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Abstract

In this paper the problem of interaction between a coherent floating ice cover and
a rigid engineering structure is considered. It is assumed that the ice cover, of hori-
zontal dimensions considerably larger than the dimensions of the structure, is driven
by wind and water current drag forces. During the interaction process of a quasi-static
character, ice is assumed to behave as a creeping material, with a rheology described
by the viscous fluid flow law. The ice cover is treated as a plate which sustains both
bending due to the vertical reaction of the underlying water and the action of hori-
zontal forces, which gives rise to the development &f creep buckles in the plate and
subsequently leads to the flexural failure of ice. An approximate solution to the prob-
lem is constructed by employing the finite element method. The results of numerical
simulations illustrate the magnitudes of the forces exerted on the structure and their
dependence on the wind direction and the structure geometry. In addition, the ice
plate deflection in the vicinity of the structure is illustrated, and the values of the
critical time at which the plate starts to fail by creep buckling are determined to show
their dependence on the ice thickness, temperature, and type.
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Notations
Ca:Cyp - dimensionless air and water drag coefficients,
Dyy, Dyy, Dy, — strain-rate tensor components,
g - gravitational acceleration,
H, H — parameters defining in-plane viscous behaviour of a
plate,
h — plate thickness,

M, , M, — bending moments per unit width of a plate,
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M,y ~ twisting moment per unit width of a plate,

N, Ny - axial in-plane forces per unit width of a plate,
Nyy — shear in-plane force per unit width of a plate,
Or, Oy — transverse shear forces per unit width of a plate,
q — distributed transverse load intensity,

R R, R — parameters defining flexural viscous behaviour of a plate,
T — ice temperature,

Ug, Uy, — wind and water current velocities,

Vg, Uy — horizontal ice velocity components,

w — plate deflection,

X, 9.z - rectangular Cartesian coordinates,

20 — plate neutral plane position,

¢, %a — bulk and axial viscosities of ice,

Ky , Ky — curvatures of a plate deflection surface,

Kxy — twist of a plate deflection surface,

" — shear viscosity of ice,

Qas Ow — air and water densities,

Oxx,Oyy, 0xy — Cauchy stress tensor components,

T, Ty — distributed in-plane load intensity.

1. Introduction

As modern engineering activities advance into high-latitude regions, the issue of
proper identification of loads exerted by floating ice on marine structures, such as
drilling rigs, artificial islands, lighthouses, breakwaters or bridge piers, is of ever
increasing importance. Therefore, in recent years, considerable research effort has
been concentrated on the development of analytical and experimental methods
helping to design and build reliable and cost-effective off-shore constructions.
Obviously, a significant and indispensable, part of this process is the analysis of
the mechanical behaviour of floating ice itself, since this yields design loads to
which an engineering structure is subjected during its contact with the ice cover.

When a structure interacts with a coherent floating ice field driven by natural
forces, such as wind and water drag, then three typical stages of the ice behaviour
can usually be distinguished. During the first stage of loading, ice deforms mainly
due to viscous creep, and behaves in a ductile, continuous manner, with the mag-
nitudes of forces exerted on the structure increasing steadily in a regular fashion.
With increasing ice deformation the next phase begins, in which cracks develop in
the material, marking the onset of its failure, and ice undergoes a transition from
ductile to brittle behaviour, which is also, a more or less, smooth process. This
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second, relatively short-lasting transition period, is followed by the third stage of
fully brittle fracture of ice, with the contact loads between the ice cover and the
structure varying irregularly, as different parts of ice crush at different times. An
important feature, from the point of view of an engineer, is the fact (Sanderson
1988) that the forces exerted by ice on the structure reach maximum magnitudes
during the ductile-to-brittle transition phase. This feature allows us to simplify
the designing process substantially, since the complex analysis requiring the use
of methods of fracture mechanics can be avoided.

