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Abstract

One-dimensional long waves approaching a beach face are investigated herein. In
particular, flow velocity distribution, wave profile transformation and extreme posi-
tions of a water uprush-backwash are analysed. For simplicity, non-dissipative waves,
waves influenced by linear or quadratic bottom friction, as well as bore-like breaking
waves are considered separately. Bore formation and propagation in a shoaling wa-
ter is modelled by geometrical limitation of a local slope of the wave front. Analysed
phenomena are described using the shallow-water wave theory, although in this paper
application of the model has been restricted to the swash zone and its seaward vicin-
ity. Governing equations are expressed in hybrid Lagrangian-Eulerian co-ordinates.
The Lagrangian approach gives a precise mathematical description of both an orbital
motion and the moving position of a water tongue on a beach slope. The Eulerian
contribution to the model enables easy comparison of gesults of wave and water mo-
tion by method of conducting of measurements. Moreover, the hybrid description
affords the possibility of simple prediction of mean water flow caused by propagating
waves. The following description also presents results of numerical computations es-
pecially concerning wave run-up height, flow and orbital velocities and water surface
transformation. For simplified bathymetric conditions some analytical solutions are
also presented.
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Notation
a — acceleration at cross-section x,
a® - acceleration at cross-section x?, i.e. water particle acceleration,
c — shallow-water wave celerity,
Dﬁ — force, divided per unit surface, causing loss of momentum due to

wave breaking,



166

fv

= O

ht

Ryack
Riown
Ron
Rup
Rus

U N TR

J. Kapifiski

bottom friction coefficient,
bottom friction coefficient after Voltzinger et al (1989),
gravitational acceleration,
water depth at cross-section x,
water depth at cross-section x?,
incident wave height,
significant wave height,
imaginary unit,

Iribarren number,

Bessel function of n-th order,
wave number,

horizontal distance between slope toe and junction of SWL with
bottom slope,

incident wavelength,

water discharge,

wave run-back length,

wave run-down height,

wave run-on length,

wave run-up height,

significant wave run-up height,

local surface steepness of wave front at cross-section x,

local surface steepness of wave front at cross-section xt,
critical surface steepness of wave front,

time,

wave period,

flow velocity at cross-section x,

time-averaged flow velocity at cross-section x (return flow velo-
city),

Stokes drift (according to Andrews and Mclntyre terminology),
velocity at cross-section x%, i.e. water particle velocity,
time-averaged water particle velocity,

velocity of water tongue tip,

position of particle till initial instant ¢ = 0, also horizontal
co-ordinate,

position of particle at time ¢,

vertical co-ordinate,
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- angle of a constant bottom slope,

Z — water surface elevation at cross-section x,

¢o - water surface elevation at junction of SWL with bottom slope,
ie.atx =0,

&& - water surface elevation at cross-section x¢,

13 — displacement of particle,

3 - time-averaged water particle displacement,

Emax — amplitude of particle displacement,

&  — displacement of water tongue tip,

o — water density,

¥ - bottom shear stress at cross-section x,

r,f - total force, divided per unit surface, causing loss of momentum
at cross-section x¢,

¢ - any hydrodynamical parameter expressed in the Eulerian sense,

¢* - any hydrodynamical parameter expressed in the Lagrangian
sense,

() - angular frequency.

1. Introduction

A swash zone is a specific section of the coastal area in which the wave motion
differs considerably from the rest. Visually it evinces in the oscillatory nature of
water uprush-backwash on a beach face. In realistic conditions, i.e. on ocean or
sea beaches, irregular and mostly breaking waves are observed. In addition, they
are affected by bottom roughness and permeability. Complexity of these phenom-
ena is the reason why the description of water tongue behaviour on a slope is still
unsatisfactory. Laboratory and field investigations mainly concentrate on meas-
urements of wave run-up and run-down heights. The results are usually shown as
a function of the Iribarren number (Iribarren, Nogales 1949). Less attention is
paid to transformation of the water surface, however, it is a determinant of the
condition of a wave climbing the slope. The most complicated seems to be analysis
of flow velocity within a water tongue. Lack of satisfactory measurements useful
for comparison is due to spatial and time variability of the velocity and its dir-
ection. Additional impediments arise from a changeable water tongue thickness,
contamination with air bubbles and sandy material, as well as successive presence
and absence of the water body on the beach face.

Within various shallow-water descriptions, the most frequently developed mod-
els are those which use an Eulerian co-ordinate system. Unfortunately, they usu-
ally fail in the case of precise modelling of a shoreline motion. Very complex or
- on the contrary - quite simplified mathematical assumptions at the intersection
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of SWL (Still Water Level) with a beach or numerical algorithms for simulation
of an “artificial” water tongue motion often produce computational difficulties.
They result in numerical instability or in inaccuracy of unknown magnitude. This
problem disappears in models elaborated in a Lagrangian co-ordinate system, for
which a landward boundary condition is easy to satisfy. The effect is an exact
mathematical description of a time-dependent position of a water tongue tip as
well as a velocity pattern within the water tongue. Another advantage of the Lag-
rangian approach arises from the treatment of a water body as a collection of
travelling particles with fixed identities. It provides fully-detailed information on
an orbital motion from which the surface of water waves can be computed in an
easy and exact manner,

The first Lagrangian description of the swash zone was elaborated by Miche
(1944). His model is based on low, sinusoidal waves running up a steep and
uniformly sloping beach. He obtained the following solution:

, X KH tg [2ng
UO__Sina 2 aLCOS( Lt), (1)

where:

vy — velocity of water tongue tip parallel to the beach face,
H - wave height,
L - wavelength,
o - beach slope.

