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Abstract

The paper concerns the non-linear problem of description of shallow-water waves
of finite amplitude. The description is based on the conservation-law formulation,
which seems to be particularly convenient in constructing an approximate solution
of the problem considered. The analysis is confined to the one-dimensional case
of waves propagating in water of constant depth. In the model considered, vertical
acceleration of the fluid is taken into account, and thus, the fundamental equations of
the problem are similar to those given by Boussinesq (Abbott 1979). The equations
differ from those frequently used in shallow-water hydrodynamics which are based
on the assumption of hydrostatic pressure. An approximate solution of the problem
is constructed by means of a perturbation scheme with the third order expansion of
the equations with respect to a small parameter. It is demonstrated that the solution
procedure may be successfully applied only within a certain range of the two ratios
defining wave height to water depth and the depth to wave length, respectively.
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1. Introduction

In describing a flow in shallow water, it is frequently justified to assume that the
flow is almost horizontal and thus it is reasonable to integrate the fundamental
equations of the problem with respect to the vertical direction, and finally, .to
consider a system of averaged equations corresponding to horizontal directions
only. In this way, a system of so-called shallow-water equations is obtained. In the
case of water waves, one can speak of the theory of waves in shallow water. It is
understood that in the latter case the approximate description is justified only for
relatively long waves of small amplitude. A classification of the description de-
pends on two length ratios: the amplitude of the wave to the water depth, and the
water depth to the wave length. In the literature on the subject two non-linear the-
ories of shallow-water waves exist depending on the level of approximation (Mei
1983). The first one developed by Airy and the other by Boussinesq and Korteweg
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and de Vries. In the Airy approach the fluid pressure is hydrostatic, while in the
second formulations a vertical acceleration of the fluid is taken into account. Obvi-
ously, the second formulation is a more general one. The Airy approximation may
be applied to very long waves, while the Boussinesq theory serves for moderately
long waves in shallow water. In the Boussinesq approach the vertical acceleration
of the fluid is described as an approximate. One of the simplest description is
based on the assumption that the magnitude of the vertical component of the
velocity varies from zero at the bottom to a maximum value at the free surface.
A particular choice of the description of the vertical velocity leads to a particular
form of the Boussinesq equations describing shallow water waves (Abbott 1979).
In shallow-water hydrodynamics there are also possible other restrictions which
can be imposed on the flow. For instance, the Korteveg and de Vries equation
has been derived on the assumption of the irrotational motion of the fluid corres-
ponding to one-dimensional propagation of a surface wave (van Groesen and de
Jager 1994). Most of the formulations of shallow water hydrodynamics mentioned
above, lead to a system of non-linear differential equations of fluid motion. In
order to integrate the equations, further simplifying assumptions are necessary.
For example, the system of differential equations for the one dimensional water
waves formulated by Boussinesq (Whitham 1974, Abbott 1979) has the form

he + Wh), =0,
1 (A)
u‘ + uux +ghx + gh(}hxu = 0,
where:
h - the water depth (A is the fluid depth at rest),

— the average horizontal velocity,

t, x — subscripts denoting the partial derivatives with respect to time and
space coordinates, respectively.

In the literature on the subject (Ursell 1953, Whitham 1974, van Groesen and
de Jager 1994) one can find differential equations describing the wave profile
n(x,t). An example is the equation obtained by linearization of the system (A)
(Whitham 1974)

1,
Net —8h0ﬂxx = ghoﬂurr = 0. (B)

A more general, non-linear equation describing the wave profile, resulting
from the system (A), may be found in Ursell (1953). At the same time, a particular

