow velocity at point P(x%, yL) i.e. water parcel velocity,

horizontal component of velocity of a water tongue tip,
volume of a water parcel,

cross-shore co-ordinate, component of a parcel position to

t =0 as well,
cross-shore component of a parcel position,

longshore co-ordinate, component of a parcel position till

t =0 as well,

longshore component of a parcel position,
vertical co-ordinate,

angle of a uniformly sloped bottom,

angle of wave incidence at the offshore boundary,
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At — time step,

Ax — mesh spacing in X direction,

Ay — mesh spacing in Y direction,

Z — water surface elevation at point P(x,y),

x0 — water surface elevation at junction of SWL with a bottom
slope, i.e. at P(x =0, y),

¢k — vertical displacement of a water tongue tip,

cL — water surface elevation at point Pt yh,

& — cross-shore component of displacement of a parcel,

&0 — cross-shore component of displacement of a water tongue
tip,

0 — water density,

0 — displacement of a parcel,

T — bottom shear stress at point P(x,y),

L — bottom shear stress at point P L, yt,

) — longshore component of displacement of a parcel,

Vxo — longshore component of displacement of a water tongue tip,

) — angular frequency.

1. Introduction

Previous works (Kapinski and Kotodko 1996, Kapinski 2003) have presented a
mathematical model for prediction of a surface wave motion in shallow water.
The subject of the analysis were one-dimensional waves approaching the shore
over a varying bottom depth. Dissipation of wave energy was modelled in the form
of bottom friction and bore-like breaking. For the simulation of shear stress at
the bottom, two formulas were tested. In the first case, the shear stress depended
linearly on depth-averaged parcel velocity and in the second one quadratic de-
pendence was employed. The wave breaking phenomenon was predicted as a
moving hydraulic jump (bore). It was realized by reducing a local surface gradient
at the wave front. In consequence, the maximum inclination of the wave front
did not excess a given value and a breaking wave height diminished towards the
shoreline.

The main property of the model, however, distinguishing it from other mod-
els, is a hybrid Lagrangian-Eulerian approach to the description of a wave and
wave-induced water motion. Governing equations are derived on the basis of mo-
mentum and mass conservation laws expressed in the Lagrangian sense, but some
further analysis is carried out in the Eulerian meaning. One of the advantages of
the model, resulting from the adopted approach, is a direct description of water
particle displacements (trajectories) and, in consequence, of their velocities and
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accelerations. Another property is the accuracy of modelling of moving boundar-
ies. It is especially interesting in the case of precise prediction of hydrodynamic
phenomena that occur at the shoreline, e.g. wave uprush-backwash, wave reflec-
tion and interference with oncoming waves. Moreover, the hybrid treatment of
the governing equations enables us to identify mass transport as a down-wave
mean flow velocity. All these phenomena, although modelled simultaneously, can
be analysed separately or jointly depending on a formulated problem.

This paper takes into account a two-dimensional mathematical model for pre-
diction of a wave motion in the shallow-water area. The newly elaborated model
is a development of the aforementioned description into the longshore direction.
It enables analysis of different phenomena related to an oblique wave propagation
and run-up on a beach slope, as well as resulting water and orbital motion over a
two-dimensional bottom. Obviously, all properties of the one-dimensional model
are retained. For the simplest hydrodynamic and bathymetrical condition classical
wave equations are derived, whereas for a more general case a numerical model
has been elaborated. Selected results of simple numerical computations are also
given.

2. Theoretical Background
2.1. Fundamental Equations

A detailed description of the preceding model, on which the current description
is based, can be found in Kapinski (2003). Herein, only the main principles are
repeated and next an introduction to a two-dimensional Lagrangian-Eulerian ap-
proach is given.

Water flow, for which physical continuity is assumed, is observed in relation
to the Cartesian orthogonal co-ordinate system. The system is expressed in a
Eulerian sense i.e. its co-ordinates are fixed in space. In general, the description
presented in this paper remains in compliance with the so-called de Saint Venant
model for which inviscid water and vertically linear distribution of pressure are
taken. In addition, propagating waves have to satisfy the condition of small vertical
parcel accelerations.

