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Abstract

The paper deals with the problem of bearing capacity of a strip footing based on
the random subsoil. The solution has been obtained in a framework of the slip-line
method. In order to include randomness of the soil medium, a modification of the
method of characteristics is proposed. In such an approach, the stochastic finite dif-
ference method based on the Monte Carlo technique has been adopted. It enables
including a spatial variability of soil properties into the analysis and to determine
its influence on the variance of the ultimate collapse load. It is assumed that the
soil medium is purely cohesive and only its cohesion can be considered as a ran-
dom field. The simulation algorithm of multi-dimensional random field, based on the
diagonalisation of the covariance matrix by a transformation using a lower-triangle
matrix is described. The problems of the medium discretization and stabilization of
the solution are discussed.
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1. Introduction

Studies on the bearing capacity problem started over sixty years ago. Many dif-
ferent methods utilizing the concept of perfect plasticity have been proposed. For
frictional soils, the Coulomb criterion is widely used, whereas for ideally cohes-
ive soils, it is the Tresca criterion which is primarily used for the yield condition.
Combining respective criterion with the equations of equilibrium gives a set of
differential equations of plastic equilibrium determining the basis of the slip-line
method (Chen 1975). Together with the stress boundary conditions, this set of
equations can be used to investigate the stresses in the soil beneath the footing.

The analytical closed form solution of the slip-line equations can be obtained
only for special cases of soil and boundary conditions. For other cases, many ap-
proximate methods have been developed. One of the most effective, so called
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method of characteristics, is based on a finite difference approximation. Soko-
lovskii (1965) applied this method to different soil mechanics problems and ob-
tained a number of interesting solutions of the bearing capacity problems, for
which it is impossible to find closed form solutions. The method of characterist-
ics is extensively described by Abbott (1966) and its application in geotechnical
engineering by Szczepifiski (1974).

In nature, soils intrinsically involve randomness and uncertainty. Its spatial
variabilities are evident and can significantly influence the computing results. Con-
siderable effort has been recently made to improve models of the soil properties
by describing them as random fields. In such approach, the method of solution
of bearing capacity problems should be reformulated into the stochastic one. So,
method of characteristics should be suitably modified and stochastic finite differ-
ence method employed.

The stochastic approach to the bearing capacity of strip footing in a frame-
work of the slip-line method, is proposed in the paper. It is assumed that the
soil is ideally cohesive and behaves as the perfectly plastic material. Method of
characteristics in conjunction with stochastic difference method is presented. The
simulation algorithm proposed by Wilde (1981) is described and problems of soil
medium discretization and stabilization of the solution are discussed.

2. Bearing Capacity Problem

The problem under consideration is the determination of the ultimate bearing
capacity of a single, strip footing founded on the plane surface of a semi-infinite
mass of soil that is assumed to be perfectly plastic material. This assumption
was taken only for convenience and compatibility with another paper written by
the author (Przewlécki, Dardzifiska 2002), concerning probabilistic limit analysis.
The footing and its equivalent static scheme are illustrated in Fig.1. It is further
assumed that the load acting on the footing is normal and uniformly distributed
and increases until penetration occurs as a result of a plastic flow in the soil.
The investigation is limited to the bearing capacity of the strip footing on the
horizontal bearing area. In practice, the footing is usually based at some depth /
(Fig. 1a), which corresponds to a uniform load acting in the vicinity of the footing
q = yh (Fig. 1b).

3. Method of Characteristics

The method of characteristics is an effective, numerical method for the solving
of bearing capacity problems. In practice, in order to determine components of
the stress tensor at every point of a soil medium (for a two-dimensional state of
strains), it suffices to solve two equilibrium equations and the equation of the
yield condition. Closed form solutions of the above defined problem of bearing
capacity can be obtained using the method of characteristics.
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Fig. 2. Characteristics net for strip footing

There is a state of active pressure in a rigid wedge AEC which is formed
directly under the footing (Fig. 2). A state of passive pressure (4BD) occurs in
the region loaded by g. There is a fan of radiuses and arcs rolled from points 4
and C (edges of footing) between these two regions (ADE). In the limit analysis
theory these three regions are qualified to different boundary problems that are
known respectively as the Cauchy, characteristic with a singular point and the
mix problems. According to Szczepinski (1974), the bearing capacity of the strip
footing based on the ideally cohesive subsoil equals:

P=[2c(1+4m/2)+ yh]B (1)

where: P — unit bearing capacity, ¢ — cohesion of soil.