A horizontal component of the velocity vg can be obtained by a simple multiplic-
ation by cos a. Miche showed that for oncoming sinusoidal waves both the move-
ment and the velocity of a water edge can be described with a time-dependent
sinusoidal function.

The first comprehensive mathematical description of the shallow-water wave
motion in the Lagrangian co-ordinates was made by Shuto (1967, 1968, 1972 and
1978). In 1967 he presented a two-dimensional (in a vertical plane) model for a
non-breaking wave propagation and run-up on a beach face. Next, in 1968 Shuto
solved the same problem for a three-dimensional case. In 1972 he obtained a
solution of a run-up height for standing small-amplitude waves on a beach with a

uniform slope:
-0.5
% = (Jg (4;: %) +J2 (4:: %)) ' ()

R.,,/H — normalised wave run-up height,

where:




Lagrangian-Eulerian Approach to Modelling of Wave Transformation .. . 169

Ju — Bessel function of the n-th order,
/ — horizontal length of a slope,
L - wavelength.

Equation (2) is identical with the earlier Keller and Keller’s solution (1964)
who employed a Eulerian point of view. The same equation was also derived
by Kapinski and Kotodko (1996) for the model that is developed in further sec-
tions of this paper. In 1978 Shuto and Goto (1978) presented numerical res-
ults of a one-dimensional Lagrangian model for prediction of tsunami run-up
on non-planar beaches. An improvement of the Shuto’s model (1967) was made
by Goto (1979). He derived non-linear equations and solved them numerically.
Goto compared the obtained results with those of Shuto (1972) and showed that
non-linear effects in computations of a run-up height do not exceed 10-20%. An-
other two-dimensional Lagrangian model was presented by Nishimura and Take-
waka (1987). They investigated small amplitude waves sloshing in a rectangular
tank with a horizontal bottom and vertical walls and analysed water surface elev-
ations and flow velocities inside the water body. One of the recent models in the
Lagrangian co-ordinates was presented by Zelt and Raichlen (1990). They derived
and solved numerically depth-averaged equations of long wave propagation and
run-up on a plane and impermeable beach. Next, Zelt (1991) included dissipative
terms due to wave breaking and bottom friction quadratic with the flow velocity.
Wave breaking and bore propagation was modelled adopting artificial viscosity
technique (von Neuman and Richtmyer 1950) and as a breaking criterion a max-
imum velocity gradient was adopted. Zelt studied water surface elevations and
run-up heights of a solitary wave while flow velocities were not analysed there.

A new idea in modelling of a wave and wave-induced water motion was intro-
duced by Andrews and McIntyre (1978) and called a Generalised Lagrangian-mean
(GLM) method. A valuable discussion on it can also be found in McIntyre (1980)
and Dingemans (1997). A basic advantage of the method is a precise identi-
fication of mean water flow in an oscillatory wave field. Thus, the influence of
wave motion on mean flows can be investigated. It is conducted by means of a
hybrid Lagrangian-Eulerian approach, in which, considerably simplifying explan-
ation, mean values following an orbital motion (i.e. Lagrangian means) and mean
values at fixed cross-sections (i.e. Eulerian means) are taken into account. The
difference between Lagrangian and Eulerian mean velocity is called by Andrews
and MclIntyre (1978) a Stokes drift.

The mathematical model used in this paper was described by Kapinski
and Kotodko (1996) and Kapiriski (1998). In the first work the formulation
of the model and brief discussion on a shallow-water wave motion in mixed
Lagrangian-Eulerian co-ordinates was given. It was pointed out that the model is
capable of predicting both wave run-up on a beach face and an orbital motion of
particles in a shallow water area. The second work contains more detailed analysis
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including bore-like breaking waves and waves influenced by the bottom friction
that is linear with flow velocity (r ~ v). In this paper some new elements, e.g.
quadratic bottom friction ( ~ v?), are implemented. Additionally, new investig-
ations on orbital (Lagrangian) and flow (Eulerian) velocities are presented. This
concerns both the swash zone and its seaward vicinity.

2. General Description of the Model

A simple shallow-water model in the hybrid Lagrangian-Eulerian co-ordinates
is presented herein. Description of a wave motion is based on depth-averaged
momentum and mass conservation equations, where inviscid and small-amplitude
waves are considered. Thus, uniform velocity in vertical (both Lagrangian and
Eulerian one) and a hydrostatic pressure are assumed. For convenience, an im-
permeable and fixed bottom is assumed, although an implementation of a bottom
profile in compliance with shear stress seems to be feasible. Additionally, the in-
fluence of different external factors such as wind force or longshore currents has
been neglected.

i

0

dx

>
i 2=
X S swL x_

=h(x)
RA
Fig. 1. Definition sketch of model

A definition sketch of the model is shown in Fig. 1. A horizontal axis of the
co-ordinate system is located on Still Water Level (SWL) and is directed offshore.
A vertical axis intersects the horizontal one at the point of junction of SWL with
a slope. A selected water particle to the initial instant, t = 0, occupies position
x. Because of wave motion the particle commence excursion and its displacement
is denoted as & = £(x,¢). Thus, an instantaneous particle position at time ¢ is
given by x® =x + &1). Water level elevation and water depth at cross-section x,
that is fixed in time, are denoted as ¢ and A, respectively. Similarly, the elevation