In this work we are concerned only with the ductile behaviour of floating ice,
up to the instant at which it starts to fail by either brittle crushing or flexural
failure mechanisms. A quasi-static problem is addressed, in which it is supposed
that the ice cover is coherent enough to be regarded as a continuous sheet lying on
the free surface of sea, river, or lake water, rather than as a collection of loosely
connected floes that interact with each other. Such conditions occur when young,
near-shore landfast ice is formed under relatively calm weather conditions, before
the action of waves and wind breaks the ice, causing its rafting and ridging, and
thus destroying its initial flat and uniform form. We analyse the processes which
typically develop in a matter of hours rather than seconds, and hence we are
not interested here in dynamic impact problems in which single, and relatively
small-area floes, hit a structure. Accordingly, the floating ice cover is treated as
a plate, whose in-plane dimensions are significantly larger than the characteristic
dimensions of the structure with which it interacts. Ice is treated as a creeping
material, with the constitutive behaviour described by a viscous fluid flow law. To
account for the strong dependence of ice viscosity on temperature, which varies
with the depth of ice, the plate is assumed to be non-homogeneous along the
vertical. An engineering structure in contact with the ice is supposed to be rigid
and interact with the ice plate along vertical walls.

The problem is solved by employing the classical theory of thin plates resting
on a liquid foundation. The plate is bent by forces resulting from the reaction
of the underlying water, and is also subjected to in-plane loads caused by the
tangential tractions due to wind and water current drag forces. The combina-
tion of transverse and compressive in-plane forces gives rise to the development
of creep buckles in the plate, which grow with time and ultimately lead to the
flexural failure of ice when the tensile stresses in the plate reach some critical
level. In (Staroszczyk and Hedzielski 2003) we investigated the problem of creep
buckling of a floating ice plate having, in the horizontal plane, the shape of a
truncated wedge of semi-infinite length. The problem was simplified by treating
it as one-dimensional in space, that is, by considering the plate as a beam of
variable width. In this work we treat the problem as fully two-dimensional, which
allows us to analyse more complex plate geometries and loading scenarios. The
solution has been constructed by using the finite element formulation, and the
results obtained illustrate the magnitudes of the forces sustained by the structure
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and their dependence on the direction of wind and the characteristic dimensions
of the structure. Furthermore, the variation of the ice plate deflection near the
structure is shown, and the influence of such factors as the thickness, temperature,
and type of ice at the critical times at which the plate starts to fail are investigated.

2. Governing Equations

We consider the behaviour of a coherent ice cover floating on the free surface
of water. The ice is driven by horizontal drag forces coming from the action
of wind and water currents, and in some places it interacts with an engineering
structure, exerting forces on the latter. As the ice cover deforms, not only in the
horizontal direction but also transversely, it undergoes vertical loading resulting
from the reaction of the underlying water. In this analysis, the floating ice cover
is treated as a plate that rests on a liquid foundation, and is subjected to the
combined action of the lateral as well as in-plane forces. The definitions of these
forces, together with the adopted frame of rectangular coordinates, are shown
in Fig. 1a. The plate is assumed to be of uniform thickness, denoted by &, and
to be in perfect contact with the underlying water (Fig. 1b). The z-axis, directed
downwards, is chosen in such a way that z = 0 at the top surface of the plate, and
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Fig, 1. (a) Adopted coordinate system and definitions of internal forces acting on a plate element,
(b) and (c) vertical cross-sections of the plate along the x-axis
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z = h at the bottom surface. The plate transverse displacement along the z-axis is
denoted by w. To account for a possible variation of the ice cover with depth and
the influence of temperature, the plate is treated as non-homogeneous along the
vertical, with the mechanical properties of ice supposed to be a function of depth.
An engineering structure is modelled as a rigid body which interacts with the ice
cover along vertical walls. The objective of the analysis is to calculate the forces
exerted by the ice on an engineering structure, and to determine deformations
and internal forces in the ice plate induced by the action of wind and water drag
stresses.

In order to describe our problem, we employ the classical, linear theory of thin
plates (Timoshenko and Woinowsky-Krieger 1959), based on the assumptions that
the plate thickness is small compared with its characteristic lengths, the plate de-
flections are small, that is, not exceeding its thickness, and the plate cross-sections
which are normal to the plate middle plane prior to deformation remain plane
and normal to the middle surface in the deformed state.

