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Abstract

The authors performed laboratory investigations and the analysis of the transforma-
tion of deep-water waves in the flume of the Institute of Hydro-Engineering. Special
wave trains were generated by our piston-type wavemaker. Due to the transforma-
tion the wave profiles changed along the path of propagation. At first, the changes
appeared at the ends of the wave train. Far from the generator they intruded into
the middle interval of initially regular waves. Finally, the whole wave train consisted
of a set of irregular groups. To study the instability problem the wave trains were
modulated by superposition of wave groups with very small amplitudes. The number
of waves in a group was a very important parameter. When the number was proper,
even small amplitudes of modulation resulted in strong development of amplitudes
of wave groups. In our theoretical analysis the non-linear Schroedinger equation was
used. The comparison of laboratory and theoretical results proved that this equation
is useful but it does not describe the phenomenon in the best way. There have been
many attempts to construct a numerical procedure that describes the propagation
of water waves. Very often the numerical algorithm is not stable and the results of
calculation diverge from the expected behaviour. The authors believe that in many
cases the instability is due to the physical loss of stability of the wave train and thus
it is necessary to have a good understanding of the physics of the studied motion.
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1. Introduction

The new, very precisely shaped, wave flume of the Institute of Hydro-Engineering
is 64 m long, 0.6 m wide and the height is 1.40 m. It has a programmable piston
type generator. During the first experiments in the new facility Sobierajski (1999)
tested the wave processes by measuring the wave profiles along the flume. In Fig. 1
parts of measured piston motion and generated deep water waves are shown with
the corresponding amplitudes of Fourier series. The first graph corresponds to
the time series of horizontal displacements of the piston and represents a cosine
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Fig. 1. Samples of the recorded wavemaker’s motion (L; = 1.20, A = 0.6, L;/h = 2) and wave
profiles recorded along the flume (at x = 7L; and x = 40L;) with related amplitudes of the
Fourier components
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curve with one component in the corresponding spectral density. The surface
elevation in the neighbourhood of the generator is depicted in the second graph
and corresponds to a standard Stokes wave with two significant components. The
third graph shows the measured time series of surface elevation far from the
generator. Irregular wave groups appear in the experimental time series and the
corresponding spectral density has many components. The regular waves became
unstable. The aim of the experiments performed in the year 2001 was to study
the transformation and stability of the waves.

The water waves are dispersive, which means that the speed of propagation of
monochromatic waves depends upon their frequency. The properties of dispersive
and non-dispersive waves are described and discussed by Witham (1974). Lighthill
(1965) was one of the first to study the transformation of non-linear deep-water
waves along their ways of propagation. His analysis led to the conclusion that the
regular wave is not always stable and there is a region of instability. Often the
stability criteria and the corresponding instability regions carry the name “Light-
hill”.

Three-dimensional ocean waves are complicated and it is not easy to study
their properties. Two dimensional water waves generated in a wave flume are much
simpler and easier to describe by methods of applied mathematics. The deep-water
waves are the easiest cases, their description is comparatively simple. To study
the non-linear behaviour and to describe within the standard continuum theory
of hydrodynamics, one has to investigate waves that do not break but are close
to breaking. For short (deep water) non breaking waves the component with the
double frequency is about 5% to 10% of the first one. Thus it is possible to reduce
the problem to a two-dimensional description (one dimension in space x and
one in time ) and the behaviour may be described by a two-dimensional partial
differential equation. The starting point of such descriptions is the dispersion
equation that relates the angular frequency to the wave number and the amplitude
of a monochromatic wave.

Benjamin and Feir (1962) demonstrated that a regular continuous deep-water
wave might be unstable to modulations of its envelope. The standard method
of stability analysis of motion was used. Infinitesimal perturbations are con-
sidered and their growth indicates instability. In the next paper Benjamin (1967)
presented a generalisation. Zacharov 1968 and independently Hasimoto and Ono
(1972) showed that the stability problem might be described by the non-linear
Schroedinger differential equation. This equation is very useful in the study of
soliton behaviour and therefore it is very useful in descriptions of large modula-
tions that are found in experiments.

The initial condition corresponds to water at rest. The piston of the wave
generator starts to move with initial zero velocity and zero acceleration. The
amplitude grows slowly in time. Finally the prescribed asymptotic value is reached
and kept constant and then a decay interval is attached, such that the decrease
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of amplitude is slow and smooth. Wilde and Wilde (2001) describe the details in
their paper. The suitable time series is calculated on a computer and fed into the
control system of the generator. The transformation of wave trains generated in
such way was investigated along the flume in experiments and compared with a
theoretical solution.