approximation of the shallow water equations leads to the non-linear Korteveg
and de Vries equation (Whitham 1974)
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In general, it is not possible to find closed form analytical solutions of the
non-linear shallow water equations and therefore we have to resort to approx-
imate methods. In the approximate description of the equations it is convenient
to use the so-called conserved variables, namely, mass density, momentum and
energy per unit mass, instead of the physical variables i.e. mass density, pressure,
velocity vector (Toro 1997). The system of equations obtained in this way describes
the conservation of fluid mass, fluid momentum and its energy, respectively. In
the case of adiabatic flow of a perfect incompressible fluid, the pressure is not
a thermodynamic variable, therefore the energy equation may be excluded from
the system of the fundamental equations. When the pressure is described by a
hydrostatic formula and effects of body forces, viscous stresses and heat flux are
neglected, the Navier-Stokes equations expressed in the new variables form a sys-
tem of non-linear conservation laws known in the literature of the subject as the
Euler equations (Toro 1997). For long waves and nearly horizontal flows the as-
sumption of hydrostatic pressure is justified and therefore the Euler equations are
frequently used to describe the shallow water phenomena. The Euler equations,
in their conservation slightly modified shallow water form, are even used to de-
scribe a rapidly varied flow, as, for example, the flood flows (Jha et al. 2000) and
the dam break problem (Ambrosi 1995, Szydifowski 2001). In the present paper
a conservative system of equations corresponding to the Boussinesq approach is
formulated, and then solved by means of successive approximations with the help
of a perturbation scheme. The detailed discussion is confined to the third order
expansion of equations describing one-dimensional periodic waves of moderate
length and height, propagating in shallow water.

2. The Governing Equations

In what follows we confine our attention to the plane problem of a fluid motion
in Euclidean space. In order to describe the motion we introduce the Cartesian
coordinate system (x, z) where x is the horizontal axis and z - the vertical one,
respectively. With respect to the axes, the vertical velocity component is assumed
in the form (Abbott 1979, Abbott et al. 1984)

oh
0 = wiz, 1) = ﬁ, (1)

where z = 0 means the bed and z = & denotes the free surface.
After Abbott (1979), the pressure distribution is described by the formula

p@) 2h h? - 22

2)
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where p is the pressure and g — the gravitational acceleration.
With respect to the assumption of shallow water, it is reasonable to introduce
the average horizontal velocity defined by the equation
h
ux,t) = ’1—1-[ ulx,z, t)dz. (3)
0
On the basis of the relations, the continuity equation assumes the form
d(uh)
ot 0x
At the same time, the average horizontal momentum equation reads

=0 (4)

ou Bu 1 1 ap
Bx h 0 axd ©)

From substitution of the equation (2) into the right hand side of the relation
the following is obtained

wu 3_u+ oh 1, & 20h3%h _ ©)
i 85x T3 oxar2 " 3ox 07

In the Abbott monograph (1979) the last term of the relation describing the
product of derivatives has been neglected. In our case however, in order to obtain a
more compact form of the momentum equation, this term is retained. In relations
(4) and (6) we have two unknown variables, namely 4 and u. For our purposes
it is convenient to multiply equation (6) by # and then, by performing simple
manipulations, to write the equation in the following conservative form

P (uzh + 1gh2 1h28 h) 0. (7)

ot ax 2 a2

Equations (4) and (7) form the fundamental system of equations of the prob-
lem considered. From a mathematical point of view we deal with the hyperbolic
system of partial differential equations in which convective fluxes of the state
variables play an important role in the description of flow phenomenon. In shal-
low water equations obtained from the Euler equations the last term in the round
brackets in equation (7) does not exist (Toro 1997). In our case this term describes
the influence of the vertical acceleration of the fluid on the momentum equation
associated with the horizontal axis. Taking the time derivative of the equation (4)
and the derivative of equation (7) with respect to the space variable, and then,
subtracting the results, one obtains the additional equation
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B2 ox? 2 3" a2
which contains the two variables.
In order to save the place, in what follows, the subscripts x and ¢ will be

used to denote the partial derivatives with respect to x — co-ordinate and time,
respectively. Simple manipulations on the equation give

2 2 2
i) (uzh + 1gh2 o lhzﬂ) =0. (8)

1
b = @+ e = h*hes — g (e)? = Z[h(ux)z + 2uuch, + ukuxx]+
)
2
~§[(hx)2hn + 2hhy by +hhxxhtr] = 0.

In the further discussion we shall confine our attention to a series of approx-
imate solutions of the system of equations (4) and (9) by means of a perturbation
method.

3. 3 Perturbation Approach to the Non-linear Problem

In order to find an approximate solution of the problem mentioned, the variables
h and u are expressed in the form of the following series

h=hy+eh) +ehy +hs +-- -,

(10)
u=&eu +82u2+e3u3+---.
where:
ho — the fluid depth at rest,
hi,ho, hy, ui,uz,us — “components” of the solution,
€ — the small parameter (0 <& < 1).

Substituting the expansion into equations (4) and (9) and collecting terms with
the same powers in &, a series of linear differential equations of the problem is
obtained. In the further analysis we confine our attention to the third order terms
in the relations (10). The first order power in ¢ gives the linearized version of the
shallow water equations

1 2
= i ; —
hy, + houy, = 0.