In the horizontal plane Oxy, the only internal loads acting on a plate element
are the axial forces N, and N, and the shear forces N, = Ny, all measured
per unit length. Apart from them, there are tangential forces distributed over the
surfaces of the plate, caused by the wind and water drag. The two components of
these tangential forces per unit area of the middle plane of the plate are denoted
by 7, and 7, (see Fig. 1c). The equilibrium balances of the forces along the x and
y axes, in the absence of inertia forces neglected here due to small horizontal
velocities of ice, are expressed by the relations

N, 9N, aN,, N,
=0, —_— = 0. 1
% T dy tu T ay o 1)

Along the z-axis, the plate is subjected to the vertical shear forces, O, and 0Oy,
and the transverse distributed load g. In the deformed state, the forces N, N,
and Ny, all acting in directions tangential to the deflection surface w(x, y), also
have relevant vertical components. Hence, neglecting the weight of the ice, the
projection of all forces on the z-axis gives

30, 30, 2w AN, dw 2w 3N, dw
il N, —_—
Ty T4ty 2+6‘x ax Va2 " 8y ay

ox ay
+2Nyy P o Wyt Wt
0x dy dx ay dy ox

@

Considering the equilibrium of moments acting on an infinitesimal plate element
with respect to the y and x axes, we find that

M, aMyy oM, M,

dx dy — =0, ay ax

-0y =0, (€)
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where M, and M, are the bending moments, and M,y = My, the twisting mo-
ments, all per unit length. The only transverse load that is exerted on the plate
comes from the reaction of the underlying water. We assume that this reaction is
elastic and treat the liquid base as the Winkler-Zimmerman-type foundation, in
which case the response of the base is proportional to the plate deflection. Thus,

q = —0ugW, “4)

where g,, is the water density and g the acceleration due to gravity. We can now
eliminate the vertical shearing forces Oy and Q) from (2) by determining them
from (3). Using the relations (1) and (4) in (2) also, leads to the equation

M, 3*M,, *M, 8w 3w 3w
- Ne—5 +2Nyy—— + Ny, —
dx2 dxdy = ay? +NgyZ TN dx dy % ay? )
ow ow
—QugW — fxa = Ty@ =0,

involving the moments and in-plane loads, the plate deflection w and its derivat-
ives, and the driving forces 7, and 7,. By expressing the internal forces in terms
of the stresses in the plate, and then using constitutive relations to describe the
properties of the material, we can transform equation (5) to one in which only the

plate deformations appear. Hence, we define the in-plane axial and shear forces
by

h h h
N, =forxxdz, N, =fayydz, N =faxydz, 6)
0 0 0

and the bending and twisting moments by

h h h
Mx =f0xxzdz, My Zfo'yyZd.Z, Mxy = —faxyzdz. (7)
0 0 0

In the above relations, oy, oy, and oy, are the stress tensor components. To
proceed further, we need appropriate constitutive laws describing the material
response of the ice.

The rheology of floating ice has been modelled in a number of ways, depending
on the spatial and time scales involved, and also on the field of application. For
instance, to describe the behaviour of a single ice floe on short-time scales the
methods of viscoelasticity and fracture mechanics are commonly in use (Sanderson
1988), whereas the analysis of the behaviour of floating ice packs on geophysical
scales requires quite different formalisms based on viscosity, viscoplasticity, and
plasticity theories. An example of a constitutive theory for large-scale behaviour
of sea ice is the widely used viscous-plastic model formulated by (Hibler 1979), in
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which a viscous flow law is used for low strain-rates, and an associated plastic flow
rule is applied for high strain-rates. This theory has subsequently been modified
by using various shapes of the yield curve in the principal stress plane, ranging
from an ellipse in the original formulation (Hibler 1979), through a teardrop
shape (Rothrock 1975, Morland and Staroszczyk 1998), to straight lines for the
cavitating fluid model (Flato and Hibler 1992). An alternative approach, in which
the floating ice cover is treated as a non-linearly viscous fluid that satisfies the
two-dimensional restrictions of the Reiner-Rivlin constitutive equation, has been
pursued by Smith (1983) and Overland and Pease (1988). The predictions of
these two classes of constitutive models (viscous-plastic against viscous) have been
compared by Schulkes et al. (1988). Since in this work we are concerned with the
off-shore applications in which the area of ice involved in the interaction with an
engineering structure can be measured in square kilometres and more, we choose
a constitutive theory which is relevant to large-scale modelling. Hence, we apply
a constitutive relation of the Reiner-Rivlin type, previously used by Schulkes et
al. (1998) and Morland and Staroszczyk (1998), expressed in the form

oij = (¢ — w)Dudij +2uD;; G, j,k=1,2), &)

where we adopt the summation convention for a repeated suffix. In (8), §;; is the
Kronecker symbol, ¢ and p are the bulk and shear viscosities, respectively, and
D;; denotes the components of the two-dimensional strain-rate given by