' Superscript £ is used to mark parameters performing at cross-section x + £, while for para-
meters performing at cross-section x no indication is given.
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and depth at cross-section x¢, moving together with the particle, are denoted as
¢% and A%, In addition, signs of parameters 4 and hf are taken inversely, i.e.
they have positive values below SWL. Horizontal movement of a water tongue
tip & is represented by displacements of a particle occupying position x = 0 at
the initial instant. Its maximum onshore position on a slope is given as run-on
length R,,. Maximum vertical position of a water tongue on the slope (run-up
height) is described as R,,. In addition, instantaneous water elevation at a fixed
cross-section x = 0 is denoted in Fig. 1 as &.

Some of the above considerations can be summarised as follows:

E=E@,0), ¥=x@,H)=x+£@,t), L=£Ex=0,1),
g=tkx,t), =t )=tax+E1), =50 =01, 3)
h=hx), h =h(x*)=hx+§).

It is worth mentioning here that such parameters as displacement of a particle £,
its instantaneous position x* and an elevation of a water surface £¢ corresponding
to this position have a Lagrangian meaning, while water elevation ¢ at motionless
cross-section x is a typical variable expressed in a Eulerian sense.

Depth-averaged momentum and mass conservation equations are expressed
in the Lagrangian sense as follows (Kapinski and Kofodko 1996):

o (K ﬂ-—dxm§+ gmf+gﬂ dx—rﬁkti 4)
£ e 0x8
phdx =p (h. +¢ ) de, (5)
where:
axt At
"t

g - gravitational acceleration,

p — water density.

The term on the right-hand side of Eq. (4) represents all external forces acting
at cross-section x¢ that are responsible for the loss of a wave momentum. Para-
meter 7; is the sum of bottom friction z¢ and a force, divided per unit surface,
arising from a wave breaking Dﬁ:

=1+ D (6)

More detailed discussion on the parameter z: will be given in following sections
and until then let it be assumed as a known function.
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From Equation (5) we have:
et =2 e )
T e '

§
Now, substitution of £¥ and its derivative aaix to Eq. (4) yields:

] axt
2 (he) ha("e"'/s;)
o T
0x

Equation (8) is difficult, if ever possible, to solve and therefore some simpli-
2

; ; ’ . a°h
fications are introduced here. First assumption, ‘ﬁl « 1, reduces the shape of
X

ot

+1ip/ =

®)

a bottom to that of a small curvature, however, points with bends are acceptable
d : : : ;

here. The second one, £ <« 1, imposes small gradients of particle displace-

ments. In the light of these conditions the following approximate formulas are

valid:

ah o0& 1
W=h+t—, 1-—==
+Eax ox 1+

i ©9)
ox
which are then inserted into Egs. (7) and (8).

Now, after assessment and neglecting of negligible terms, Egs. (8) and (7),
may be rewritten as follows:

2 2 &
0 hg) _ L 020E) | o

a2 8" a2 T 5 R
10} 1
ox

Equation (10) describes depth-averaged displacement of a particle &, while
from Eq. (11) elevation of a water surface £ in position x¢ = x + £ can be calcu-
lated. The water elevation ¢ at a fixed cross-section x, i.e. in the Eulerian sense,
can be assessed for every cross-section from a Taylor series expansion:

act
ox '’
or computed numerically where neighbouring elevations £ are taken into account.

Combining Eqs. (10) and (11) we have another equation that is equivalent to
the wave equation expressed in the Eulerian sense:

I St (12)
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(13)
where the term gh denotes the square of a shallow-water wave celerity 2.

3. Non-dissipative Model
3.1. Movable Boundary Description

As a first approach to the analysis of a wave motion forces causing loss of mo-
mentum are dropped in the considerations, z; = 0. Then Egs. (10) and (13)
simplify to the forms:

8% (h§) h32 (h§)

e o ()
art

324-&' (gh_"_-)

a2 ox ) (13)

It is easy to show that there are no difficulties with a description of a landward
movable boundary, especially for the rigid bottom assumed in the model for which
depth A is not a function of time ¢. A particle which occupied the peripheral
position on a slope up till the arrival of the first wave, i.e. x = 0 for which the
depth A = 0, will always represent the edge of a floating water tongue. Inserting
h = hy = 0 into Eqgs. (14) and (11) a complete description of motion of the tongue
tip is obtained:

3%y 3 ho ,8ho 350
a2 (’;‘o ox? T Bx Bx) {16}
oh
= gy 20, 17
& = —bo—- (17)

Extreme values of the parameter ;g correspond to the run-up height R,, and
run-down height Ry,,,, and in a similar way, extreme values of & — to the run-on
length R,, and run-back length Rp,ck.

3.2. Mass Transport Modelling

So far, a pure Lagrangian description of a wave motion was used whereas in
the following analysis a hybrid Lagrangian-Eulerian approach is involved. First,
a mean Lagrangian displacement and velocity are calculated. Next, a mean ve-
locity in the Eulerian sense is derived and finally the difference between both
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velocities is analysed. Probably it is the simplest possible application of the GLM
theory elaborated by Andrews and McIntyre (1978) to the modelling of coastal
hydrodynamics.