Substituting & = ho + n(x, t) into the first equation (11) and performing simple
manipulations one obtains equation (B) as the linearized version of the Boussinesq
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system of shallow water equations (Whitham 1974, p. 462). From the second
relation in (11) the horizontal velocity can be calculated

uix,t) = —hiufhl,(x, t)dx + const. (12)
X

Collecting terms with the second power expansion in terms of the small para-
meter, the following system of equations is derived

1
ha, —ghoha,, — g(hu)zhzm, + RA =0,
ha, + houa, + hi,u1 +huy, = 0.

(13)
where

2
§h0h1h1,,,, —g(h,)? — 2ho(ur, )+
(14)

4 2
—2houiuy,, — ghohlxhlm = ghﬂhlmhln-

Similarly way the third power in ¢ yields

RA = —gh1h1n ==

1
h3, — ghohs,, — §(ho)2h3m, +RB =0,

(15)
where

RB = —[ghihy, +ghohy, + 1)*hy, ]+

1
“5 [%ohlhzu,, + (h1)*hy,, + 2h0h2h1m,] —2ghy ho, +

-2 IiZh(}MlxuzJr + by (uy, )2] — duyuy hy, +
2 16
=2 [huuy,, + ho(uouy, +uiusz, )] — §(h1, )2hy,+ (16)

4
—3 [hﬂ' (hlzhzm + hthlxu) + hlhlxhlxu] o

2

The result of the procedure on hand is the system of linear differential equa-
tions, which enable us to calculate successively the coefficients of the series (10),
assuming that such series exist. The system describes an arbitrary flow of the
fluid, for example, transient flow and motions starting from rest. In the further
analysis we confine our discussion to solutions of the equations for a simpler case
of periodic waves of rigid form propagating in fluid of constant depth.
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4. Periodic Waves Propagating in Shallow Water

Let us consider now the case of waves of rigid form propagating in the direction
of positive values of the space coordinate. For this case it is reasonable to assume
that our variables 4 and u are functions of the parameter

0 =kx — ot 17

where k is the wave number and w = w(k) is the angular frequency of the
propagating wave.
In view of the relation (17) the partial derivatives of the variable 4 with respect
tox and ¢t are
oh oh , Oh oh ;
§=k5'9-=kh’ a—t——w@=—wh. (18)
Similar formulae hold for the second variable. Hereinafter the primes denote
the derivatives with respect to 6. From substitution of the relations (17) and (18)
into equation (9) the following equation results

o — K2 (gh +1) " = Sk — gk K+
3

2 ) + 20l + uhu' | - %kzwz [+ 20 K" + b ] = 0. )
In a similar way, the continuity equation gives
—wh' +k(Wh+uh')=0. (20)
For the case considered the expansions (10) assume the form
h = ho + eh1(8) + £*h2(8) + 3h3(0) + - - -, 1)

u = eui(0) + e2ur(6) + Suz (@) + - - -.
At the same time, the frequency w is also expanded into power series in &

(Whitham 1974)
w = wk) = ak) + cor1k) + 2o k) + Sz k) + - - -. (22)

Substituting the expansions (21) and (22) into equations (19) and (20) and
collecting terms with the same power in ¢, a set of ordinary differential equations
is obtained. The linear component of the equation (19) is

1
[ @0? — gha By — 3K (@0)* o)y = 0. (23)

The quadratic term of the equation assumes the form
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1
[(wn)? —gkho |15 — 5@ (ho)h" + RA =0, (24)

where

1
RA = Qaxwy — gkPhy)h| — =k*| 2(w0)*hoh1 + 2(ho) wown [h]"+
3

! " 2 I N " 25
—gkz(h’l)z—2k2[h0(u1)2+h0u1u1]—gkz(am)z[Zhohlhi +ho(h1)2]. (25)

The third power component of the expansion leads to the equation
[(an)? &Ko 15 = 3% @0y? o) ?hg" + RB =0, (26)
where
RB = (2wpw1 — gk®h1) b + [(@1)? + 2w0w; — gkhy — k2 (u1)?] A+
32 (20 hohs + 2000 v | '+

5 [0 [ + Vaohe ] + (ho)[(@1)? + 2w + ol | '+ o
—2gk®hhy — 2k2 [mou;u’z + B u))? + 2w By + ho(uaus + uguy)+ &
+ hyuguf] — %kz { o) [ )2 B + 2mab b + 200 (3 + ') +

+ ()2 + 2holhs | + 2wnen 2ok + hoh)*]}.