1 /0y 0y ..
D;j =5(3—4+8—;) G,j=12), 9)
where v; constitute the components of the horizontal ice velocity vector v, and the
subscripts i and j stand for either x and y, with the equivalence x; =x andx; = y.
The definition (9), expressing the strain-rates in the neutral plane of the plate in
terms of the in-plane velocity gradients alone, is consistent with the assumptions
of the linear theory of small deflections of thin plates. However, which will be
shown further in Section 4, see Figures 2 and 5, the deflections w at the plate
failure can be of the order of the plate thickness 7. Therefore, proper analytic
treatment would require the application of the large-deflection plate theory, and
hence the inclusion of the non-linear effects of the plate deflection slopes dw/dx;
on the in-plane deformation of the plate (Timoshenko and Woinowsky-Krieger
1959). This would result (still assuming infinitesimal deformations in the neutral
plane of the plate) in the appearance in the parentheses of (9) of an additional
term (dw/dx;)(dw/0x;) + (dw/dx;)(dw/ax;), where the superposed dot denotes
the time derivative. To assess the importance of the latter non-linear term we
note that in natural conditions the typical horizontal ice velocities v; are of the
order of 0.1 ms™!, and they change over the scales of hundreds of metres. On the
other hand, the vertical ice displacements w are of the order of the ice thickness
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h, with the horizontal variations over distances of at least 10/ (that is the buckle
half-wavelengths), so dw/dx; is at most of the order 0.1, and this is attained over
time scales of hours, say 10* s. Thus, the strain-rate terms involving the horizontal
ice velocities are of the order of 10~3 s—1, whereas those due to the vertical ice
velocities are of the order of 10~ s~!, about 100 times smaller than the former.
For this reason, the contribution of the non-linear term due to the plate deflection
slope can be neglected in sea ice applications, hence the linear in the horizontal
ice velocities relation (9) can be adopted for practical purposes.

In this study, we restrict attention to a linearly viscous fluid behaviour, in which
both viscosities, ¢ and u, are independent of stress. However, since the viscous
response of ice depends very strongly on temperature T, we incorporate this by
assuming that

¢1) _ wM _
& (Tm) w(Tm)

where the scaling function a(T), derived by Smith and Morland (1981), is given
by

a~i(D), (10)

a(T) = 0.68 exp(12T) + 0.32 exp(3 7). (11)

In the above relations, T, denotes the ice melting temperatures, and T is a di-
mensionless temperature defined by T = (T — T,,)/[20°C].

Deformations in the ice cover can be expressed as the sum of the deformations
in the neutral plane of the plate caused by the forces N;j, and these can be
regarded as a function of the horizontal coordinates x and y alone, and the
deformations due to bending and twisting of the plate, which are functions of the
depth z as well. Accordingly, the in-plane strain-rates are determined by using the
horizontal velocity components v, (x, y) and vy (x, y) in (9), while the strain-rates
due to bending and twisting are given in terms of the curvatures and twist of the
deflection surface w(x, y) as follows

B 9. 9
Dy =62’ = —%z’, Dy, =iy2' = —%—y%z’, Dyy = —kpy2' = ——;rTwyz’. (12)
In these equations, k, and «, are the curvatures of the deflection surface along
the x and y axes, respectively, ky, is the twist with respect to the x and y axes, and
z' =z — zg is the distance from the neutral plane, with zp defining the position of
the neutral plane in the undeformed state. With the strain-rates given by (9) and
(12), and the stresses determined by the constitutive law (8), the in-plane axial
and shear forces (6) become
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Ne = (Hi + Hz)zi +(H - B2,
X ay

_ vy vy
Ny = (Hy — Hp)—— + (Hy + H) 3y (13)
ov Jv
Ny = H; % g —
*y 2(ay * ax)’

and the bending and twisting moments (7) are given by

92w 92w
My =- [(R1 tR) 77+ (Ri— R ]