During propagation of a linear progressive wave, particles move in closed
elliptical paths. Thus, a horizontal particle displacement can be described by the
following equation:

& = Emax COS (kx + wt) , (18)

where in front of the term wt appears a plus sign because of the opposite direction
of wave propagation in relation to the x-axis (cf. Fig. 1).

For a depth-averaged flow, the ratio of lengths of the ellipse semiaxes is as
follows:

Emax _ 1

This corresponds to the quotient of the maximum horizontal to maximum
vertical particle displacement in the model. Substitution of Eq. 19 into Eq. 18
yields:

H
£ = —cos (kx + wt). (20)
Thus, a particle velocity is described by the following equation:
aE wH
B e ol s s 21
o = = sin (kx + ot). (21)

Now, it can easily be proved that mean values of £ and v¥ are equal to zero:

T T

_ 1 — 1

E Tf;:d: i ¥ T[vdt 0, 22)
0 0

where the overbar denotes time averaging over wave period 7.
Any hydrodynamical parameter can be expanded around x* in the Taylor series
in the following way:

32
b=~ "’ +05825 5 ¢ 23)
where ¢ and ¢° are certain parameters expressed in Eulerian and Lagrangian
co-ordinates, respectively. Thus, for example, a water level elevation and flow
velocity at cross-section x take the following forms:

2
= §—+05§2“ o (24)
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vt a2t
=¥ —E— 2 -~ _
v=v §8x +0.5¢ v MR (25)
Substitution of Egs. (20) and (21) into linearized Eq. (25) yields:
H
V= %[— sin (kx + wt) + %(:052 (kx +mt)]. (26)
After averaging over a wave period T a mean Eulerian velocity, called here a
return flow, we obtain:
1f 1 (H\?
V= Tf vdt =3 (7;) & (27)
0

Using the same way of derivation, it can easily be shown that for standing
waves, for which displacements of particles are described by the following equa-
tion:

& = 2&max coskx cos wt (28)

mean flow velocity at any cross-section is equal to zero, 7 = 0. Moreover, it can
be proved that mean water discharge for both progressive and standing waves
also amounts to zero, Q = 0. These and many other Lagrangian and Eulerian
parameters obtained from this analysis are summarised in Table 1. From the above
text it can be concluded that no resultant water discharge occurs and thus the mass
conservation law is still satisfied. However, non-zeroth mean flow velocity directed
offshore (i.e. return flow velocity) is present, cf. Eq. (27). It is the effect of a slight
deviation of a modelled wave profile from the sine function.

Andrews and Mclntyre (1978) in their work analysed a mean water flow, called
by them a Stokes drift, which is the difference between a Lagrangian and Eulerian
mean velocity:

vS =% — 7. (29)

Thus for the linear case presented here, the Stokes drift for long progressive

waves in shallow water is described as follows:

vS = —% (%)2& (30)

where Egs. (22) and (27) were used.

It is worth mentioning here, that the velocity is negative and therefore the drift
direction always coincides with a wave propagation (cf. Fig. 1). As is known, Eq.
(30) also describes the Stokes’ drift for progressive second-order waves derived in
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Table 1. Summary of water elevation and velocity for progressive and standing waves

Description

Progressive wave

Standing wave

Particle

displacement

3

7 cos (kx + wt)

§

= %coskx COoS wt

Extreme
particle
displacement

g"ex!r =%

H

2%h

Mean particle
displacement

Water

elevation

¢

H
2x

X (sin(kx +wt) — 7

cos? (e + wt))

¢ = H cos kx sin wt x

X (1 + £sin.fct ooswt)

2h

Extreme water

elevation

Cextr = )

Sextr =+H

Mean water

elevation

fer

Particle

velocity

Ue=

—% sin (kx + wt)

H
_wm_ cos kx sin wt

Extreme
particle
velocity

Mean particle
velocity

Instant mass

transport velocity

wH
=——X

2kh

%COSZ (kx + wt)

"

X [—sin (kx + wt) +

|

cOS kx X

sin kx cos w!-‘

Extreme mass

transport
velocity

wH

Vexyr = £ =

2kh

Mass transport

velocity

(7

Water
discharge

Ql
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Eulerian co-ordinates (e.g. van Rijn 1993). This means that the magnitude of the
velocity 7 can be obtained in this model already in the linear approach, despite
the Eulerian method where non-linear analysis is necessary. The only difference is
that for Lagrangian waves particles draw closed trajectories. Thus resultant water
discharge there amounts to zero.

Equation (30) describes the Stokes drift performing at constant water depth.
2

. |o*h . ) .
For uneven bottom shapes, when the condition ml <« 1 is satisfied, it can only be

computed numerically. Relevant numerical examples are presented in Section 6.

4. Model with Bottom Friction

This paper analyses two simplified formulas taking bottom friction into account.
The first formula, taken after Voltzinger et al (1989) and rewritten in Lagrangian
co-ordinates,
)
= — prha—f, (31)
where: fi, — friction coefficient, shows linear dependence of shear stress ¢ on

] . :
particle velocity vt = a—f Validity of the equation is for: fy <  (Voltzinger et al

1989).
The second formula describes a bottom friction quadratic with a horizontal
particle velocity:

2% 2t

ar|at’
and is also rewritten in Lagrangian co-ordinates.