Assuming an associated flow rule, this is even a so-called exact solution, in
the framework of the theory of limit analysis. Unfortunately, it is not possible
to include the spatial variability of soil in Eq. (1), as the cohesion is constant
and in the stochastic approach corresponds to random variable. For the cohesion
considered as the random field, special derivations must be performed.

In the method of characteristics, two dependent variables 6 and s, instead
of three stress components oy, oy, T,y , are introduced. The variable é denotes
orientation of the major principal stress direction and the variable s represents a
mean stress less overburden pressure and can be expressed as follow:
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According to the procedure described by Szczepifiski (1974), some derivations
for a case of random subsoil were performed by the author (Przewlécki 2001) and
the following set of two quasi-linear, stochastic partial differential equations was
obtained:

ad d ad a0
= + = cos (26) — 2cin (20) L + % sin (20) + 2c cos (26) = =0
ox  ox dax  dy ay 3)
d 0 a6
=2 o (20) + 2csin (20) — + L sin (28) + 2c cos (26) L. 0
ay oy dy = ox dx

This set can be replaced by two sets of stochastic ordinary differential equa-
tions:

a_d_y___sin(29)+1 =tan(9+£)

"dx ~ cos(26) 4 )
_d_y__sin(ZG)—l_tan G—E
“dx ~ cos(20) ( 4
and
0
a:ds+2cd9——cdx+a—cdy=0

dc ac
ﬁds—26d9+5dx—ady=0

It is worth noting, that Kuznicov (1958) derived similar equations for the
analogous boundary problem, but deterministically non-homogeneous medium.

Equations (4) describe two families of characteristics, i.e. lines denoted by o
and B. For ideally cohesive soil, characteristics are inclined in each point of soil
medium under the angle 7/4 in the direction of the major principal stress. For
the considered problem of strip footing, characteristics are shown in Fig. 2. It is
worth noting that the equations of characteristics (4), derived for the stochastic soil
medium are the same as in the deterministic case (Szczepinski 1974). However,
they have a stochastic nature, as dependent variable 6 appearing here is a random
field. It is shown in the sequel that the expression defining this variable differs
from a deterministic one. Contrary to the deterministic case, additional terms
containing cohesion increments, i.e., partial derivatives of cohesion with respect
to x and y, appear in the stochastic equations (5). These derivatives impose the
necessity for the assumption of a differential random field.

.
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4. Stochastic Finite Difference Method

Usually, in order to solve any boundary problem by the method of characteristics,
equations (4) and (5) must be solved one after the other. First the direction ratios
of characteristics are computed and then dependent variables # and s, defined
along characteristic, are calculated. Next, the components of the stress tensor and
finally the bearing capacity are found.

Equations (4) and (5) can be effectively solved using the finite difference
method. However, due to the randomness of the cohesion, considered as the
random field c(x, y), the dependent variables s(x, y) and 6(x, y) are also random,
thus the stochastic finite difference method should be used. In this method a
number of points sufficiently close to each other is chosen. Knowing the position
of two neighboring points (x1,y1) , (¥2,y2) and attributing to them dependent
variables s1, 61 and s, 62 , the coordinates of neighboring point (x, yy) and
variables sy , @y are sought. Replacing the derivatives and differentials occurring
in (4) and (5) with finite differences, two sets of recurrent equations are obtained:

. xltan(Bl+%)—x2tan(92—%)+y2_)’1
M:

tan () + &) — tan (6, — ) (6)
g
ym =y1+ @y —x1)tan (91 + E)

and attributing to this point dependent variables:

8 + 52

SM +cp (61 —62) + (epq —c1) cot [2 (91 + 1)jl +

4

—(cp — cz) cot [2 (92 — %)]=0 (7)

Oy =6 — o e + S Bl cot [2 (01 + E)]=0
2CM CMm 4

It should be noted that the expressions (6), defining the coordinates of point
M are the same as in the case of a deterministic soil medium. However, dependent
variables 6 and 6, appearing here are random. The considerable differences for
the stochastic and the deterministic soil media occur in expressions (7). In the
case of a deterministic soil medium, only the first two terms of each expression
(7) exist.