In order to solve the homogeneous equation (23) it is convenient to introduce
the notation

3
2= [ 8kho — (e’ (28)

and to express the equation in the form

R{" +r’h] =0. (29)

We are looking for a solution describing a wave of constant shape, therefore
the following inequality should be satisfied

r?>0,— (%)2 < gho. (30)
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The general solution of the equation (29) reads

hi = Ay cosr@ + Az sinré + Az6 + A, (31)

where Aj, - - - A4 are constants.
With respect to our demands the last two terms in the solution should be
cancelled, and finally, the solution can be written as

h1 = Cycos(ré + By), : (32)

where C; and p; are new constants.
Having the solution we can find the relevant velocity component

u1 = yh; + const., (33)

where y = wy/khy.
In order to find the second order solution, the differential equation (24) is
written in the following form

3

F+rF= (khoay)?

RA = RA*, (34)

where F, = hj.

The right hand side of the equation depends solely on the linear solution.
Substituting the solution (32) into equation (25) and performing the prescribed
differentiation one obtains

RA* = —a;Cy cos(rf + B1) + a2(C1)? cos 2(r6 + By), (35)

where

a 6 w1r2[1 + %(khor)z],

= 3
et
=9———[1-= o A
2= Ut g [ s ]
The general solution of the non-homogeneous equation (34) is
Fy = A;cosrf + By sinrf+
0 (C1)? 7

_“I_.Cl[e sin(rd + 1) + %COS(rB + ﬂl)] - S

2r 3r2

were A and B, are constants.
The term in the square brackets does not satisfy the assumed condition of
periodic waves and therefore the multiplier of the term has to be set equal to
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zero. From the last condition it follows that w; = 0 in the expansion (22). Having
the solution (37) it is a simple task to find the function 4 (6). Integration of the
equation (37) with respect to 6 leads to the solution

hy = Dy cos(r8 + Bp) + Dy cos2(ré + B1), (38)

o
where Dy = —24(C1)2 and, Dy and B, are new constants.

From substitution of the relations (21), (22) and (38) into equation (20), the
second component of the velocity is obtained

Uy = V[hz — %(’h)z] + const. (39)

Substituting the solutions (32) and (38) into relation (27) and performing
simple, but tedious manipulation, we arrive at the formula

RB = cos(rf + ﬁ])rz{—Za)owz[l + %(khgr)z] Ci+
1. 5. 5. 3 .3 | PR IR | (e
+2| 38 = 3(@0hor® + y%ho |C1 Dy = 2K (@)’ + 3y Jeen? i+
8
+cos(2rf + p1 + ﬂz)kzrz[Zg - g(wg)zhorz + 4y2h0]C1D1+ (40)
+cos3(rf + p)k*r? [[gg — 15(w0)*hor® + 9y2h0] C1Dy+
3 2.2 a2l i

—2[@orr+ 3] ).

From the equation (26) describing the third order solution it follows that

Fj +r’F; = RB = RB*, (41)

3
(khowp)?
where F3 = hj.

We are interested in periodic solution of the problem considered and therefore
the multiplier of the function cos(r8 + B;) entering the equation (40) should be
equal to zero. The last condition provides the formula describing the second
component of the wave frequency

3 01)2 1 — 2(khor)? + (khor)*/9 @)

4rho) (ehor)*[1+ (khor)?/3]
With respect to the result, the right hand side of the equation (41) becomes

e

RB* = a3C1 Dy cos(2r6 + B + B2) + 24(C1)* cos 3(r8 + i), (43)
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where
18/ r \? 1 5
o= (i) [1-5007] »
4 9[1 -~ (kho?][1 — (kho)*/3] _ X
a4 = 4(khg)? (hO)Z{ (kho)? [1+(kh0) /3] .