In the standard instability theory infinitesimal perturbations are considered.
Usually small sinusoidal displacements are introduced in the control time series
and the changes due to the modulations are calculated along the path of propaga-
tion of the wave. We applied such a method in our experiments. After the stability
was lost the modulations grew to large amplitudes. We studied such transforma-
tions extensively.

The phenomenon of wave groups is still investigated. For example Chereskin
and Mollo-Christensen (1985), Shemer et al (1988) and Stansberg (1992) consider
the development of non-linear wave groups. Now the experimental facilities are
much better and developments in computers make extensive data processing and
analysis easier.

2. Description of Experiments

In the experiments the water depth was # = 0.60 m. The changes in surface
elevations were measured at fixed points by wave gauges as functions of time. In
the experiments the sampling frequency was 50 Hz. Seven gauges were placed in
the flume in several different schemes. The details are described in an internal
report. In this paper the described results correspond mainly to the below-specified
scheme. The first gauge was placed at 4 m and the second at 8 m in front of the
piston at rest. Five consecutive gauges were placed at distances equal to multiples
of 8 m from the second one. Thus the distance from the position of the piston at
rest to the last gauge was 48 m. The consecutive gauges and their positions were
denoted by the symbols S1, S2, ... up to the last one, 87, in a scheme.

The motion (not modulated) of the piston was fixed by a calculated time series
fed into the control time series of the generator, which had an interval of growth
(5 wave periods) a regular interval (35 wave period) and an interval of decay (8
wave periods). Such a form of wave trains was chosen to obtain smooth transition
to the regular interval. The measurements at the consecutive gauges showed that
spreading of changes from the intervals of growth and decay into the internal
zone of wave train was observed.

To study the stability problem, initial modulations of the control time series
of piston motion were introduced in the form of wave groups. Experiments were
repeated for the following ratios of amplitudes of modulations a,, to the amplitude
of the regular wave ag: a,,/ap = [0.00, 0.05, 0.10, 0.15, 0.20, 0.30], and for the
following numbers of waves in a group: nt = [4.00, 4.50, 5.00, 5.36, 6.00, 7.00]
where nr is the number of waves in a group in time. In these experiments the
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interval of growth had 9 wave periods, the interval of regular waves had 86 and
the interval of decay had 12 in the control time series for piston motion. The
experiments with the non modulated time series showed that the reflection was
negligible and thus it was possible to extend the length of the wave train.

3. Basic Theoretical Relations

The basis of the analysis is the dispersion relation for the Stokes wave within
the third order of approximation, as given in many textbooks. For example, the
formula given in Werhausen & Laitone (1960) taken from a report by Skjelbreia

(1959) is:
8 + cosh 4kph )
2 2
0=8 ( ¢ 85inh4kgh @)

where wy is the angular frequency of the regular non-linear wave, kg = 27/ Ly, ko
is the wave number and Ly the wavelength, 4 is the depth of the water, g the
acceleration in the gravity field and ag is the amplitude of the first harmonic.
It should be stressed that in the analysis it is assumed that the amplitudes are
small. The relation (1) may be expressed in terms of the following dimensionless
parameters: koh, koag and w?/(gkp). When K = 2/ (n1L) it may be assumed that
the water is deep and the following simplified dispersion relation may be used

wf = gko (1+a3kg +--). )

If the amplitude ag is so small that kgap <« 1 it is sufficient to take into account
two terms of the expansion and to neglect the higher order terms denoted in (2)
by the three dots.

In the standard stability analysis of non-linear waves the dispersion relation
may be expressed by a Taylor series expansion around the linear solution that
corresponds to the case a; — 0, w — «; and k — k. The following relation gives
such an expansion.

w—w,=ug(k—lq)+a(k—1q)2+ﬁ(a2—a,2), 3)

where v, = dw/dk is the group velocity, @ = 0.58%w/3k? and B = dw/d(a?) cal-
culated at a =0, @ = «y and k =K. For the linear case of deep water waves
according to Eq. (2) @y = v/gk and the coefficients in the expansion (3) are
_t_a e gl
vg_Zw;_Zlq' o= 8’ ﬁ_zwzk,. 4
The equation (3) is the basis for the construction of the corresponding
non-linear Schroedinger equation as given in the paper by Yuen and Lake (1982),
namely
i(Ae+vAs) +ady — BlAPA =0, (5)
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where A (x,t) =a (x,t)exp[if (x,t)] is the complex amplitude and a (x, ¢) is the
modulus, 6 (x, t) is the phase and the subscripts ¢+ and ,x denote the derivatives
with respect to time ¢ and x. The complex amplitude is defined in such a way that
the complex function

Zx,t)=Ak,t)exp[i (lox — ayt)], (6)

corresponds exactly to the first term in the description of a regular Stokes wave.
Thus it follows

Ax,t) =agexp {i[(ko — k) x — (wo — en)t]}. (7)

It is easy to verify that the substitution of this relation into the differential
equation (5) leads to the following relation

(w0 — @) — vg (ko — k) — o (ko — Kg)? — Bad = 0.