2 . Zw
M, = - |:(R1 Rz) >+ (R + Rz) ] (14)
32
M., =2R
¥ 2oxoy

In the above expressions for the internal forces, the parameters defining the plate
viscous properties are given by

h

h h h
H =[ ¢dz, H2=f pudz, Ry =[ ¢z(z — zp)dz, Rz=f uz(z —zg)dz. (15)
0 0 0 0

By substituting now the definitions (14) for the internal moments into the equi-
librium relation (5), we obtain the following differential equation

a*w 4w w1 2w 9w 2w
9 s | e S IN N e
%t T x23y2 ¥ y* R( w2t * ax dy ki ay2 (16)
dw dw
—0uwW—Th— —T— |,
Qug o 2 ay
with
R=Ri+R= [t - (17)

where £, = p + ¢ is called the axial viscosity. Equation (16) describes the time and
space variation of plate displacement w in terms of the in-plane forces N;; and the
driving forces 7; (i, j =1, 2). The forces Nj;, the functions of the plate horizontal
velocities v, and vy, see (13), can be determined independently of (16) by solving
the equations of the in-plane equilibrium (1). Typical boundary conditions, with
which the three equations (16) and (1) are solved in sea ice applications, are
those of a simply-supported plate edge in the contact region with the structure,
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with zero horizontal velocities in the direction normal to the ice-structure interface
(so-called free-slip conditions). These conditions are expressed by

w=0, M,=0, v-n=0, (18)

where 7 is the direction normal to the edge of the plate, defined by the unit vector
n, and M, is the bending moment acting on the plate section normal to n.

3. Finite Element Formulation

The system of three differential equations for the plate deflection w and the hori-
zontal velocities vy and vy, given by (16) and (1) with (13), is solved approximately
by applying the finite element method. The weighted residual, or Galerkin, ver-
sion of the method is employed, in which the problem equations are satisfied in
an integral mean sense. The plate is discretised in the horizontal plane Oxy by
using a mesh of triangular elements, with the unknown variables defined at the
corner nodes. In addition to the plate displacement and two horizontal velocity
components, at each node also the plate slopes dw/dx and dw/dy are treated
as separate unknown variables. Such an approach is typical of the plate theory
and is applied in order to ensure the continuity of the plate slopes between ele-
ments (Zienkiewicz and Taylor 1991). Thus, at each node we have five discrete
parameters to be calculated, three related to the plate bending, and two related
to the in-plane deformation, hence altogether there are 15 degrees of freedom
at each element. The continuous functions w, v, and v, are approximated by the
following representations:

w,y,t) =9 x, w), (G=1...,9),

19
Ui(x,y-t)=¢})(st)Uij(t), (1=1921 j=1’2r3)1 ( )
where ¢ denotes time and w; and v;; are the unknown nodal parameters, dis-
placements and velocities respectively, with the former including both the plate
deflections and the plate slopes. ®* and @} are shape (interpolation) functions,
which are different for the displacements and the velocity fields. While the velo-
city field is interpolated by simple linear shape functions, for the plate deflection
approximation we use the shape functions which are fourth-order polynomials in
both x and y, in the formulation due to Specht (Zienkiewicz and Taylor 1991).
Following the typical finite element procedure, the problem equations (16)
and (1) are mulnphed by a set of continuous and sufficiently smooth weighting
functions, which in the Galerkin method are identical with the element shape
functions, here ®¥ and @/, and the resulting relations are then integrated over
the plate domain. In the process, in order to reduce the order of integration,
we use the Green theorem (once for each equation involving the velocities and
twice for each equation involving the plate deflection). With respect to the plate
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displacement equations, it turns out that it is more straightforward to start first
with the relation (5) and only then to apply the definitions (14) for the moments,
rather than to proceed with the relation (16), although obviously the resulting final
equations are identical. Using subsequently the approximations (1) and perform-
ing the prescribed integration, we reduce the problem on hand to the solution of
a set of first-order differential equations given in a matrix form by

Cw+Kw=f, (20)

where the vector w includes the values of the plate deflections wy, the plate
slopes (dw/adx); and (dw/dy), and the velocities v,y and vy; at all nodal points /
of the discrete system. We note that in our problem the matrix K depends on the
horizontal velocities, so K = K(w). The matrices C, K, and the forcing vector f
are aggregated from the respective single element matrices and vectors in a way
characteristic of the finite element method. The element matrices, each 15 x 15
in size, are, in turn, composed of 9 submatrices each of dimensions 5 x 5. The
non-zero entries in these component submatrices are given for the matrix C by