With the notations introduced, the general solution of the equation (41) is
written as

F3 = Ajcosr8 + Bssinrf+
1 L (45)
—mchlaa cos(2ré + B + Bo) — Sr—z(Cl) a4c0s3(r6 + Br),

where A4; and B; are constants.
From integration of the equation in the & domain, the following is obtained

h3y = Ejcos(ré + B3) + Excos(2r6 + B1 + B2) + Ezcos3(ré + B1). (46)

In the solution, £y and B3 are new constants and

1 1 3
E = 12r403C1D1, E; = WO«%(Q) : (47)
Substitution of the equations (21), (22) and (46) into expression (20) yields
2
g = y{h3 + hy [— - 2@ (hl) ]} + const. (48)
wy  ho

The solutions of the set of three differential equations for the components 41,
hy and h3 contain six arbitrary constants, i.e. Ci, Dy, E1 and B4, B2, f3. From the
practical point of view the most interesting is the case of equal phase shifts of the
components, and thus, let us consider the case g; = f, = B3 = B for which the
solution of the problem mentioned assumes the form

h=hy+e¢ (C1 +eDy + £2E1) cos(ré + B)+
(49)

+&2 C— (2Cy + ea3Dy) cos 2(rf + B) + & (C1)3 cos3(ré + pB),

12r4

which may be rewritten as

32r4

h = ho + eA; cos(rf + B) + €24, cos2(r0 + B) + > A3cos 30 + B),  (50)
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where A, A> and 43 are new constants.

From the descriptions (49) and (50) it may be seen that, with higher order
expansions the constants Ay, A, - - -, being the amplitudes of the subsequent com-
ponents, depend on the higher order terms in the expansion procedure. In other
words, with the solution procedure of the small parameter expansion, the com-
ponents of the solutions are not defined in an absolute unique way. Knowing,
however, that the description (50) is admissible in constructing an approximate
solution to the problem of periodic waves, described by the equations (4) and (7),
we may substitute the expression (50) directly to these equations.

5. Direct Solution to Harmonic Waves

From the solution obtained it may be seen that the parameter » may be incorpor-
ated into the variable 8, namely

@=rf=r(kx —wt) =«kx —ot. (51)

At the same time

ok) =rwk) =r(w+cwy +e%y+---) =0y + 01 + %00 + - - . (52)

Obviously, the solution expressed in the new variables may be obtained by
formal substitution of r = 1 into the above formulae, and therefore, in what fol-
lows we also use the old symbols (for instance k,w and 6) to denote the new
parameters. With respect to the explanations, formula (28) leads to the disper-
sion relation

gk*ho

y
D= Ty asen

(33)
which is equal to that given by Whitham (1974) for the linearized Boussinesq
equation.

Now we seek a solution of the problem by means of the direct substitution
of the description (50) into equations (4) and (7). Moreover, without loss of
generality it is assumed that 8 = 0 in the expression, i.e.

hy = Ay cos 8, hy = Az cos26, hy = A3 cos 36. (54)

Substitution of the first component of the equations into the first of equations
(11) gives the dispersion formula (53). From substitution of the expansion (52)
and the components 41 and &; into equations (13) and (14) it follows that w; =0,
and
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A 3 1 1 Ay
E‘Z(khwz[ 3 ‘”Kho)' )

In a similar way, from substitution of the expressions (52) and (54) into rela-
tions (15) and (16) the relevant components of the dispersion relation and water
depth may be derived. Simple manipulations give

o 1= 2kR0)? + (kho)*/9 (Eﬂ)z (56)
2 =0 (kho)?[1 + (kho)? /3] \4ho
and
45 _ ; .

Having the components we may write the formula descrlbmg the water depth

h = ho + £A1 cos 0 + @1(eA41)? cos 20 + a(eA41)> cos 36, (58)

where

11 3[, 1, .
1= ’TOWZ[I - g(kko) ],

1 1 1

2= o) oy’ 64

In the discussion presented so far the small parameter ¢ has not been specified.
From the solutions obtained it follows, that the parameter can be incorporated

into the constant 4; and thus, the solution (58) may be written in the following
form

(59)
[27 42(kho)? + 7(khg) ]

h = hy + Acos6 + ¢14% cos 20 + ¢ A° cos 36, (60)

where A = £A; is the amplitude of the first component of the solution.
Knowing the water depth we can calculate the average horizontal velocity

U= yA[(l + 92—) cos @ + @1 Acos 20 + gp A% cos 30+

61)
A 1 (
cos® 9 — 3qolAz cos 6 cos 28 + A2 cos> 0
" ho ho 3

At the same time, following the notation introduced, the expansion (22) gives
w(k) = wo(k) + 2an(k) =