Both equations can be used in the model alternatively, however, for wave
simulation the second one requires much more computational time. The relevant
numerical example of the wave motion disturbed by bottom friction is shown in
Section 6.

¥ =—05fp (32)

5. Model with a Bore-like Breaking Wave
5.1. Adaptation of a Breaking Criterion

Modelling of breaking waves is still one of the most difficult problems to solve
among coastal zone phenomena. In the case of gently sloping beaches the analogy
to bore propagation is often used. In this model, the bore-like breaking process has
also been adopted. It is realised by means of the reduction of excessive steepening
of a wave travelling in shoaling water. Then local steepness of water surface S%
(cf. Fig. 2) cannot exceed some critical value Sg at any point of the wave front.
In this way, further growth of wave height towards the shore is avoided.
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c
-
§ wave front
|
|
¢4
|
— o § o SWL
X,

v

Fig, 2. Sketch of wave front

In general, the parameter $¢ describes a local surface steepness:

=2 2 (33)

but its definition in the model has been limited to the wave front, i.e. when
both £ <0 and (5 > 0. The magnitude of the parameter Sf, will be assessed in
Section 5.2. on the basis of laboratory experiments, hence let it be taken as a

constant value. An Eulerian counterpart of §* is a local steepness at cross-section
13

F=iE
. 3

X

If a local steepness S* at any point of a wave front x* is exceeded, it is
artificially reduced to the required valucSﬁ. This means that the dissipative term
(Eq. 6), in which for clarity of understanding, bottom friction has been dropped,

should decrease the local steepness in Eq. 13 by (Sf - .Sf) To reach this effect
Dﬁ must take the following form:

3
Df = pgh:ix (5-5). (34)

On the other hand, at cross-section x° for which the wave breaking does not
occur, Dﬁ equals zero, D,f = 0. The dependence of the parameter Dg on a critical
surface steepness of a wave front .Sf is sketched in Fig. 3.

Figure 4 shows a numerical example of a wave, oncoming from a region of
constant water depth, that is running up the slope. In numerical computations
its breaking has been hindered. The upper graph shows a wave profile, whereas

in the lower graph a local surface steepness, S = — is drawn for the same time

X
step of computations. Small disturbances decaying with distance, indicated in the
figure with a solid line, are noticeable there. They are only observed for the first
wave for which non-smooth connection of SWL exists with the wave front (cf.
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.
»

st 8

Fig. 3. Influence of critical surface steepness of wave front on momentum loss

0.06 — z(m) H=0.1m h=0.6m
0.03 _: T=2.0s tana=0.25
0.00
-0.03 —: . \
4y
= 1
02 S computed
=a | — — — . approximated
0.1
-0-1 T T T ’ T T T T ] T T 1 T | T T T T ] T

X (m)
0.5 1.0 15 2.0

Fig. 4. Profile of wave running up slope (above) and graph of its local surface steepness in case of
wave breaking not allowed during numerical computations

upper graph in Fig. 4). The expected plot of the local steepness has been marked
in the figure with a dashed line.

Rough information on breaking waves may be assessed from the magnitude
of the Iribarren number Ir:

tana

VvHJL'’
where « is the angle of a flat beach slope and H/L is the incident wave steepness.
A diagram of the Iribarren number has been given in Fig. 5 where separating
values of the type of a breaking are taken after Giinbak (1977). For the example
shown in Fig. 4, the Iribarren number Ir amounts to 1.74. It suggests that a
plunging breaker should appear in a laboratory experiment, however in numerical

computations the breaking was not simulated. This means that the wave run-up
was predicted numerically as for the non-breaking case.

Ir =

(35)
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H/L

Fig. 5. Diagram of Iribarren number Ir (Kapinski 1998)

As was mentioned earlier, a local steepness of a breaking wave front cannot
exceed the critical value of s,f at any point. Figure 6 presents the wave profile
with the same initial parameters as in the example shown in Fig. 4, but this time
a bore-like breaking process is taken into account. In this computational example
.Sﬁ was set, by way of example, as a constant value equal to 0.125. It means that
the local steepness of a wave front cannot exceed half the inclination of a bottom
slope. This has been confirmed by the lower graph in Fig. 6. In this computational
example the wave-breaking started at about 1.4 m from the junction of SWL with
a beach face that corresponds to the origin of co-ordinate system in the model,
x = 0. Because of the small value of S , an exaggerated dissipation rate was
imposed there and thus a considerable decay of wave height can be observed.
This intentional effect has been shown in Fig. 7, where selected wave profiles for
several time steps of computations are drawn.