2y 32D 2o 32D
o = f [(R1+Rz)( et
A

32 oY 82d>"’ 32w 32¢}" 92w achj'.” 1)
+4Ry + (R — Ry) 5 2 o 2! 3 dA4,
dx oy o0x 8 ax= oy dy« ox

and for the matrix K by

IPY 9Py NBZCI)}”
+ 1 3y - Ny

kﬁ?"=[ ¢E”(9wg<l>}”+rx

ax ax?
A
- Bzd)}” Nach;” -
T xay Y ay? ’
IP? DY DY DY
4s4=f (H1+H2) H, —L—=5 | dA,
ox ay ady |
g DY dDY DY 9DV 22)
45 r 5
- H H T dAa
K f(1 e s a
A
AP’ 3D dbY DY ]
4 _
kfs—f_zax = )35 |
A
3P? DY 3P ”BCD”
5 = H- H, + H dA.
k> f_28x3+(1+ h) 3 | |
A

The indices in (21) and (22) are
ros,mn=1,2,3, i=3r—-1)+m, j=3s-1)+n, (23)
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and A4 denotes the plane domain of integration. The components of the forcing
vector f are defined by

O'T.drI, (24)

N

where I' denotes the boundary of the domain A. In the first equation, Q is the
vertical shear force acting on the boundary I', and T; and T, are, respectively,
the x and y components of the in-plane traction vector T acting on I, and are
expressed by

T; = Neny + Nyyny, T, = Nyny + Nyny, (25)
with n, and n, denoting the components of the outward unit vector n normal to
the boundary T.

The time-integration of the system of equations (20) is performed by using
the so-called #-method (the explicit Euler, Crank-Nicholson, and implicit Euler
methods are all special cases of the #-method, with the value of the 6 parameter
equal, respectively, to 0, 0.5, and 1). Application of the #-method to (20) results
in the relation that connects the solution vectors w,, and w,; at two consecutive
time levels, ¢, and f,.,1:

(C+ 0 AtK)W,, 1 = [C— (1 — 8) AtK]w, + AT, (26)

where At =t,41 —t, is the time-step length. The vector f is the time-averaged

forcing vector which, assuming a linear variation of f from #, to #,,1, is defined
by

f=(1-0),+ 0661 (27)

In our numerical calculations, the value of & = 0.6 has been adopted, which guar-
antees that the time-discretisation error is nearly of the second-order (the value
of 6 = 0.5 leads to the error of the order (Af¢)2, but in that case the scheme is
not unconditionally stable).

4. Numerical Examples

In numerical calculations simulating the interaction of a floating ice cover with a
rigid engineering structure we have assumed that the wind and water drag forces
which drive the ice pack are related to the wind and water current velocities by
means of the quadratic relations given by
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Ty = Caoa(Ug — U)Z’ Ty = Cyuluw Uy — U)zs (28)

where 7, and 7, are the magnitudes of the tangential tractions per unit area due
to the wind and water action, respectively, g, and g,, are the air and water dens-
ities, u, and u,, the velocities of wind and water current, and v is the horizontal
velocity of ice in the direction of the respective driving force. The parameters t,
and 1y, appearing in the equilibrium equations in Section 2 are equal to the sums
of the projections of 7, and r,, on the respective coordinate axes. The paramet-
ers C, and C, in (28) are the dimensionless drag coefficients, for which, after
Sanderson (1988), we have adopted the values C, =2 x 10~ and C,, = 4 x 1073,
The air and water densities are g, = 1.3 kgm"3 and o, = 1.02 x 10° kgm_3 , and
g = 9.81 ms=2. The results of simulations presented below have been obtained
for the ice viscosities ¢ = pu = 1.0 x 10° kgm~s~!. The temperature on the top
surface of the ice, if not stated otherwise, is assumed to be —2°C, and that on the
bottom surface to be 0°C. The critical tensile stress in ice, o, at which the plate
is regarded to start to fail due to the development and subsequent opening of
tensile cracks, has been assumed to be equal to 0.2 MPa. This value corresponds,
approximately, to the presence in ice of vertically aligned cracks of a depth equal
to £/10 (Sanderson 1988).