This expression corresponds exactly to the dispersion relation (3).

For a regular Stokes wave the dispersion relation is an equation that fixes
the angular frequency if the wave number and the amplitude are known. Let us
call a wave number controlled test when ky = k;. For this case it follows from the
dispersion relation (3) that

1
wy —w = ﬁag = iw;k,-zafz,, (8)

and the complex amplitude for the regular wave train is given by
1
Ax,t) =apexp (—i Ek,zaéwlt) =apexp(—ipt). )]

This is the standard case studied in theoretical consideration.

In our laboratory tests the piston motion is prescribed as a function of time
and this corresponds to a frequency controlled test. Thus we assume that wp = wy
and the value of ky — /& has to be calculated from the dispersion relation (3). The
solution of the second order algebraic equation yields

ko — kg = —Zk;[l ~J1- k,zag] ~ —kiad (10)

where the last term is obtained from a binomial expansion and is a good approx-
imation.
It follows that the approximated complex amplitude in the frequency-controlled
test is
A(x,t) = agexp(—ikjaix). (11)
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If the exact expression in (10) is used for the complex amplitude then the
Schroedinger equation is exactly satisfied. If the approximated expression (10) is
used, terms with higher powers of the amplitude have to be neglected. Substitution
of x = vt into the expression (11) leads to the relation (9). Thus both expressions
are the same when the distance x is replaced by the product of time with the group
velocity. It must be stressed however, that this similarity follows from the binomial
expansion in the relation (10), which is true for very small values of the amplitude.

Let us assume that the complex amplitude in the wave number controlled test,
given by the relation (9), is changed by the addition of functions with infinitesimal
amplitudes e, e_ according to the formula

A, 1) ={ao+exp (V1) [e. exp (KE) + e_exp (—iK&)]} exp (—ipt), (12)

where § =x — vt, V with dimensions 1/s is a constant, K with dimension 1/m
is the wave number of the group K = 2x/(n, L) and where n; (not necessary
an integer) is the number of wavelengths in the group considered in space. This
expression is obtained as a superposition of infinitesimal modifications on large
displacements corresponding to the second order Stokes wave. The amplitudes of
the disturbances and the value of the dimensionless quantity V't have to be very
small. Thus the value of exp(V't) is very close to the value of the function 1 4 V.

Upon differentiation of the expression (12) and substitution into the Schroe-
dinger differential equation, a complex number relation is obtained, that corres-
ponds to the following set of two real homogeneous equations

(Q%Kz ‘klza%w!) cos K(x —vgt) —VsinK@x — vgt)
1
W

8Kk?

[ar]-[2)

A non-trivial solution exists if the determinant of the equation is zero. Then

Vecos K(x — vgt) K?sin K(x — vgt) (13)

we obtain
1?2 K? | K?
— | AR — e | = 14
= e Sk?]Sk? o
The unknown coefficient V is real if the value of K is in the interval
0 < K/k < 2v/2kay. (15)

This is the interval of instability as the disturbances grow in time according to
the expression (12).
The maximum value of V/wy is
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V 1
(Z) =34 (16)
max

W
and corresponds to the value of K/k given by the relation

(K/K)m = 2kiag. (17)

The relations (14)—(17) are standard expressions for the stability criterion.

In our experiments we control the motion of the generator as a function of time
based on the assumed frequency. Thus we have a frequency controlled experiment.
In this case the solution with the infinitesimal, superposed modifications (as in
the case of wave number controlled experiment (12)) may assume the form

Ax, 1) = {ao + (1 + Ux) [e, exp (1 K§) + e exp (=i K§)]} exp (—ik?agx) (18)

where U is an unknown parameter with dimension 1/m.

Upon differentiation of the expression (12), substitution into the Schroedinger
differential equation and neglecting terms with higher order terms in kja¢, a com-
plex number relation is obtained, which corresponds to the following set of two
real homogeneous equations

U K-
% cos K(x — vgt) @ sin K(x — vgt) (19)

[ere1-[8]

A non-trivial solution exists if the determinant of the equation is zero. Thus

we obtain
U2 KZ KZ
udBRng B % SOy i 20
a7 [’GO Sk}]Sk} L

Comparison of the expression (14) with (20) shows that V/U = wi/ (2k) = v,.
The ratio is equal to the group velocity.