A sketch of the model is shown in Fig. 1. Vertical Z-axis intersects the
offshore-directed X-axis at the junction of SWL (still water level) with the beach,
and the Y-axis is laid at the straight shoreline. The initial and current position of a
selected water parcel is painted in grey. Depth, water surface elevation and bottom
shear stress at the motionless position P(x, y), occupied by the selected parcel un-
til initial instant, are denoted as &, ¢ and ty,, respectively, whereas the parameters
corresponding to a moving parcel position P(x’, yL) are signed by the superscript
Lie.: ht, &L and th,. A displacement of a parcel is given as p = p{&, ¥}, where
& and ¢ are the perpendicular and parallel to the shore horizontal components.
In a similar way, water elevation at P(x = 0, y) is denoted as &g = ¢(f,x =0, y).
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Parcels occupying this position till initial instant, # < 0, describe excursion of a wa-
ter tongue tip on a beach. Their displacements are denoted as py0 = p{&r0, ¥xo0},
showing also instantaneous tongue tip elevation ngo as well as maximum run-up
and run-down heights in the extreme positions: R,, = max¢k, Rioun = mingk.
Additionally, water depths below SWL (i.e. for z < 0) are taken as positive. Fig-
ure 2 may also be useful in visualisation of some parameters related to a parcel,
treated here as an elementary particle in a kinematic environment.
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Fig. 1. Sketch of the model

The equations complying with the momentum and mass conservation laws,
expressed in the Lagrangian meaning, are as follows:

D—
—pL = FL 1
Dt ' (1)
D
—m- =0, 2
D ()
where:
_ __ L L
pL=/dem =/vaLdV , 3)
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Fig. 2. Sketch of particle displacement

L
mt = / ptdV 4)
VL
L Stok
B - okes operator,
pL, vl mk, pL' — momentum, velocity, mass and mass density of a trav-
elling parcel,

FL — sum of all forces acting on a parcel.

Because of the assumption of incompressibility, p” is taken to be constant for
all parcels and in the forthcoming analysis, for shortening of notation, it will be
denoted as p.

The model presented assumes two-dimensional, depth-averaged water flow.
Thus, water and orbital velocities are described as follows:

¢
1
= m/i(r,x,y,z)dz, (5)
h
é-L
— 9P 1 I L L _L
v zazm/vll(t,x Y, )dz. (6)
hL

Assumptions of non-viscidity and small vertical accelerations give:

pt=po+pg(tF—2"). (7)
Moreover, external surface forces in the model have been limited to the action

of friction at the bottom and bore-like breaking at the free water surface. Thus,
we have:
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Fl =t} st + ok st (8)
where the bottom surface S© can be described by the following equation with
sufficient accuracy (cf. Fig. 4):

St =dxtd,y*. 9)

Now, the conservation equations (1) and (2), adjusted to the model conditions,
assume the following form:

%D
p(ht +b) dextdyyt = =
— (n* + ¢") dex*dyy*gradp” + TLd, de L+ dhdotdyt,
phdxdy = p (hL + é'L) dxdeny’ (11)
where:
axL 0 P
dxt = ~ dx = « +$)dx = ( ég)dx (12)
0x 0x

Lk ap+Y) LAY
STy @ (Hay)y (13)

The formulas for bottom shear stress and wave breaking employed here have
been rewritten from the one-dimensional model (Kapinski, 2003) and adapted to
the two-dimensional conditions:

dyy

— linear bottom friction (rf_l; ~ v_L>:

- p
rfLr = —prhE, (14)
where: [ fy]=1/s and f < w (after Voltzinger et al 1989),
— 2
— quadratic bottom friction (rj{‘r ~ (vL) ):

00|00 p
% =30 2|3 (1)
— bore-like breaking:
. 0, grad¢t < S,
‘L'bl; = ) (16)
pgh (grads™ — Sp.), gradst > S,
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where:
gl act
octo 8t oy -y -
L_ _ _ 0x
grad 7 = A 8yL] B o T oy’ (17
1+—= 1+ —
0x ay
Spr — critical surface steepness of a wave front responsible for dis-
sipation intensity,
i,j — unitvectors in X and Y direction, respectively.

The term (16), included to the governing equations, does not permit steepen-
ing of the wave front over a chosen value Sp,.