The calculations according to (6) and (7) should be performed for all pairs
of neighboring points. Finally, it allows determination of states of stresses in the
defined region. For the stochastic soil medium it is tantamount to realization of
the random field. Only application of the Monte Carlo technique enables determ-
ination of the statistical characteristics of the bearing capacity.

The procedure based directly on the Monte Carlo technique is the simplest
stochastic variant of the finite difference method. It is more effective the lesser
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the number of simulations of random field is needed to achieve the stabilized
solution. This number depends on the assumed random variable generator, as
well as the simulation method. Many random variable generators have been de-
veloped and usually are accessible in a form of utilizable computing programs.
There are also several simulation methods that generate multi-dimensional ran-
dom fields. The straightforward method of simulation of random field proposed
Wilde (1981). This method, based on diagonalization of the covariance matrix by
a transformation using a lower-triangle matrix, has been adopted in the present
paper and is described in the following.

5. Random Field Simulation

Consider first the soil cohesion to be a one-dimensional random field c(x) with
normal distribution. Replacing it by a random series Cy, the n-dimensional random
variable is obtained. It can be written using matrix notation in the following form:

c'=[0C, G, ... G (8)

where C is a random column matrix and the index T denotes transpose.
Such n-random variable is defined by its expected value:

E[cT]=C =[C1.Ca ... Cs] ©)
And the covariance matrix:
kit Kigooeeenrkin
K= E[(C -¢)(c-¢) T] _ | ko Kageekan (10)
it Mgesoerdin

Let us assume that both expected value and the covariance matrix are known.
Without loosing generality one can introduce a new n-dimensional random
variable Uy, Uy,...,U, defined by the relationship:

Ui =G -C; (1)

where the bar denotes averaging.

The expected values of the variables U; are equal to zero and the covariance
matrix K remains unchanged.

A simple diagonalization algorithm of the covariance matrix can be obtained
assuming linear transformation of independent n-dimensional random variables
M, V,...,V, into dependent variables Uy, U,. . .,U,, according to the formula:

V =pU (12)
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where p is the lower-triangular matrix having units on the diagonal:

1 0 0...0
pa 1 0.0

p= P31 p32 i [ 0 (13)

Pnl DPn2 pn3--1

The determinant of the matrix p is equal to one, thus the matrix is non-singular.
As random variables Vi, V4,...,V, are independent, they are also uncorrelated.
The covariance matrix of such variables, denoted by d, is diagonal and can be
presented in the form:

d 0 0...0
d= 0 d» 0...0 (14)
0 0 0...d,

where d; is the variance of the independent variable V.
The covariance matrix of n-dimensional random variable U, given by the linear
transformation (12), is defined as follows:

K = pdp” (15)

The matrix d can be found by multiplying expression (15) by inverse matrices:
T

a=p'K(p™') (16)

The formulae defining elements of matrices p and d can easily be worked out
by expanding equation (15). Substituting (10), (13) and (14) into it yields:

1 0 0.....0 di 0 0.0 1  pa p3se...Pni
P21 1 0...... 0 0 dz 0...... 0 0 1 P32 DPn2
P31 P32 1...... 0 0 0 d3 ...... 0 0 0 DPn3 =
Pl Pn2  DPn3eeesil 0 0 0..d, 0 0 0.1