The functions U/(2k) as functions of K/k and parameters kiag are plot-
ted in Fig. 2, where four curves correspond to four dimensionless numbers
kiag = [0.2356, 0.2094, 0.1833, 0.1571]. The intervals of stability depend upon
the values of kag by the relation (15). When the value of kjag increases the length
of the interval and the maximum value of U/(2k) increase. This is the standard
illustration of the stability criterion. In planing the experiments it is convenient to
change the independent variable. The functions U/(2k;)as functions of 2ky/K and

2
(K — ,Zag) cos K(x — vgt) —E sin K(x — vgt)
X
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parameters kjag are depicted in Fig. 3. The dimensionless numbers 2k; /K corres-
pond to the number of waves in a group in time nr (twice the number in space).
This graph shows directly how the deep water wave with a prescribed amplitude
is sensitive to the number of waves in a modification.
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To obtain an expression for the surface elevation in the modified case one has
to multiply the complex amplitude given by the relation (18) by exp [i (kx — wt)].
It follows finally that

Z(x,t) =agexp[i (kox — )] + (1 + Ux) ey exp {i [(ko + K) x—

@ + i) t]) + A+ Ux) e exp il — K0x — (@1 — m/mpel}, D

where nt = 2/k;/K is the number of waves in a group in time.

4. The Analysis of the Experimental Wave Transformation

The new wave flume has a piston type generator that is not very suitable for the
generation of deep-water waves. The waves discussed in this paper had a period
equal to 0.878 s, which corresponds in the linear dispersion formula to wavelength
equal to 1.20 m (depth & = 0.6 m). Thus the length of the non-linear wave,
depending on the amplitude, is slightly longer. It is assumed that at a distance of
4 m from the position of the piston the transformation into the deep water case
is completed and the measured wave at S1 may be considered to be a reference
wave.

The measurements of surface elevations for a long wave train with an almost
perfect interval of regular waves and comparatively short intervals of growth and
decay are depicted in Fig. 4. For these and the following curves when not directly
stated, the dimensionless parameter kag is equal to 0.196. The wave amplitude
ag is half the mean wave height in the regular interval as measured at gauge S2.
Changes along the flume in all three intervals can be observed. The diagrams for
the consecutive gauges are shifted in time by the group velocity that corresponds
to the speed of propagation of energy. The reference wave is the one measured at
gauge S1. It is similar to the diagram for piston motion. The measured surface el-
evation at §2 (4 m from the reference gauge) is similar and substantial differences
are only in the intervals of growth and decay. The waves move with phase velocity
while the energy moves with group velocity. Thus in these intervals the waves
propagate faster and there is no energy supply. The result is that the amplitudes
decrease. These effects may be seen in all those intervals in all other positions of
the gauges. It may be seen also that there are amplitudes that grow very fast with
distance. This is due to the non-linear effects that result in contraction. To obtain a
more detailed insight the initial intervals are zoomed in Fig. 5. From these graphs
can be seen how the changes move inside the regular part when the train moves
along the flume. The comparison of the measurements at the reference gauge S1
with smooth intervals of growth and decay with the measurements at succeeding
gauges up to S7 shows the extent of the transformations.

There is, of course, the problem of how the transformation is effected by the
choice of procedure that defines the way the waves grow and decay. To study this
problem one has to look at a suitable model that reproduces the experiments and
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may be used to find a set of solutions with changed parameters of growth and
decay. At this preliminary stage the non-linear Schroedinger equation was used
and the numerical solution for the amplitudes is compared with the experimental
data for a measured shorter wave train.

A computer programne was prepared for the solution of a special case of the
Schroedinger equation. It was based on the paper by Pelinovski and others (1988).
A short outline of the procedure is presented. '

Let us introduce the following transformation of variables and its inverse

E |l _[1 —vu x x| _[1 v &
L) Dbt e
In the new variables the differential equation (5) reduces to
iA; +adg —BIAPA=0. (23)

The transformed differential equation in the complex amplitude A4 as a func-
tion of £ and t is simpler. We have to take as the initial state, the measurements
at the reference gauge S1. |

Assume that for the time t = 0 the complex amplitude A4 (£, 0) is known from
the experimental data. Intervals with zero values have to be added in front and
behind the time series of the estimated amplitude. A periodic function is formed
with the length /.