PR 2(kho)? + (kho)* /9 (ﬁ)z (62)
=& 16 (kh0)2[1 + (kh0)2/3] ho '
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In derivation of the solutions presented above it has been assumed that A/hg
and (khp) are small numbers. In accordance with the assumption, the last formula
may be written as

@ oy Lapn 9 1 [1-20h0)’ + (ko) /9] (AN
ok =1 g +16(kh0)2[ 1+ (hoy2/3 (ho) T

where ¢y = \/gho.
In a similar way, the free surface elevation may be expressed in the form

2
h1’=“A0059+3 1 (ﬁ) cos 26+

Th2
:7 1 4(th) 1\3 (64)
oo B Al i =
+64 o [1 (khg) (khg) ] (ho) cos 36 +

The formulae (63) and (64) are similar to those given in Whitham (1974, p.
473) for the case of the Stokes waves propagating in fluid of constant depth. As
compared with the latter results the differences occur in the third order terms.
A remark is needed. The formulae have been derived under the assumption that
(kho) is a moderately small number. At first glance, from the relations (59) and
(64) it can be seen that the ratio A/ hg plays the role of the small parameter ¢. On
the other hand, solutions (55) and (57) strongly depend on the magnitude (kho).
This means,that in fact, the expansion parameter is really /(khp)?. Therefore,
in order to get reliable results, we have to formulate an additional restriction
imposed on the latter parameter. From the condition that the parameter should
be less than one it follows that

a5

hy (kho)?

Knowing, that the expansion procedure has been justified only for waves of
small amplitude, say 4 < 0.2k, we obtain the condition

<1, = (khy) > /Alhy. (65)

khy > +/0.2 = 0.4472, (66)

which may be considered as a strong restriction imposed on the approximate
formulation. It means that the perturbation scheme may be applied only for waves
of moderate length. Otherwise, for very long waves, the higher order components
may exceed the lower order ones which contradicts the fundamental assumption
used in derivation of the solutions.

In order to illustrate the considerations, some numerical computations have
been performed for a chosen set of parameters describing the length and leading
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1.0 . r r , . T r , .
A=7.2m, h=0.60m

6.0 7.0 8.0
Space coordinate [
Fig. 1. Comparison between profiles of waves of the same length and different amplitudes

a)
1.0 . . . ; . - : . .

o
o

e
@

\Water depth [

Fig. 2. Comparison of profiles for waves of different length and the leading term amplitude:
a) A = 0.4h and b) A = 0.6h, where h is the still water depth
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amplitude of the waves. The results of computations are presented in the sub-
sequent figures 1 and 2. Fig. 1 shows the free surface profiles corresponding to
single length and a chosen set of amplitudes of the first, leading component of the
waves. The plots in Fig. 2 represent the free surface elevations of waves of differ-
ent lengths, but with the same leading amplitude. From the plots it is seen how the
wave length influences the final height of the wave. With increasing length of the
waves having the same leading amplitude, the final height of the waves increases.
From the above analysis and results of computations it follows that the procedure
of the solution of the problem considered leads to sufficiently good results only
for moderately long waves of finite, but relatively small, amplitudes.

6. Concluding Remarks

The paper deals with a new form of the Boussinesq equations describing waves in
shallow water. The governing differential equations are formulated in a conser-
vative form which seems to be very convenient in approximate description of the
phenomenon. An approximate solution of the equations is obtained with the help
of a perturbation procedure in which expansions of variables of the problem in
powers of a small parameter are introduced directly to the differential equations.
The analysis has improved the dispersion characteristic of waves in shallow waters,
which in the case discussed depends on the amplitude of the propagating wave.
A similar conclusion holds for the phase celerity of the wave. An improvement
of the formulation is possible in which an unevenness of the water depth may be
taken into account. The latter problem would be more complicated and is not
within the present scope of work. The analysis has revealed that the lower or-
der components of the perturbation procedure depend on the higher order terms
and thus the amplitudes of subsequent components are not uniquely defined. On
the other hand, such ambiguity does not exist in the case of direct substitution
of the trigonometric components into equations of the problem corresponding
to harmonic waves. The solution obtained strongly depends on the magnitude of
the wave amplitude and the wave length. In practice, the solution is valid only
for waves satisfying the condition kg > 1/2. At the same time, it is perhaps of
importance to emphasize here that analytical solutions contain components which
do not correspond to progressive waves. Therefore, one should be careful in a
discrete integration of the non-linear equations in the time domain, because a
formal approach to the problem may lead to incorrect results.
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