(17)
Performing matrix multiplications and comparing corresponding elements, the
following expressions are obtained:
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dy =kn

d1p21 =k12, d1p31 =k13, ...... ,d1p,,1 =k1n
dz-l—dlp%l =k (18)
dap3zz +dip3ipa1 = ka3, ..., dapm2 +d1pn1 P21 = kan

It is easy to notice that from the expressions, other relationships can con-
sequently be worked out. In general, unknown elements are defined as follows:

di =ky

i1
di=ki— ¥ pide for i =2,...n
k=1
dipjr=kyj for j=2,...n (19)
-1
dipji = kij —kZ Pipikdy for j>i,i,j=2,..,n.
=i

Knowing matrices p and d, the simulation algorithm for n-dimensional ran-
dom variable U based on the linear relationship between random variables U and
V (12), is obtained. The normal random number generator with expected value
equal to zero and standard deviation equal to one can be presumed. It enables
the obtaining of n statistically independent random numbers, which should be
multiplied by standard deviation (square root of d). Thus, n-dimensional realiza-
tion of the random variables Vi, V3,..., V; is obtained. Multiplying matrix V by
the matrix p, the n-dimensional random variable in a form of the column matrix
U is obtained. Adding to it the expected value according to (11), transforms this
matrix into the realization of one-dimensional random field C.

The covariance matrix of random field (10) can be considered to be the dis-
crete values of correlation function K(x1, x2). For the stationary case it becomes
a function of the separation distance. Let us consider two different correlation
functions:

R(r) = exp (~Alz)) (20a)

R(t) = (1 + Alz]) exp (—Alz]) (20b)

where: A is the correlation decay coefficient and t the distance between two points
of soil medium.

Decay coefficient A indicates the character of random field variability. For
small values, a field is slow-speeded which indicates high correlation and for
A approaching infinity, there is lack of correlation and the random field is
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high-speeded. Some realizations of the one-dimensional random field, for both
correlation functions (20) and two values of the decay coefficients, obtained by
the described above simulation algorithm, are shown in Figs. 3 and 4.
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Fig. 3. Realization of the non-differentiable, one-dimensional random field
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Fig. 4. Realization of the differentiable, one-dimensional random field

The correlation function defined by (20a) is non-differentiable and by (20b)
is a differentiable one. According to (3), the random field of cohesion must be
differentiable, thus the latter is considered in the following analysis. Comparing
Fig. 3 and Fig. 4, it can be seen that the realization of the differentiable random
fields is smoother. Smoother realizations can be obtained for random field of
higher order of differentiability. For such fields, the stochastic difference method
applied in the paper would be much more effective.

It is assumed in the present analysis, that the cohesion is an isotropic and
homogeneous, two-dimensional random field. Thus the described simulation al-
gorithm should be generalized for such a case.

So, let us now consider the two-dimensional random function u(x, y). It can
also be replaced by the random series U;; defined at the points of intersections
of lines of the rectangular net (Fig. 5). Two natural numbers are assigned to each
point, corresponding to its coordinates: x = jAx and y =iAy.

Assume that there are n points at the abscissa and m points at the ordinate.
For the numbering shown in Fig. 5, random field U can be written in the form of
the following matrix:
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Fig. 5. Rectangular net of discretization

Cg{) Cor oo Con_1
C= Cm C11 ...... C1 n—1 (21)
Cn-10 GCn-11 ore Cn-1,n-1
It can be alternatively presented as the column matrix:
C’=[Cy, Ci,.. Cuoil (22)
where each element is also the column matrix:
Cf =[G G-l (23)

Similarly, the expected value C and the random field U can be defined as
follows:

ET=[CO,61,...,6,,,_1] , € =[CioCit.-Cin] (24)

UT = [Up, Uy, oo, Umet] U] = [Vl Ui 1] (25)

According to the notation introduced, the covariance matrix can be presented
in the form of a block matrix:

Koo Koi o Ko m-1
K = Kio Kif  aww K m-1 (26)
Kn-10 Kn-11 . Kn-1m-1

where elements K; ; are defined as follows:
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Ui[)UjD UrOU_,'l ------ UFUUj‘n—l (27)
E UinUjo brrlUfl ------ UitUjn
Uin 1U;D Urn lUjl ------ Utn—lUj n—1

The matrices on diagonal correspond to covariance matrices of particular rows.
Now, the proposed simulation algorithm can be utilized for the two-dimensional
random field. However, in the case of a matrix, which elements are also matrices,
the lower-triangular matrix p should also be defined in the form of a block matrix:

Po.o 0 e 0
p=| PO 0. (28)
Pm-1.0 Pm-11  «eeee Pm-1,m-1

where p;; is the lower-triangular matrix with units on the diagonal.

