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Abstract

The paper presents the analytical solution to the problem of groundwater flow through
an observation well. Assumptions enabling the formulation of the problem using the
classical theory of seepage are specified. The solution was derived from the variable
separation method. Obtained results confirm the outcomes of investigations, conduc-
ted on physical models, published by other researchers.

Numerical modelling may be useful to obtain the solution to the poblem for more
complicated cases e.g. complex geometry, other boundary conditions, anisotropy of
medium. An example of calculation applying the finite element method is given.

Notation
hy,h; - piezometric heads,
r,g - polar co-ordinates,
X,y — Cartesian co-ordinates,
n,s - local coordinates (n is unit outward normal to surface I'),

ro — radius of a well,
ki, k, - seepage coefficient (hydraulic permeability),

q — seepage velocity vector,

gx.qy - components of vector g,

gn.qs - components of vector q in local co-ordinates (n, ),
i - slope of piezometric surface,

q - discharge, g = kii,

QOn. Om — flow through an observation well.
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1. Introduction

Basic information concerning groundwater flow can usually be obtained using
piczometric measurements. The direction and the i intensity of water flow in aquifer
are traditionally determined on the basis of measurements conducted in observa-
tion well systems forming a hydrogeologic node (Wieczysty 1982).

Flow rate can be also measured in a single well by introducing appropriate
sensors. Obviously, it must be remembered that the velocities of water particles
inside an observation well, as in any other porous medium, are very small i.e.
within the range of fractions of millimeters per second. Thus, measuring methods
ensuring adequate accuracy must be applied. Majewski (1980) was one of those
who investigated this problem from the metrological point of view.

Determination of the quantitative relation between the measured rate inside
a well and seepage rate in aquifer is an important problem. An attempt to present
an analytical description of flow through an observation well was considered by
Chirek (1995). Unfortunately, the solution presented there turned out to be in-
correct. Sroka and Wosiewicz (1998) undertook a study giving an outline of an
analytical solution to the problem. For comparison, an approximate numerical
solution with finite element method was obtained. The analysis of a similar prob-
lem, but for measuring sensor placed directly in porous medium (spherical cap),
not in an observation well was presented by Majewski (1980). However, Majew-
ski’s solution cannot be transformed from a sphere to a cylinder as in the case of
a well.

Seepage rate in natural aquifers can also be measured by radiometric method.
A tracer (isotope) is introduced into a testing well and the variation in time, of
water activity in a well is tested. The diffusion phenomenon is usually neglected at
small tracer concentrations (Kowalski 1998). Variations in tracer concentrations
are involved in this case only by the dilution caused by water flowing from the
aquifer to the well. In this case it is important to determine the relation between
the measured flow through a well and the natural flow in an aquifer (undisturbed
flow). This relation is usually written in the form of: Q,, = BQ,, where Q,, is
measured flow and Q, the natural flow. Kowalski (1998) referring to Pigtka (1962)
research (sand-box model) states that 8 coefficient assumes values within the range
of 02, depending on the ratio between the seepage coefficient of the medium
and the filter. When the filter conductivity is one rank (or more) higher than the
conductivity of the porous medium, it is advised, for practical purposes, to assume
the value of g = 2.0.

Rethati (1983) quotes publications in which a value of the 8 coefficient equal
to 1.0 is recommended, however, some others, give a value of 2.0. He also reports
Kritschmar and Luckner investigations on the basis of which an empiric formula
was prepared. The value of B coefficient in the formula depends, among other
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parameters, on filter porosity. At a higher filter porosity, of above 60%, the B
coefficient value is about 2.0.

The main purpose of this paper is to present a detailed description of ground-
water flow through an observation well, beginning from its formulation, specific-
ation of simplifying assumptions and boundary condition up to the solution and
analysis of obtained results. The comparison of results obtained with the results
of investigations conducted on physical models confirms the correctness of the
solution presented.

The problem discused could be solved by applying appropriate numerical
methods. Numerical modelling will be particularly useful in the case of more
complex area geometry, other boundary conditions or when the anisotropy of the
medium has occurred.

The analytical solution formulated below could be obtained as the particular
case analyzed by Dagan (1989), i.c. the problem of determination of effective
conductivity for heterogeneous porous medium. The solution presented in this
paper is less general than that obtained by Dagan (1989). However, it was obtained
using a simpler mathematical method, hence the analysis of results is decisively
easier.