After simple rearrangement of (10) and (11) we have a set of three scalar
equations:

8§L L L
ﬁ =—g W Tfrx + Tprx (18)
o2 1+§ p(hL-i-é'L)’
0x
acl
G T 1 B2 (19)
= ety
0
h
—ht, (20)

¢t =
A B
(”a)(”a)

with three unknown quantities: £ and y which denote components of a parcel
displacement since the initial position P(x,y) and ¢* as a water surface elevation
corresponding to the current position of the parcel P(x’, yL).

2.2. Simplifying Assumptions

To obtain the solution of the set of Egs. (18), (19) and (20), two simplifying
assumptions are adapted to the model. The first assumption imposes small dif-
ferences in displacements of neighbouring parcels, however, magnitudes of the
displacements of the parcels are not limited. It can be written as follows:

)" 21
(87) < =
where: p =pl&, ¢}, 7 =7{x,y},
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or in scalar notation:

982 99\ 2
— 1L,{— 1. 22
() <1(5) < 2
Now, the following condition can be adopted to the model as valid:
1 p
—=1- 8—‘_’. (23)
1422 '
or

The scalar equivalent to (23) is:

1 0 1 0
14+ = S A4 Y
0x ay
The second simplification is connected with a bottom surface for which the

following condition is imposed:

a%h ht
< = (25)

=

where: h =h (x,y).

The scalar form of (25) is:
3*h N 39%h N 39%h < ht
0x?2 oxdy  0y?2 E2 42
As a consequence of (26), an expansion of a water depth h” = hl (x + £,y + )

in the Taylor series can be shortened to the form:

oh  oh
hL=h+Ea+w@. (27)

(26)

Taking the condition (26) into account, two kinds of bathymetry are acceptable
in the model:

e plane bottoms including horizontal, gently inclined or steep slopes,
e non-planar, gently bending bottoms also with inflexion points included.

This means that barred bottoms as well as submarine ridges and canyons can
be modelled, however, both aforementioned limitations have to be satisfied then.
In addition, a boundary condition at the shoreline, describing a vertical wall, has
been derived numerically. This enables prediction of a wave motion in the case
of a vertical cliff or a seawall founded on the sea bed. Selected examples of
acceptable bathymetry are sketched in Fig. 3.
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h=const. and vertical cliff oh/ox=const., oh/oy=0, oh/ox=const., oh/dy=const.,
or seawall, oh/ox>>oh/dy,
oh/oy=const., barred bottom, submarine ridge, submarine canyon,

Fig. 3. Examples of simple bathymetry
2.3. Governing Equations

The substitution of (24) and (20) into (18) and (19) and subsequently dropping
negligible terms down yields:

9 (h¥) 0t | T+ T
= —gh , 28
oz - My T, (28)

0 (hy) 0sh | oy + Tory
= —gh . 29
Py $h=s A (29)

Whereas the substitution of (24) and (27) into (20) gives:
a (h d(h

0x ay

The combination of differentiated (28) after x, (29) after y and double differ-
entiated (30) after ¢ yields:
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() ) U o0t
¢t ox N ay ) ox dy (1)
02 8T ox £y P '

A set of Egs. (28), (29) and (31) constitutes a complete description of a wave
and water parcel motion. Moreover, on the basis of displacements of parcels
p=p(t,x,y), flow velocity v =v (¢, x,y) in the whole computational domain is
calculated. The motion of both plane and circular waves can be simulated here,
however, in this paper, analysis has been restricted to the first type only.

To confirm correctness of the governing equations a simple derivation is given
below. Taking a constant water depth into account, 4 = const., and neglecting the
loss of wave energy 77, = T, = 0, Eq. (31) may be simplified to the form:

82 hé-L 82 hé-L 82 hé-L
—( ) h (x2 ) +gh ;yz ) (32)

a2 8T

where the term gh is shallow-water wave celerity c.
For the same assumptions, the substitution of (30) into (28) and (29) yields:

9% 3%&
oz = 8hoa (33)
a2y a2y

Equations (32), (33) and (34) are one- and two-dimensional forms of the clas-
sic wave equation, respectively. They are the simplest description of mechanical
disturbances spreading in a uniform medium.