A finite Fourier transform is calculated according to the formula

)
F(z,5) = % f A(z, &) exp (—is2nE /1) dE, (24)
0

where s is a set of integers from the interval [—n, n] and n are the Nyquist fre-
quencies corresponding to half of the number of points considered in the interval
of length . The inverse transformation is given by the formula

!
Az, £) = f F (z,5) exp (£2s /1) ds. (25)
0

Expressions (24) and (25) are written in the form of Fourier transforms. When
s are integers the relations go over to Fourier series.
Let us introduce the notation

!
1
Fua (w9 =1 f Az, £)12A (¢, &) exp (—is2n /1) dE, (26)
0
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and take the Fourier transform of the differential equation (23). It follows that
d
ot

In the differential equation (27) the first two terms are linear and the third
term is unknown. For the initial state the complex amplitude is known and the
Fourier transforms appearing in the third term, according to Eq. (24) can be cal-
culated. Now we may consider small steps Ar, apply numerical integration by
the trapezoidal rule and use estimation in steps and iterations to obtain a good
approximation. It should be noted that when the parameter g is equal to zero the
linear Schroedinger equation results and the Eq. (27) goes over to an ordinary
linear differential equation in the unknown Fourier transform. This differential
equation has a simple solution and when the third term is known the variation
of the constant of integration has to be considered to obtain a solution of the
non-homogenous differential equation. These transformations lead to a descrip-
tion by an integral equation that is based on the Schroedinger differential equa-
tion. The iteration procedure described in the above mentioned paper is highly
effective.

The results are depicted in Fig. 6. It may be seen that the solution reproduces
the behaviour and confirms the Schroedinger differential equation as a suitable
model to obtain an insight into the transformation.

Another problem is the stability of motion of the regular part. The regular
wave is a solution of the problem, but if there are discrepancies from the perfect
wave, some forms of the discrepancies may grow and thus the wave may become
unstable. If there is more “noise” in the flume the loss of stability may be more
easily observed. The measurements depicted in Figs. 4 and in 6 show that groups
begin to appear also in the regular part of the train at the last gauges.

i—F (1,5) + & s*F (t,5) + BF 424 (z,5) = 0. 27)

5. The Stability of a Regular Wave Train

In both theory and experiments, small modulations in the form of wave groups
are introduced in the initial state, then the wave profiles are measured by means
of propagation along the flume. Such experiments are depicted in Fig. 7. The
modulation of the piston motion corresponded to six waves in a group and amp-
litudes equal to 5% (c; = am/ao = 0.05) of the basic amplitude. The graphs clearly
illustrate the changes in the groups along the flume. The motion is not stable if
the infinitesimal modulations grow. The large changes that are seen at the end
part of the flume correspond to finite displacements and can not be considered
as superposition of infinitesimal displacements. The Schroedinger equation can
give only a simplified description, in full description finite transformations have
to be considered. Fig. 8 presents the results of measurements with the same wave
parameters, but with amplitudes of modulations increased to 15%. It can be seen
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that the gauge S5 presents the groups in the most advanced form and then in the
following gauges (56, §7) the modulations decrease. For the case of 30% initial
amplitudes modulation the development of groups is more restrained (Fig. 9).
These graphs show clearly that the influence of largeness of initial displacements
is important.

In Fig. 3 the region of instability is shown and the influence of the wave
numbers in the group on the growth rate is stressed. In Fig. 10 (as measured at
x = 26.671; =32 m) and Fig. 11 (as measured at x = 40L; = 48 m) the results
of measurements with 5% modulations are presented for different numbers of
waves n in the groups. The theory says that the development of groups is fastest
with groups of 5.36 waves. At distances equal to x = 26.67L; and x = 401 the
modulations with 6 wave periods yield the best developed wave groups.

Following the relation (21) the surface elevations at gauges S2 and $3 as
functions of time can be presented by the following expressions

j=4 j=4

Zy =) (ayj +idyj)exp (—iwpjt), Zy= ) (a3; +idsj)exp (—iwyjt). (28)
j=l1 j=1

The angular frequencies correspond to the elements of the row matrix
Q = [ws —wa/n1, w4, wg+wa/nr, 204 ], (29)

where, in the case considered the number of waves nr in a group is six. The
method of least squares is applied for approximation of the measured time series
by the relation (28). The sums of the first three components and sums of all the
estimated components are depicted in Fig. 12. Calculations showed that for the
two gauges considered the angular frequencies are the same and thus, in view of
the expression (21), the phases of the surface elevations at §3 may he expressed
in terms of the ones at 52 as

angle (Z3;) = angle{Zy; exp [i Kpj (x3 —x2)]}, (30)