In such notation, matrix d also becomes a block one with diagonal matrices
on the diagonal. Following the same steps as (15)-(19), the following expressions
are finally obtained:

poodoply = Koo
Po, 0d0P1 o = Ko,1, po, odopz o =Koz, ...
P1. 0d0P1 ot P 1dipl =K (29)

p1. Odﬂpz ot P, 1d1P2 1 =Ki2

Matrices poo and dy can be determined from the first row of (28). Then
consequently matrices p; o and py,o from the second row, then matrices p; 1 and
d; from the third and so on. In this way, analogical to (23) relationships can be
worked out and the simulation algorithm defined.

6. Discretization of Soil Medium

In the formulation presented, the fundamental equations of the method of char-
acteristics are given by expressions including finite differences. Such an approach
closely depends on fixing the values of these differences, or in other words, with
the assumption of a computing step, i.e., with the discretization of soil medium.
The computing step is assumed in two stages. In the first stage, section AB in
the Cauchy problem, is divided into N parts, usually of the same length Ax. This
is tantamount to the assumptions N—1 characteristics from each family, in tri-
angles ABD (Fig. 2). In the second stage, in the problem with a singular point,
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any decrement of the angle 6 is divided into M parts of 86 each. This means that
M characteristics of g family, in the fan ADE shown in Fig. 2, are assumed. So,
for assumed decrements Ax and 86, the discretization is governed by two para-
meters M and N, giving together N-1 characteristics of family o and 2(N-1)+M
characteristics of family 8.

The exemplary net of characteristics for deterministically homogeneous soil
medium, given values M, N and ¢ = 2 kPa distributed at the section of length L
= 8 m, is shown in Fig. 6. The calculations were performed for a weightless soil
medium and cohesion equal to ¢ = 10 kPa.
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Fig. 6. Net of characteristics for M = 15, N = 15

The bearing capacity was computed for several pairs of parameters M and N
and the results varied in range P = 53,416-53,516 kPa. Thus one can conclude
that the influence of discretization for the deterministically homogeneous medium
is inconsiderable.

Adequate discretization is of great importance in the case of the stochastic
soil medium. In this case, the character of spatial variability of the random field
describing a soil medium is very significant. For a high-speeded random field, the
network of characteristics should be considerably thickened. For example, a net of
characteristics for one realization of the isotropic and homogeneous random field,
described by the correlation function (21) is shown in Fig. 7a. The calculations
were performed for the following data: average cohesion ¢ = 10 kPa, standard
deviation o, = 2 kPa, correlation decay coefficient A =1, M =3 and N =5
and g = 2 kPa, L = 8 m, as before. A more detail description of the course of
computing is given in another paper written by the author (Przewl6cki 2001).

It can be seen in Fig. 7a that the characteristics of the same family intersect.
This is an incorrect solution, having no physical meaning. The net of characteristics
should be more dence, as shown in Fig. 7 b-d, for the same realization and different
values of parameters M and N. It is seen in these figures that besides parameter
M, the N also significantly influences the range B. For a sufficiently dense division,
i.e., for high values of parameters M and N, the range B tends to the settled value
(B = 8 m).
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Fig. 7a. Net of characteristics for stochastic soil medium (M = 3, N = 5)
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Fig. 7b. Net of characteristics for stochastic soil medium (M = 10, N = 10)
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Fig. 7d. Net of characteristics for stochastic soil medium (M = 15, N = 15)
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Parameters M and N should be fixed numerically, assuming for a given random
field that their values for which the average intensity of load p and its range B
will stabilize. The results of calculations B and p generally differ in succeeding
realizations of a random field. The expected values and variances can be obtained
using the Monte Carlo method.