It should be fairly clear that there exists dependence of a computed wave
run-up height R,, on the magnitude of the parameter .Sf . The confirming example
is shown in Fig. 8. For higher values of a permissible local gradient of a wave front
S;, a water tongue achieves a higher position on a slope. Parameter .Sﬁ equal to
infinity, marked in Fig. 8, denotes the test with a simulation of a non-breaking
wave uprush. Finding the magnitude of critical surface steepness, for the case
when run-up heights measured in a laboratory and computed numerically are
identical, is the goal of the next section.
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0.06 -z (m)

] H=0.1m h=0.6m
0.03 | T=20s tano=0.25
0.00 |

'0-1 ] T T I T T T T | T T T T I T T T T

|
0.5 1.0 15 2.0
Fig. 6. Profile of breaking wave running up slope and graph of its local surface steepness
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Fig. 7. Run-up of breaking wave on slope for different time steps of computations
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Fig. 8. Breaking wave run-up for different values of critical surface steepness Sﬁ
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5.2. Calibration of Sﬁ Parameter through Experimental Data

In 1992-1995, at the Institute of Hydro-Engineering of the Polish Academy of
Sciences (IH PAS) in Gdansk, extensive laboratory experiments of a wave run-up
phenomenon were performed. The main goal was optimisation of run-up height
of irregular waves. These tests concerned several plane slopes and different rough-
ness elements with various localisation on the slopes. General description and se-
lected results of the performed experiments were presented by Kotodko, Kapiriski,
et al (1996). Some experiments turned out to be helpful in calibration of the
presented mathematical model for breaking waves.

A sketch of the IH PAS wave flume is shown in Fig. 9. The flume is 20 m long,
0.5 m wide, 1.5 m high and filled in with water in the range of 0.5-0.7 m. To gener-
ate waves according to JONSWAP spectrum a piston with wave absorption facil-
ities was used. Water elevations were measured by several fixed capacitance-type
gauges, whereas to record uprush-backwash excursions, two wires located on the
slope 5 mm over its surface were installed.

_ Wave
Sy, Sy S Sy - wave gauges piston
Sr i h Sq Sz £
SWL &
n =g
o
0
o
bottom
‘ 11.6m >
’ 20.0m .

Fig. 9. Sketch of wave flume

The aim of the calibration was to obtain the magnitude of the critical steep-
ness Sﬁ for the case when measured and computed run-up heights are identical.
The result of this work is shown in Fig. 10. Runs of regular waves are marked
with solid triangles, whereas those of irregular ones — with solid circles. Next
to each experiment the proper values of the computed parameter Sﬁ are given.
The laboratory experiments were carried out for a smooth slope made of ply-
wood, therefore the influence of bottom friction can be neglected. Inclination of
the slope was the same for each experiment: tano = 0.25, whereas the Iribarren
number Ir was approximately in the range of 1.2-2.0. The significant wave run-up
height R,s was calculated as an average height of one-third of the highest run-ups.
These experiments have shown that there is little difference in extreme values of
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Fig. 10. Calibration of critical steepness parameter .S‘E

the parameter .Sf. Its mean value is equal to 0.61 and corresponds to the max-
imum angle of a wave front of 31°. It means that for the slope inclination 1 : 4
measured and computed run-up heights of breaking waves are almost identical
when the parameter of a critical steepness of a wave front is equal to 0.61.

A rough comparison of many other numerical tests (not presented here) with
the Hunt formula (Hunt 1959):

R,  tana
H JHL
suggests that there exists only slight dependence of the parameter Sg on a slope

angle o and that it seems to be the only factor. Hence, taking this into account,
the following condition can been postulated:

(36)

S = Y tana, (37)

where ¢ is a constant or function with gentle progress.

6. Discussion on Numerical Modelling of Flow and Orbital Velocities

As is well known, non-breaking sinusoidal waves approaching a shore show si-
nusoidal swash oscillations on a uniformly inclined slope. This was pointed out
by e.g. Miche (1944), Kemp and Plinston (1974) and Horikawa (1988). Maximum
velocity appears at the point of junction of the mean water level with the slope
(* = 0in Fig. 1), although the maximum acceleration a water tongue tip has in the
extreme waterline positions. It has been tested and confirmed here by numerical
simulations. An example of a horizontal displacement, velocity and acceleration
of the moving shoreline is given in Fig. 11. Oncoming regular waves (H = 0.1
m, T = 3 s) from a region with a constant depth, # = 0.6 m, are analysed. They
run the uniform slope with an inclination of 1: 1 up. All parameters presented in
the figure are described by a time-dependent sinusoidal function. For the same
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numerical experiment a water surface elevation, as well as horizontal flow velocity
and acceleration at the cross-section x = 0 have been examined. The results are
shown in Fig. 12. They only cover the period while the water body exists in the
cross-section, ie. t = T/2.

displacement
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Fig. 11. Horizontal displacement, velocity and acceleration of floating tongue tip
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Fig. 12. Water elevation, horizontal velocity and acceleration at connection of SWL with slope

As has been shown earlier, the model is capable of computing mass transport.
Despite the reverse direction, it has the same magnitude of velocity as a return
flow computed in this model. The most simple numerical example is given in Fig.
13 where a long wave (H = 0.1 m, T = 3 s) travels in a channel with constant
depth, 4=0.6 m. The upper graph concerns a progressive wave, whereas in the
lower graph the results for a standing wave are shown. A dashed line in the upper
graph describes the particle velocity during a single wave period 7. Computed
time-averaged particle velocity is equal to zero, v€ =0 (also cf. Eq. 22). The
solid line, when compared with the sinusoidal graph of the particle velocity, has
a flatter crest in the second quarter and steeper trough in the third. Therefore
the time-averaged flow velocity has a non-zeroth offshore direction. Computed
numerically, the magnitude of the return flow amounts here to 0.084 m/s. The
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Fig. 13. Depth-averaged particle and return flow velocity at constant depth for progressive (A)
and standing (B) wave

lower graph in Fig. 13 shows velocities for the standing wave. The dashed line
is invisible, as it is overlapped by the solid one. Mean values of both velocities
computed for this case are equal to zero. This means that for standing waves a
mass transport does not exist in the model.