In order to verify the performance of the finite element model formulated in
Section 3, we start with the numerical solution of a one-dimensional problem, for
which a closed-form analytical solution is available (Staroszczyk and Hedzielski
2003). Accordingly, we consider the problem of creep buckling of a plate of a
uniform width, with the plate lateral sides parallel to the x-axis. One end of the
plate is in contact with a rigid wall situated at x = 0, with the simply-supported
boundary conditions there, and the other end of the plate is loaded by a com-
pressive axial force N; < 0; no other driving loads are exerted on the plate, that
is ; =17y =0, and N, = N;, =0 are assumed. Creep buckling requires initial
perturbations of the plate deflections, otherwise (when w(x, 0) = 0) only elastic
buckling is possible under the action of horizontal loading. Following Staroszczyk
and Hedzielski (2003), the initial small displacements of the plate are adopted as
a sum of twenty harmonic in x components, given by

20
wox) = Y £w( sin@inx /L), (29)
i=1
where the signs (&) are chosen at random, and all the component amplitudes w((]”
are equal and such that the maximum initial deflection wy = 0.001 m. L, defin-
ing the longest half-wavelength of the initial perturbation, is chosen to be three
times the length Ly, the latter denoting the length of the fastest growing creep
buckle. Ly is a function of the compressive load and the density of the underlying
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liquid base (Sanderson 1988, Staroszczyk and Hedzielski 2003). Solution of the
one-dimensional form of equation (16), with the initial condition (29), yields the
relation describing the evolution of the plate displacement

20
iK1 = Z:l:wg) exp(t/v) sin(wx /L;), L = L/i, (30)

i=1

where the time constants t; are given by

1 1 L5 Lin¢
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Fig. 2. Plate deflections w at two different times ¢ (in hours) for a uniform-width plate of the ice
thickness # = 0.2 m under the horizontal loading Ny = —10* Nm™'. Compared are the finite
element (circles) and analytical (lines) results

The results shown in Fig. 2 have been obtained for the ice plate thickness h =
0.2 m, subjected to the axial compressive force of the magnitude 1.0 x 10* Nm~".
The plots illustrate the plate deflections w(x) at later stages of the creep buckling
process, close to the onset of flexural failure. The dashed and solid lines represent
the analytical results for # = 1.2 hr and ¢ = 1.6 hr, respectively (actually, the plate
fails at t = 1.69 hr). The corresponding finite element results are shown, for the
same times, by open and solid circles, respectively. It is seen in the figure that the
maximum deflections before the critical time at which the plate breaks up can be
as large as the plate thickness, and the plate deformations, just before the failure,
consist, essentially, of buckles of the length close to Ly, here equal to 2.2 m. The
comparison of the deflections obtained by the two methods indicates quite a good
accuracy of the discrete method, with the results differing from each other by
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no more than about 3%. Bearing in mind that in the example considered the
shortest buckles have half-wavelengths smaller than the horizontal mesh spacing,
this can be regarded as a very satisfactory performance of the numerical scheme
constructed.
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Fig. 3. A rectangular rigid structure of horizontal dimensions @ x b interacting with ice driven by
wind blowing at the angle o to the x-axis

Having verified the accuracy of the discrete model in the simple one-dimen-
sional configuration, we proceed to a two-dimensional problem sketched in Fig. 3,
in which we simulate the behaviour of the floating ice cover interacting with a rect-
angular in plane rigid structure of the horizontal dimensions defined by a and b.
The ice cover is driven towards the structure by air drag forces caused by a wind
blowing in the direction defined by the angle a shown in the figure. The simula-
tions have been carried out for a structure situated at the centre of rectangular
in a shape ice field 1 km x 1 km and ice thickness 2 = 0.5 m. At the ice-structure
interface, the plate was simply-supported and free-slip boundary conditions (18)
were adopted. The wind has been assumed to have a speed of u, = 30 ms—!, and
its direction has been varied within the range 0 < a < 90° to investigate how this
affects the total loading exerted by ice on the structure. Three particular cases
of the structures of different shapes have been considered, in which the width
of the structure b is kept constant and equal to 10 m, and the length a is varied
and equal to 20, 30 and 40 m, respectively. The results of numerical calculations,
conducted with the mesh consisting of 4000 finite elements and 10400 degrees of
freedom, are presented in Figure 4. The plots illustrate the dependence on the
angle o of the total horizontal force F which the ice cover exerts on the structure;
also shown are the components of the total force along the x and y axes, Fx
and F, respectively. The results obtained for the shortest rectangle 20 m x 10 m
are represented by solid lines, those for the rectangle 30 m x 10 m are given in
dashed lines, and those for the longest rectangle 40 m x 10 m are indicated by
dashed-dotted lines. We see in the figure that, for the ice thickness and viscosities
considered, the geometry of the rectangle has a relatively small effect on the total
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Fig. 4. Total horizontal forces F, together with their components Fy and Fy, exerted on the
structure by the ice cover as a function of the wind direction angle . Shown are the results for
three rectangles of the same width b = 10 m and the lengths 20 m (solid lines), 30 m (dashed
lines) and 40 m (dashed-dotted lines)