2. Assumptions and Formulation of the Problem

Water flow in a complex system comprising porous medium of aquifer, filter
around test well and the flow in the well (lack of porous medium) should be
analyzed. The filter resistance is so low compared with the seepage resistances in
aquifer that it can be neglected without introducing significant errors. For calcula-
tion purposes, it is better to assume that the porous medium is also placed inside
the well. The whole phenomenon can than be described as a problem of seepage
flow. Assuming such a model, the formulation of the problem and searching for
the solution, as well as the analysis of results, is much easier. All considerations
are conducted within the classical theory of seepage. On the other hand, when
seepage coefficient inside the observation well is assumed to be several ranks
higher than in the aquifer and the porosity equals one, then the true situation will
be properly described in such an approximation. An additional argument for the
application of such a scheme is the fact that when the medium conductivity inside
the piezometer is properly matched, filter action can be taken into consideration.

The problem of water flow through the observation well, including the
searched relation between flow rate measured in the well and seepage rate in
the aquifer, was obtained assuming as follows:

a) the problem is flat in the plane (the flow is averaged in the vertical axis),

b) the depth of water seepage strata is constant — confined flow in aquifer
covered with impermeable formations,
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c) seepage area is infinite,

d) the flow is steady in time (stationary),

e) the field of seepage velocity (neglecting local disturbance near the well) is
uniform i.e. seepage rate vector is parallel to selected direction (in the work
to x-axis),

f) the Darcy seepage law is valid in the porous medium,

g) porous medium is isotropic with the k; seepage coefficient for aquifer, and
the k; in the well.

From the mathematical point of view the solution of the formulated problem
can be put down to find two functions, the A; and the A;, which describe the
distribution of piezometric heads in the Q; - aquifer, and in the Q; — observation
well (Fig. 1).
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Fig. 1. Scheme of the problem and descriptions
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These functions must satisfy an adequate flow equation inside their flow area.
Due to isotropy and homogenity of seepage properties it will be a Laplace equa-
tion (Bear, Verruijt 1987) thus:

in Q A(khh) =0, Kk = const, (1)
in 2 A(kshz) =0, k; = const. (2)

Equations (1) and (1) in a cartesian coordinates system take the following
form:

ki)  *(kihi)
axz T ayz
Adequate boundary condition must also be met. Prescribed flow must be set
on the boundary at infinity:

0 §=172 3)

oh

—kl---—1 =—q forx —» —oo, —."cl-e?ﬂ =q forx — oo,
on s “@
ah

—kla—n =0 fory > *oo.

At the I'y 2 boundary between the areas, continuity conditions must be satisfied:

hl = h2 (xvy) € F1,2r (5)
ohy dh,
s N .

ky v 2ams x,y) el (6)

Minus sign on the right side of formula (6) results from the opposite sense of
normal vector to I'; 2 boundary for ©; and Q,.

It is worth noting that, due of the symmetry of the problem, searched functions
h1 and h; should also be symmetric with regard to the x axis.

In a polar coordinates system (x =r cos¢, y =r sing) equations (1) and (2)
may be written as follow:

10
ror

8 .. 10%khk) . .
[r;(k.—h,)]+;—5 a2 =0 i=12 (7

and boundary condition at infinity takes the simple form:

h
—k1aa—n1 =gcosg forr — oo. (8)

3. Solution

An analytical solution of the formulated problem was sought in the (r, ¢) polar
coordinates system (Fig. 1) with variables separation method. This solution was
assumed in the following form:

h = f(r)cosp. )
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It is worth noting, that such a form of solution meets the conditions of flow
symmetry related to the x axis. Introducing the function (9) into the equation (7)
and solving this characteristic equation, the following function in external area
(2;) was assumed:

b= (Ar + Br‘l) cosg (10)
and similarly inside the observation well (£22)
hy = (Cr +Dr‘1)cos<p. (11)

From the above mentioned conditions four integration constants occurring in
the solution were determined:

e on the boundary at infinity (r — oo) condition (9) can be written in the
following form:

L _ ohy _
an = —k1 on | k== W o (12)
It is obtained from (10):
ohq
— = : 13
or | Acosg (13)
Taking the above (12) and (13) into account:
A=—q/k. (14)

It is easy to prove that (14) automatically satisfied the conditions formulated
in (4);

e the A5 function in Q; area, i.e. inside the well must be a bounded function.
In the face of this fact the second constant from formula (11) is equal to
ZEero

D=0, (15)

e the condition of compatlbﬂity of piezometric heads at the I'; 2 boundary
must be ensured, i.e. condition (5) must be met Considering (14) and (15)
the following equation is given

B
- 2—!‘0 + — =Cr, (16)
ki

e continuity at the T';  boundary shall be ensured, i.c. condition (6) shall be
met by the following equation

Ky (A = Bro‘z) = kC. (17)
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Equations (16) and (17) enable the finding of constants B and C, thus de-
termination of the final form of the 4; function in the area beyond the well and
the A3 inside is possible. Solving this system we obtain:

R ky — ky 2
Ckik+k o (18)
2
C=- - 19
ky +ky @2
The following dimensionless quantities are introduced:
r hl h2 kz = kl
R=— H=— HB=— A= . 20
ro . ro 2 ro ky+ k1 (20}
Finally, one can obtain a solution with the following form:
X1l
Hi=p (AR R) cos g, 1)
_ 9
H, = k—(l —1)Rcosg. (22)
1

4. Results and Discussions

The obtained solution (22) determines the uniform field rate inside the observa-
tion well described by the following equations:

k: :
gx =2qk2T2k1, gy =0 in Q. (23)
Thus, the flow rate in the well is constant, irrespective of its position but
depending on the value of k; and k; secpage coefficients. Assuming that k; is
much greater than k;, the obtained description can be related to the physical
situation when there is no porous medium in the well. Flow rate inside the well
is then in practice twice as great as the secepage rate in the surrounding medium.
Distributions of dimensionless piezometric heads H,/|i|, Hz/|i| obtained for
three selected values of the parameter A, i.e. —1.0, 0.6 and 0.98 are presented in
Fig. 2 (note that |i| =gq/k1).
The following particular cases can be selected when the solution obtained is
analysed:

1) seepage coefficients (permeability) of medium in a layer and in a well are
equal, then A parameter is equal to zero and the uniform field rate is de-
scribed by the H; and the H, functions (g =4, gy =0),
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2) seepage coecfficient in a well is equal to zero, A = —1 and the solution ob-
tained is analogous to flow around a cylinder, which is well known in hy-

dromechanics (compare e.g. Puzyrewski, Sawicki 1987). On the surface of

the cylinder (r = rg) solution (21) gives, g; = —kla—hl = —kl-—l—% =-29
as ro d¢

. 3
sing. For ¢ = % and ¢ = 27 the value of q, = |g;| = 2q,

3) the layer is impermeable, we have k; =0, A = 1 and the above-mentioned
description is without physical sense which is equal to lack of flow.

A range of well influence on the uniform flow field is easy to assess on the
basis of formula (21). The difference in the H function value for the flow with
a well (A = —1) and without it (A = 0) at a distance of 10rq is no greater than
1% relative error. In practice, this means that flow disturbance caused by the
introduction of a well vanishes several metres (depending upon well diameter)
from its center.

It is worth explaining how boundary conditions are set. Constant potential or
piezometric head at the I'; 3, boundary between a well and aquifer, as Chirek as-
sumed in his work (Chirek 1995), is incorrect in fact. In this instance the potential
inside the well should be constant. The value of harmonic function inside the area
is limited by values at its boundary (Tichonow, Samarski 1963) and as a result any
flow is possible.

Solution of the problem discused could be easy to assess by applying numer-
ical methods. The finite element method (e.g. Wosiewicz, Sroka 1982, Zienkiewicz
1977) is a very useful tool for analysis seepage problems and is very often applied
to create a numerical model. The following example demonstrates how the ap-
propiate numerical model should be formulated.

Since the influence of observation well on uniform flow field at a distance of
10rg is practicly negligable, the problem could be analyzed in the finite area. The
scheme of the problem together with assumed boundary conditions are shown in
Fig. 3a. Due to symmetry with regard to x axis only the upper part of the flow
area was taken into consideration. The seepage flow problem in = Q; U ; is
described by the following equation:

div(kgradh) =0, k(x,y)=const =k; in Q;, k(x,y)=const=k; in Q. (24)

Assumed boundary conditions are shown in Fig. 3a. The boundary condition
is of the Neumann type and the solution is unique only to within an arbitrary
additive constant (Brebbia et al. 1984). Because of this, a piezometric head equal
to zero was assumed for one node placed at the origin of coordinates system (i.e.
forx =0,y =0).
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Fig. 3. Computational example:
a) scheme of the problem and boundary conditions, b) obtained solution in the vicinity of the well
(Hy,2/1i1)

Calculations have been made for quantities set as below:

kil =i=001 ky=99%; ro=1 A=098. (25)

The simplest triangular elements with linear shape functions were used for
discretization in space. The applied mesh of elements consists of 912 elements
and 493 nodes. Part of it, situated near the well, is shown in Fig. 3b. Obtained
results, piezometric heads for some nodes along the x axis, are given in Table 1.
Distribiuton of piezometric head in the vicinity of the well is shown in Fig. 3b.
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The results were compared with the analytical solution (equations (21) and (22)).
Piezometric heads were determinated with good accuracy. Outside the well relat-
ive error value is less than 2%.

Table 1. Piezometric heads

X=x/r Hy/li|
Y=y/ro=0) FEM | analytical | relative error

solution [%]

1 —0.02027 | —0.02000 1.35

4/3 —0.59580 | —0.59833 0.42

5/3 —1.07400 | —1.07867 0.43

2 —1.50200 | —1.51000 0.53

2.5 —2.09400 | —2.10800 0.66

3 —2.65400 | —2.67333 0.72
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