3. Numerical Model
3.1. Grid Formulation

As mentioned, an Eulerian co-ordinate system has been adopted in the model.
The computational area, taken until initial instant as a rectangle, is covered by a
“stretching” grid system in which nodes travel with corresponding to them local
flow velocities. This means that initially rectangular meshes are experienced in
displacement and deformation i.e. they are expressed in the Lagrangian sense. A
sketch of the mesh used in the model is shown in Fig. 4. Governing equations
(28), (29) and (31) have been solved numerically by means of the finite difference
method in which an explicit scheme is used.
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Fig. 4. Transformation of an initially rectangular mesh

3.2. Stability Criterion

Numerical stability requirement for the difference approximation of Eq. (31) is
taken after Potter (1973) and adjusted to the model conditions:

Ax? + Ay? AX? + Ay
At <09 |2V g, BTV (35)
2ghmax A max

where:
At — time step,
Ax, Ay - mesh spacing to initial instant, t =0, in X and Y direction,
respectively,
Nimax — maximum water depth.

For simplicity, only the value of a wave celerity ¢max = +/ghmax has been taken
here. It enables to assume a constant time step of computations At in the whole
numerical grid. The coefficient equal to 0.9 in Eq. (35) is based on numerical
experiments and takes into account the maximum contraction of meshes during
computations in relation to their initial size.

3.3. Boundary Conditions

Quite different conditions exist at boundaries surrounding the computational do-
main. The bottom surface is assumed to be rigid (i.e. motionless) 4 = & (x, y) and
impermeable. Whereas at the free water surface a constant air pressure, py =
const., is taken. An initial landward boundary agrees with the straight shoreline
(cf. Fig. 5). For the condition 2 (x = 0,y) = 0, Eq. (31) simplifies to the form:

L L L L
82§x16 g 8hx0 8&'}{6 B l a (tfrx + fbrx) N a <tfry + Tbry) (36)
or? ox ox p ox Ay ’
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Fig. 5. Side boundaries in a numerical model

It is worth emphasising here, that Eq. (36) is derived from a general equa-
tion governing wave motion and no additional assumptions or numerical tricks
are used at the landward moving boundary. Equation (36) is expanded with a
forward difference approximation, contrary to the interior of the computational
area, where a centred difference analogue is used.

The left-side boundary is assumed as a permeable due to wave and water
motion and the following condition is adopted:

L
20 _ const. (37)
dy
Thus neighbouring nodes outside the computational area at each time step of
computations are described as follows:

5i,Lj:—1 = 2§i,Lj=0 - 5i,Lj:1’ (38)
where:
i — node number in X direction,i =0, 1, 2,....1 — 1, I,
j — node number in Y direction, j = 0 corresponds to all nodes on the

left-hand boundary.

At the seaward boundary a small-amplitude wave motion is generated. Waves
appear and start their motion at the line indicated in Fig. 5 as the wave start line,
therefore they arrive to the boundary with both a delay and partially developed
water elevation. The boundary condition is as follows:
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¢ =¢t @, x =1,y) =

H . (y_)’) . (y_y) .
—sin|w (|t — sin , > sin
- 2 |: ( \/gth \/gth (39)
b= s
0, t <~ sin 8
V8 th
where:
B - angle of wave incidence,
hyp — depth at the offshore boundary,
I, - length of the left- and right-hand boundary,
I, — length of the landward and seaward boundary.

By analogy, the condition at the right-hand boundary is derived as follows:

&=t (txy =1)=

E sin |:a) (t - G~ cosﬂ>i| (l —*) cos B (40)
2 V&hys ~ Ve&hys
(lx )
V8 yB

where:
hyp — water depth on the right-hand boundary.

Conditions (39) and (40) have been written for the simplest case, i.e. constant
depth along the boundaries. For an arbitrary depth the equations are much more
complex and will thus be dropped here.

The initial condition assumes no motion and still water level (SWL) by time
t=0:

E<0,x,y)=¢ ¢ <0x,y)=¢"¢=<0xy) =0, (41)

where: x €< 0,1, >,y €e<0,], >.
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4. Examples of Numerical Solutions

Several results of numerical computations are presented herein. They are pur-
posely given for simplified wave and bathymetric conditions, to show simulated
phenomena pellucidly. In all examples sinusoidal wave trains are generated at the
seaward boundary with height H = 1.0 m and period 7 = 10 s. They are spreading
in a numerical tank filled with water at rest by the initial time ¢+ = 0. Moreover,
space and time steps of numerical computations amount to Ax = Ay = 1.0 m,
At = 0.1 s, respectively.