where x3, x, are the distances from the generator to gauges $3 and 52, and K);are
the wave numbers corresponding to the components. Comparison of the relation
(30) with the corresponding relation (28) leads to the following values of the
elements of the row matrix K, =[3.580, 5.116, 6.648, 8.078]. The length of
the dominant wave component is L = 2x/K,7 = 1.23 m while according to the
expression (10) it should be 1.25 m. These values based on experimental data are
very close. It is easy to verify that the difference between K2 — Kp; and K3 — Kp2
is negligible and thus K, as appears in the relation (21), is equal to 1.533. The
difference between the values of (K1 + Kp3) /2 and K} is also negligible. The
ratio of K/K) is very close to 1/3 and thus the number considered in time is twice
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Fig. 9. The transformation of wave profiles along the propagation way. Modulated motion of the
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306 P. Wilde, E. Sobierajski, W. Chybicki, ¥.. Sobczak

file r2g4b11, wave gauge S5

Amplitude [cm] nr=4
I

AT TR R A IwIII'I!IIII"I‘\IlH\IYI‘I”IIH\N'I'Ill h \1I'HFI\IIIIE.‘h'lHHHI(uIWIML_‘I

6
% ] LSl
-2 Oy TN P B I YA L O YU NPy VIR Y
" ‘ = tis]
39 49 59 69 79 89 99 109 19 129 139
Qmplltude (em) nt=4,5 file r2g45b11, wave gauge S5
31 1
z ] Hllllilﬂ‘IlFI'I\HhI AATCRH ST I'IlllllwﬂN||\||\”|'|\'IIHIHwIIIl_ T, L
Lk By Iy O DU BV DN |
i v . t[s]
39 49 59 69 79 89 99 109 119 129 139
gmpdltude [em] Nt =15 file r2g5b11, wave gauge S5
4
2
0
2
4
-6 ' ' -
39 49 59 69 79 89 99 109 119 129 139
SAmpmude [em] ny = 5,36  file r2g54b11, wave gauge S5
4
2 -4
0 -
-2
4
-6
Amplitude [cm]
6
4 -4
2
D 4
% -
Amplitude [cm]
8
4
;
:3 T T T T t[s]
99 109 19 129 138

39 49 59 69 79 89

Fig. 10. The transformation of wave profiles dependent on number of waves n; in groups at
modulations ¢, = 0.05 as measured at the position S5 (x = 26.67L))



Laboratory Investigations of Deep-Water Wave Transformation ...

Qmp"‘“de [em] Ny=4 file r2gdb11, wave gauge S7

%: LT BT KN RITRTERI LG A RITTCA B IHIIH'ITI‘\HHI'I'\I.\HlIPL’.HIIPI\'|'|I1II|H|PITI\|H|HII|HIJ.‘ AN

2 D B o o D D v

-4 }

6 ‘ - - " " T ‘ T T —ts]
59 69 79 89 99 109 119 129 139 149 159

%mplifude [em] ny=4,5 file r2g45b11, wave gauge S7

4

5: .MIIHWHIh'lml.‘!llIIP.ImnlllIIHII'HIHIMMI!EII']l’lTIHH'ITI'!HIIH I'II!IIIHI\'I!IH\IIFI\.‘. Anne

3] LS BB B B e O P Y b v T

-4

| : , ‘ . : . . P — t[s]
59 69 79 89 99 109 119 129 139 149 159

J;melilude [cm] Ne=5 ne r2g5b11, wave gauge S7

4 ] (] l

% | ) TIH’I”MHHFI|IImIUlI|FITH|IIIFITMII||IIFIH.ullIIHM.’MIII\H\'IHI\II\‘I\THl'll.hIIhHN AAVALAA

-2 A PN VI

-4

% : : - : : . . : : ~ t[s]
59 69 79 89 99 108 119 129 139 149 159

gmplitude [em] Ny = 5,36 file r2g54b11, wave gauge S7
] [

2] - |
] pAD AR AARAREABARANTAILA TR RTARA B ARRIEAN .ITIﬂIl\‘IFI"I'IIHIH\‘I“II‘\ RARIATLTRA A TRICRRRA LS o

3] 1 OO TN LT T TR O S v v o cad i A

4

6 : ‘ . . . . . . : ~t [s]
59 69 79 89 29 109 119 129 139 149 159

Ampltuds o] Ny =6 file r2g6b11, wave gauge §7

)| | |

4 i

27 TTRI1 L1 Lo et mmmlnlmulmu.mnmll.'rwr!lulmll

3] L 1] ) LA L0 L) L ' ] A1) A

-4

£ , : : : . . , , : — t[s]
59 69 79 89 99 108 119 129 139 149 159

ﬁe\mplltuda [cm] ng=7 e rzg‘l’bﬂ wave gaugo s7

3] il

0 .,.‘m'u.n.numm [ Al ATAITA g AT 1rm\||rrmmurrmurmwnn.-um.m‘ml

3] 1] AL ] A Akl | A LN |l 1

4 { *

] T T ‘ T T T T r v it [s]
59 69 79 89 99 108 119 129 139 149 159

Fig. 11. The transformation of wave profiles dependent on number of waves »; in groups
at modulations ¢, = 0.05 as measured at the position 57 (x = 40L;)