Figure 14 shows another example of return flow modelling. An initially regular
wave (H = 0.2m, T = 3 s) advances over a decreasing bottom depth, » = 1.0-0.6
m. Computed values of a return flow have been marked by solid circles and next
connected with straight solid lines. As is shown the velocity of a return flow (and
mass transport velocity corresponding to it) has a tendency to grow as the water
depth becomes smaller.

Figure 15 shows an example of the spatial distribution of a velocity in the swash
zone and its offshore vicinity. A sketch of the numerical channel with marked com-
puted wave profiles in two extreme positions on the slope is also given. The solid
circles indicate computed maximum and mean velocities at selected cross-sections.
Extreme positive and negative velocities are symmetrical to each other, while the
mean motion is equal to zero in the whole area of computations. At x = 0 the
flow velocity is maximal and rapid decrease in the landward direction is observed.

In Fig. 16 a similar example of velocity distribution as in Fig. 15 is presented,
but this time it is shown that the maximum velocity at the beach face in some cases
can be smaller than the maximum velocity in the neighbouring offshore vicinity.

Figure 17 shows comparison of numerical simulations with the Miche (1944)
analytical solution (Eq. 1). Some discrepancy appears here, although in both cases
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Fig. 15. Example of extreme and mean flow velocities for standing wave run-up (black circles —
computations)
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Fig. 16. Another example of extreme and mean flow velocities for standing wave run-up (black
circles — computations)

dependence vomax ~ 1/+/L can be observed. The reason for this diversity has not
been found.
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Fig. 17. Comparison of numerical computations with Miche solution (1944)

When a wave breaking phenomenon does not occur, bottom friction seems
to be an important factor in flow velocity and run-up height attenuation. In the
present model two crude formulas based on depth averaged velocities are used
(Egs. 31, 32). The aim of numerical analysis was not an assessment of a mag-
nitude of coefficients but rather the effect of adopted formulas on the shoreward
wave transformation. For better visualisation much more exaggerated dissipation
has been taken in computations (i.e. large friction coefficients). In Fig. 18 are
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presented results of attenuation both by linear friction (Voltzinger et al 1989) and
quadratic friction formula. The upper graph shows water surface profiles, whereas
in the lower graph flow velocities are given. Magnitudes of friction factors have
been chosen suitably to demonstrate that it does not matter what kind of fric-
tion formula is used in the model. Both of them give approximately the same
attenuation of wave height and flow velocity along the numerical channel.
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Fig. 18. Wave profile and flow velocity in case of bottom friction

Sea or ocean waves approaching a shore very often break on a natural beach
or on man-made slopes. Knowledge of spatial velocity distribution in the swash
zone is then important both for modelling of sediment transport and forecast-
ing of damage conditions of breakwaters or mounds. The upper graph in Fig.
19 shows horizontal displacement of a water tongue tip during simulation of a
wave breaking in the model. With the solid line the tip elevation has also been
marked. In the middle graph flow and particle velocities are drawn. The solid
line indicates the velocity of the tongue tip on the slope, whereas the dashed line
represents the flow velocity at the junction of SWL with the beach (x = 0 in Fig.
1). Contrary to a non-breaking wave run-up (cf. Fig. 15 and 16), maximum velo-
city appears somewhere between run-on length R,, and the junction of SWL with
the beach, x = 0. The lower graph in Fig. 19 shows the distribution of a water
tongue acceleration during the uprush-backwash period. All these graphs, con-
trary to standing wave run-up, are not sinusoidal functions. Moreover, it can be
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Fig. 19. Displacements, velocities and acceleration in case of breaking wave run-up

observed that for the breaking wave, run-up period is shorter than the run-down
period. For this numerical example, when bore-like breaking wave runs the slope
up, particle trajectories are also computed and shown in Fig. 20. For better visu-
alisation parameter SE has been decreased about 2.5 times, i.e. stronger condition
due to wave breaking has been imposed. The solid circles in the figure indicate
initial positions of the particles.

In Figure 21 a spatial distribution of flow velocities caused by a single break-
ing wave is given. The upper graph shows a shot of a bore profile during the
run-up phase, whereas in the middle graph, computed maximum and mean velo-
cities are marked. They are the complex effect of interaction of a wave-breaking
phenomenon on swash oscillations. Contrary to the standing wave (cf. Fig. 15 and
16), the maximum landward and seaward velocities are not symmetrical to each
other. Additionally, the maximum shoreward velocity is bigger than the maximum
seaward velocity and it does not perform at the junction of SWL with the slope
but somewhere inside the run-up region. Moreover, the mean flow velocity is
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Fig. 20. Particle trajectories of breaking wave in swash zone and its offshore vicinity

not zeroth along the analysed area. On the right-hand side of the cross-section
B-B, a small offshore mean current is observed, while in the opposite region a
current, exists, but seems to be negligibly small. The computed incipience of a
wave breaking is located near cross-section A-A in Fig. 21, and thus the decrease
in magnitude of the mean velocity is observed there. It is worth mentioning that
in numerical computations the time-averaging outside the swash zone was made
over a wave period, whereas inside the swash zone it concerned a period of the
presence of a water body at a given cross-section. The lower graph in Fig. 21 shows
a velocity distribution presented in the middle graph that has been normalised by
a local wave celerity ¢ = \/gh.