force F sustained by the structure. For wind blowing in a direction perpendicular
to the longer side of the structure, « = 90°, the magnitudes of the extremal forces
F differ by 17.1%, and for the wind direction parallel to the longer side, a = 0°,
the respective relative difference is equal to 7.6%. We also note the relatively small
influence of the direction of wind on the total force magnitude F. For the longest
structure, for which a/b = 4, the maximum and minimum forces, for @ = 90° and
o = 0° respectively, differ by 20.1%, while for the shortest structure, for which
a/b =2, the corresponding relative difference is 10.5%. Also for different plate
thicknesses, results of a similar character, that is showing a relatively small effect
of the wind angle on the total force acting on a structure, have been obtained
from the simulations. This suggests that also the influence of other factors influ-
encing the ice rigidity, such as the ice temperature and type of anisotropy of ice,
have little effect on the horizontal forces transmitted from the ice cover onto the
structure.

The factors just indicated, that is those affecting the strength of ice, have,
however, a significant influence on the behaviour of the ice cover in bending, and
hence on the creep buckling of the ice plate. And this, in turn, under given loading
conditions, determines the value of the critical time, prior to which ice behaves
in a continuous manner, and after which the ice cover begins to break up, giving
rise to a sequence of ice-structure interaction events irregular in time. For the
particular case of the structure dimensions @ =20 m and b = 10 m, and for the
wind blowing along the negative direction of the x —axis (that is for « = 180°), the
plate deflections along the positive x -axis occurring at the critical time at which
the plate failure starts are shown in Fig. 5. The x-axis in this figure, compared to
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Fig. 5. Plate deflections w along the x-axis at critical times ¢ (given in hours) for a wind direction

angle o = 180°. Shown are the results for a plate thickness # = 0.2 m and % = 0.5 m (solid lines);

for the thicker plate also the deflections and corresponding critical times for colder (dashed line)
and stronger (dashed-dotted line) ice are presented

Fig. 3, is shifted by a/2 so that x = 0 is the position of the ice-structure interface.
The solid lines in the figure illustrate the deflections for two different ice plate
thicknesses, # = 0.2 m and & = 0.5 m. We immediately note that the critical times
for these two plates differ quite considerably: ¢ = 0.07 hr (about 250 s) for the
thinner ice and ¢ = 1.10 hr for the thicker. The dashed line represents, for & =
0.5 m, the plate deflection in the case of the top surface of the ice cover having
a temperature of —4° C (recall that we have assumed everywhere an ice-free
surface temperature equal to —2° C). Finally, the dashed-dotted line displays,
again for h = 0.5 m, the plate deflection for ice with both viscosities, £ and u,
increased by 30%; such a difference in viscosities occurs between isotropic ice
and transversely isotropic, so-called columnar, ice. We see that both temperature
and the type of ice anisotropy have quite pronounced effects on the strength
of ice, significantly increasing the values of the critical time (by about 30% in
our example). On the other hand, the maximum plate deflections do not change
considerably with the change of temperature and type of ice.

5. Conclusions

In the paper, the problem of the behaviour of a floating ice cover interacting
with a rigid structure has been presented. The ice cover is treated as a plate
made of a creeping material, resting on an elastic liquid base, and subjected to
both transverse bending forces and in-plane loading due to natural forces driv-
ing the ice. First, the equations describing both the vertical and horizontal plate
viscous deformations have been derived, and were then solved by applying the
finite element method. The accuracy of the discrete method has been verified by |
comparing the results predicted for a one-dimensional creep buckling problem |
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with the analytical results. The solution of the latter problem shows that the max-
imum plate deflections, occurring just before the critical time at which the plate
begins to fail is reached, are, for the ice viscosities adopted, of the order of the
ice thickness. Next, the numerical simulations for a two-dimensional problem of
a large ice field driven by wind drag forces past an engineering structure in the
form of a rectangle in the horizontal plane have been carried out. The results of
calculations have shown that, at least for the particular structure geometries con-
sidered, the magnitudes of total horizontal forces exerted by ice on the structure,
do not change considerably with wind direction. The effect of ice thickness, tem-
perature and type of anisotropy on the contact forces is also limited. On the other
hand, the latter factors very significantly influence the critical times, at which the
floating ice cover starts to break due to its flexural failure.
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