307



308 P. Wilde, E. Sobierajski, W. Chybicki, L. Sobczak

Surface elevation at S2

CAAAAAMAAAN
BV ATV
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Fig. 12. The sum of three components wy — Aw, wg, wg + Awy (solid lines) and four components
(2wq added, dashed lines). At $3 the component 2wy is equal to zero

the number of waves considered in space. The non-linear Schroedinger equation
describes the behaviour correctly. It must be stressed that in this transformation
the modifications increase with distance, but remain very small.

In Fig. 13 the surface elevation as a function of distance from the generator
is plotted. The co-ordinates of the surface are calculated as the real part of the
sum of the first three terms with estimated parameters. The depicted envelopes
correspond to the absolute values of the complex expressions. It is assumed that
the amplitude and phase change linearly from their values at position $2 to S3.
Comparison of Fig. 12 with Fig. 13 clearly shows the difference of behaviour of
the groups in time and space.

Now let us look at the behaviour based on measurements far from the gener-
ator. To get an insight of the behaviour we measured the surface elevations with 20
cm spacing by a set of seven gauges. The measurements were repeated with the set
moved to new positions. To control the positions the last gauge corresponded with
the first in the preceding experiment. The corresponding measurements should
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Fig. 13. Surface elevation as the function of x calculated on the basis of three components of the
Fourier series at S2 (x = 8 m) and §3 (x = 16 m) and the corresponding envelopes

have the same values. There were differences. Thus, the measured time series at
positions § for k = 1, 2,... with distances from the generator x; = 40+ (k — 1) 0.20
covered the interval 40 m up to 49.6 m from the generator. The same time in-
terval of twelve waves (two wave groups) was chosen to obtain an approximate
description for all the positions of the gauges by addition of terms as given by
the expression (28). The absolute values of the components with angular frequen-
cies corresponding to the matrix (30) are depicted in Fig. 14. The corresponding
phases are shown in Fig. 15. It is worthwhile noting that the straight-line approx-
imation for the values of phases is very good. The straight-line approximations
for the absolute values is not as good, but it shows that the absolute value of
the component with the dominant frequency decreases, while the amplitudes of
components corresponding to the side bands increase.

The slopes of the phases of components correspond to their wave numbers.
The experiments indicate that the wave numbers do not change within the con-
sidered interval. The straight-line-approximation yielded the following row matrix
of slopes of the components: Ky = [3.520, 5.00, 6.540, 8.058]. The comparison
of this matrix with the matrix Kp calculated on the measurements at §2 and §3
shows that there are differences in the values of corresponding elements but the
differences are not large.

The position of the free surface estimated as the sum of three components
based on the amplitudes (Fig. 14) and phases (Fig. 15) within a straight-line
approximations are depicted in Fig. 16 by a solid line. The envelopes correspond
to the absolute values. The dashed lines illustrate the free surface calculated with
the time shifted by half of the dominant period. The number of waves in a group
in space does not exactly equal three as it should be within the simplified analysis.
Still the simplified analysis furnishes a reasonable estimate.
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An example of wave train as an interval of the measured time series of
length corresponding to five groups with six waves in each and the correspond-
ing amplitudes of the Fourier Series are shown in Fig. 17. In the stability ana-
lysis the dominant frequency wy and the two important side band frequencies
wq — Awy, wg + Awy are considered. All the other components are neglected. It
is worthwhile noting that the Stokes double frequency component goes over to a
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Fig. 17. An example of an interval of the measured time series at the position 57 (x = 48 m) of
five groups length with six waves in each and the corresponding amplitudes of Fourier Series
components

set of components with small amplitudes. It is obvious that three components can
not in detail represent a process that has so many components as is seen in the
Fourier Series.

6. Conclusions

1. The deep-water wave trains generated by piston type wavemaker have been
investigated. The behaviour is similar to that observed by Yuen and Lake
(1982) with waves produced by a paddle type generator in a wave flume
with smaller dimensions.

2. For the case of wave trains generated with a long interval of regular waves

between the intervals of growth and decay the transformations along the
flume start from the ends of the trains. The groups created intrude into the
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middle part of regular waves. The choice of a method of generation has a
significant influence on the wave group phenomenon.

3. As in standard procedures, initial modulations are introduced to discuss the
stability problem. The ratio of the amplitudes of the modulation and the
regular wave a,,/ag is an important parameter. Even a small value a,,/ay =
0.05 leads to very fast growth of groups and thus the regular wave is not
stable.