7. Summary

A simple mathematical model for prediction of shallow-water wave propagation
has been presented. The model was applied to simulation of wave and water mo-
tion in the swash zone and its seaward vicinity. Such phenomena as wave run-up,
water flow and orbital motion have been discussed. Waves influenced by bottom
friction were modelled using formulas that are linear or quadratic with an orbital
velocity. The wave breaking was simulated as an analogy to bore propagation
where as a breaking criterion a limited local slope of a wave front was taken. The
model for breaking waves has been calibrated for plane impermeable slopes with
an inclination 1 : 4. Selected results of numerical computations were presented
in graphical form and for simplified cases some analytical results were derived.
Although the examples presented are shown for simple bathymetric profiles, the
model can also be used for prediction of a wave and water motion over more
complex bottoms.
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Fig. 21. Example of extreme and mean flow velocities for breaking wave run-up

References

Andrews D. G., McIntyre M. E. (1978), An Exact Theory of Nonlinear Waves on a Lagrangian-mean
Flow, Jour. Fluid Mech., Vol. 89, Part 4, 609-646.

Dingemans M. W. (1997), Water Wave Propagation over Uneven Bottoms. Part 1 - Linear Wave
Propagation, Advanced Series on Ocean Engineering, Vol. 13, World Scientific Publ. Co.,
227-243.

Goto Ch. (1979), Nonlinear Equation of Long Waves in the Lagrangian Description, Coastal
Engineering in Japan, Vol. 22, 1-9.




192 J. Kapiriski

Giinbak A. R. (1977), Rubble Mound Breakwaters, Div. Port and Ocean Engineering, Rep. No.
12/77, Technical University of Norway, Trondheim.

Horikawa K. (editor) (1988), Nearshore Dynamics and Coastal Processes. Theory, Measurements
and Predictive Models, University of Tokyo Press.

Hunt L. A. (1959), Design of Seawalls and Breakwaters, Proceedings of ASCE, Journal of Water-
ways and Harbors Division, Vol. 85, 123-152,

Iribarres R., Nogales C. (1949), Protection des ports, XVII International Navigation Congress,
Lisbon, SII-4.

Kapiriski J. (1998), A Hybrid Model of Wave Propagation and Wave Run-up on Slope, Ph.D.
Thesis, Institute of Hydro-Engineering, Polish Academy of Sciences, Gdansk, 159 pp. (in
Polish).

Kapiriski J., Kofodko J. (1996), Wave Run-up on Gentle Slopes: a Hybrid Approach, Archives of
Hydro-Engineering and Environmental Mechanics, TH PAS Gdansk, Vol. 43, No. 1-4, 79-89.

Keller J. B, Keller H. B. (1964), Water Wave Run-up on a Beach, Research Report No. NONR
3828(00), Office of Naval Research, Department of the Navy, Washington D.C., New York.

Kemp P. H., Plinston D.T. (1974), Internal Velocities in the Uprush and Backwash Zone, Coastal
Engineering, Chapter 32, 575-585.

Kotodko J., Kapifiski I., Szmytkiewicz M., Zeidler R. B. (1996), Wave Run-up: Recent IBW
PAN Investigations, Coastal Dynamics 95, ASCE, New York, 197-208.

McIntyre M. E. (1980), Towards a Lagrangian-mean Description of Stratospheric Circulations and
Chemical Transports, Phil. Trans. Roy. Soc., London, A296, 129-148.

Miche A. (1944), Mouvements Ondulatoires de la Mer en Profondeur Constante ou Décroissante,
Annales des Ponts et Chaussées.

Nishimura H., Takewaka S. (1987), Numerical Analysis of Surface Waves using Lagrangian De-
scription, Coastal Engineering in Japan, Vol. 30, No. 1, 1-7.

Shuto N. (1967), Run-up of Long Waves on a Sloping Beach, Coastal Engineering in Japan, Vol.
10. 23-38.

Shuto N. (1968), Three Dimensional Behaviour of Long Waves on a Sloping Beach, Coastal
Engineering in Japan, Vol. 11, 53-57.

Shuto N. (1972), Standing Waves in Front of a Sloping Dike, Coastal Engineering in Japan, Vol.
15, 13-23.

Shuto N., Goto T. (1978), Numerical Simulation of Tsunami Run-up, Coastal Engineering in Japan,
Vol. 21, 13-20.

Van Rijn L. C. (1993), Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas,
Aqua Publications, Netherlands.

Voltzinger N. E., Klevanny K. A., Pelinovsky E. N. (1989), Long-wave Dynamics of the Coastal
Zone, Gidrometeoizdat Publishers, Leningrad (in Russian).

Von Neumann J., Richtmyer R. D. (1950), A Method for the Numerical Calculation of Hydro-
dynamic Shocks, Jour. Appl. Phys., 21, 232-237.

Zelt J. A. (1991), The Run-up of Nonbreaking and Breaking Solitary Waves, Coastal Engineering,
15: 205-246.

Zelt J. A, Raichlen E (1990), A Lagrangian Model for Wave Induced Harbour Oscillations, Jour.
Fluid Mech., 213: 203-228.