It is worth noting that contrary to the deterministic case, the characteristics
for the stochastic medium become broken lines, forming curvilinear triangles and
a fan of irregular arcs and radiuses.

7. Stabilization of the Solution

The correlation decay coefficient determines the rate of random field variation,
and for its small values the random field is slow-speeded. The rate of random field
variation is extremely important in the case of the method of characteristics based
on the stochastic finite difference method. It is necessary to assume a sufficiently
small computing step for a high-speed random field. It makes calculation much
more time-consuming,.

The expected value and standard deviation of a unit bearing capacity versus
the number of random field simulations, for A = 1, M = 3 and N = 5 are shown
in Fig. 8a and 8b, respectively. It is seen in these figures that good stabilization
is achieved for 1000 random field simulations. Similar results were obtained for
other values of decay coefficients A.
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Fig. 8. Expected value and Standard deviation of unit bearing capacity versus a number of
random field simulations

The expected value and standard deviation of a range of footing B versus the
number of random field simulations, for A = 1 are shown in Figs. 9a and 9b,
respectively. Again, it is seen that quite good stabilization is achieved after 1000
random field simulations. However, it should be emphasized, that the width of
footing B depends not only on soil properties, but also on the assumed range of
the loading g, resulting from foundation depth. In the case considered range L
was assumed to be equal to 8 m. The computations were performed for M = 3
and N = 5, i.e. for a “rough” discretization of the soil medium. For a fine mesh,
the range of footing should approach B = 8 m.
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Fig. 9. Expected value and standard deviation of range of footing versus a number of random
field simulations

8. Influence of Spatial Variability of Soil Properties on Bearing Capacity

Most essential is the influence of spatial correlation of cohesion on the standard
deviation of the unit bearing capacity. The change of the standard deviation of
the ultimate bearing capacity, being a product of the unit bearing capacity and
the range of footing (p x B), versus correlation decay coefficient is shown in Fig.
10. In this case, standard deviation of the ultimate bearing capacity decreases for
diminishing correlation and tends to zero for its lack.

200
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Fig. 10. Variation of standard deviation of the ultimate bearing capacity versus correlation decay
coefficient A

It should be noted that for real soils, the decay correlation coefficients are of
the order of A = 1 — 2 (Przewlécki 1998). This means a rather small correlation
of soil properties. Thus the assumption of full correlation (only possible in limited
analysis methods) is not reasonably acceptable. It confirms the necessity of applic-
ation of the proposed methodology, i.e., the stochastic method of characteristics.

9. Conclusions

An extremely important influence on results of the stochastic analysis proposed
in the paper is due to soil discretization and rate of the random field variation.
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Soil discretization in the considered case of a bearing capacity of strip footing can
be controlled by two parameters, describing the computing step in the Cauchy
problem and a number of characteristics in the problem with a singular point.
The latter one significantly influences the range of the footing. The “rough” dis-
cretization can lead to unrealistic results. The rate of random field variation is
extremely important in the case of the method of characteristics based on the
stochastic finite difference method. For quick-speed random fields, it is necessary
to assume a sufficiently small computing step. Unfortunately, it makes calculation
much more time-consuming. For slow-speed random fields, calculations become
similar to those as in the deterministic case.

The effectiveness of the method of characteristics based on the stochastic finite
difference method depends on the random variable generator and the simulation
method assumed. The simulation algorithm, proposed by Wilde (1981), has been
successfully applied in the analysis and good stabilization was achieved for 1000
random field simulations.

The method of characteristics based on the stochastic finite difference method
enables the including of spatial variability of the soil medium, into the stochastic
slip-line method. The results obtained give an additional measure to the bearing
capacity and enable computation of the probability of failure of strip footing. The
standard deviation of bearing capacity decreases with increasing values of the
decay coefficient and tends to zero for lack of correlation.
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