4. The non-linear Schroedinger equation describes the stability behaviour well.
The experiments with different numbers of waves in a group considered
in time confirm in general the theoretical regions of instability (Fig. 4).
However, our experiments indicate that the rate of growth of modulations
depends on the number of waves in a group and does not correspond strictly
with the theoretical value (Fig. 10, Fig. 11). Thus the Schroedinger equation
does not describe the real behaviour perfecty.

5. Experiments with large initial modulations show that there are substantial
differences in behaviour. The intensities of modulations change along the
path of wave propagation. In the vicinity of the wavemaker the modulations
increase and then decrease along the way of propagation. To describe these
phenomena it is necessary to consider finite initial modulations.

6. The Fourier series that represent the groups in measured wave trains (Fig.
17) indicates that the Schroedinger solution does not describe the behaviour
to perfection. For the waves with initial modulations with n waves in a group
considered in time and the dominant frequency wyp, there is a sequence
of important frequencies corresponding to the multiples of wy/6. In the
Schroedinger equation theory, the second Stokes’ harmonic is disregarded.
The measurements show that there are two large frequencies corresponding
to the Benjamin Feir side bands and they are accompanied by many terms
with smaller, but significant amplitudes. The neighbourhood of the second
Stokes’ harmonic is covered by these terms.

References

Benjamin T. B. (1967), Instability of Periodic Wavetrains in Non-linear Dispersive Systems, Proc.
R. Soc. London, Ser. A, Vol. 299, 59-75.

Benjamin T. B., Feir J. E. (1967), The Disintegration of Wavetrains on Deep Waters. Part 1.
Theory, J. Fluid Mech., Vol. 27, 417-430.

Chereskin T. K., Mollo-Christensen E. (1985), Modulational Development of Non-linear Gravity-
Wave Groups, J. Fluid Mech., Vol. 151, 337-365.

Hasimoto H., Ono H. (1972), Non-linear Modulation of Gravity Waves, J. Phys. Soc. Jpn, Vol. 33,
805-811.

Hasselmann D. E. (1979), The High Wave Number Instabilities of a Stokes Wave, J. Fluid Mech.,
Vol. 93, 491-500.

Lake B. M., Yuen H. C. (1977), A Note on Some Non-linear Water Wave Experiments and the
Comparison of Data with Theory, J. Fluid Mech., Vol. 83, 75-81.



Laboratory Investigations of Deep-Water Wave Transformation ... 313

Lake B. M., Yuen H. C., Rungaldier H., Ferguson W. (1977), Non-linear Deep-Water Waves:
Theory and Experiment. Part 2. Evolution of a Continuous Wave Train, J. Fluid Mech., Vol.
83, 49-74.

Lighthill M. J. (1965), Contributions to the Theory of Waves in Non-linear Dispersive Systems, J.
Inst. Math. Appl., Vol. 1, 269-306.

Pelinovsky E. N., Stiepanianc J. A., Filienkov S. E. (1988), Soliton Type Modulations in Dispersive
Waves (in Russian), Internal report Department of Theoretical Physics, Gorki University.

Shemer L., Jiao Haying, Kit E. (1988), Experiments on Non-linear Wave Groups Shoaling in a
Tank, Proc. of Coastal Engineering 1988, ASCE, Vol. 2, 645-655.

Skjelbreia L. (1959), Gravity Waves. Stokes’ Third Oorder Approximation. Tables of Functions,
Richmond Calif.; Council on Wave Research.

Sobierajski E. (1999), Testing of Wave Processes in the New Flume of the Institute of
Hydro-Engineering, Internal report, (in Polish).

Stansberg C. T. (1992), On Spectral Instabilities and Development of Non-linearities in Propagat-
ing Deep-water Wave Trains, Proc. of Coastal Engineering, 1992, ASCE, Vol. 1, 658-671.

Werhausen J. V,, Laitone E. V. (1960), Surface Waves, [in] Encyclopedia of Physics, Springer
Verlag, Berlin, Goettingen, Heidelberg.

Wilde P, Wilde M. (2001), On the Generation of Water Waves in a Flume, Archives of
Hydro-Engineering and Environmental Mechanics, No. 4, 69-83.

Witham G. B.(1974), Linear and Non-linear Waves, Wiley, New York.

Yuen H. C,, Lake B. M. (1982), Non-linear Dynamics of Deep Water Waves, Advances in Applied
Mechanics, Vol. 22, 67-229,

Zacharov V. E, (1968), Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep
Fluid, Sov. Phys. J. Appl. Mech. Tech. Phys., 4, 86-94.