The simplest example is shown in Fig. 6. where waves approach the shore
perpendicularly over a uniformly sloping bottom. The bathymetry is sketched in
Fig. 6A, whereas Figs. 6B and 6C show the wave train at time =15 s of its
propagation. The succeeding pictures (Figs. 6D and 6E) give different stages of
wave run-up and run-down. The modelled area is a 150 metres square. As the
propagation can be simulated with a 1D model, the wave profiles are identical for
any cross-section. It is worth emphasising that no numerical disturbances appear
at the boundaries.

The aim of the next example is to show the refraction of a wave train in the
case of a non-uniform bottom depth. The bathymetry is shown in Figs. 7A, 7B
and 7C, whereas the transformation of a wave profile is given in Figs. 7D and 7E.
Bottom surface is described with the function:

h = —4 +sin (7‘(1;—0) x sin <”1z'_0) , (42)

giving the maximum elevation in the middle point of the square. Noticeable bends
of lines of constant water elevation are observed here. They indicate a slower wave
celerity at smaller water depths.

The succeeding example shows an oblique wave motion in a basin with a
constant water depth (2 = 4.0 m) ending in a vertical wall (cf. Fig. 8A). Figures
8B and 8C present three specific areas of a water surface denoted with the letters
A, B and C. The first area represents a still water surface in which a wave train
has not yet arrived. The second area shows progressive waves approaching the
shore, whereas in the area denoted with the letter C, standing waves are forming
as a result of superposition of the oncoming waves with the reflected ones. A
noticeable disturbance of a water surface of the order of a wave height is observed
at the left-hand boundary. A detailed numerical analysis, not presented here, has
shown that the disturbance only appears during wave motion that is not parallel
to the side boundaries. The problem can be eliminated indirectly by the proper
extension of the computational domain.

The influence of a groin system on wave motion is shown in Figs. 9 and 10.
The sketch of a bathymetry is given in picture 9A. A cross-section along the
groin is indicated in grey. In numerical computations it has been assumed that
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the groins are high enough to avoid wave overtopping and in addition, no wave
transmission across them is possible. Figures 9B and 9C show a wave train during
its propagation perpendicular to the shore. The initial phase of a standing wave
formation has been caught here. In this case the groins do not influence the motion
at all. Thick lines in Figs. 9B and 9C indicate locations of the groins within the
computational area.
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Fig. 9. Perpendicular wave run-up in the case of groins
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Figures 10A through 10F show wave motion for the same conditions as in Fig.
9. The only difference is the angle of a wave approach set here at 30°. The suc-
ceeding pairs of pictures show different stages of wave motion. Propagating waves
are trapped in the areas between groins and then they behave independently,
compared with the neighbouring gaps. Because of a disturbance occurring on the
left-hand boundary the adjacent area has to be treated with limited reliability.

The last example presents the ability of the numerical model to simulate wave
diffraction caused by emerged obstacles. Figure 11 shows a wave motion in the
rectangular area with a breakwater indicated with a thick line in pictures B, D and
E The 150 metre long breakwater is located 150 metres from the shoreline. In
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Fig. 10. Oblique wave run-up in the case of groins
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Fig. 11. Wave motion in the case of a breakwater
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the model it has been assumed that landward and seaward walls are vertical and
high enough to inhibit overtopping. As in the former examples, the succeeding
phases of wave propagation are given in pairs. Pictures A and B show incipience
of wave interruption by the breakwater, whereas in pictures E and F the waves
are deep within the area sheltered by the barrier.

5. Summary

A one-dimensional model of wave motion in the hybrid Lagrangian-Eulerian de-
scription has been developed here to treat the second horizontal dimension. All
properties of the preceding description have been retained. New elements in the
present model are oblique propagation, diffraction and refraction of plane waves
over a two-dimensional bottom. It has been proved that for the simplest case
governing equations simplify the classical wave equations. For other conditions
a numerical model has been elaborated. Finally, the selected results of simple
numerical simulations have been presented. They show wave behaviour during
propagation over both constant, and irregular bottom depths, as well as during
uprush-backwash on vertical and inclined shores.

In all examples the orbital motion and mass transport were computed auto-
matically, although they have not yet been examined. A simulation of bottom
friction and wave breaking is also possible here as the analogy to the solution
presented in the one-dimensional model.
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