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Abstract

An analysis is given of standing water waves of finite amplitude growing in time. In
the model considered, a piston-type wave maker generates the waves in a rectangular
fluid domain. The frequency of the generation corresponds to water waves of lengths
equal to double the length of the fluid domain. In this way the case of resonance was
obtained and the amplitude of the generated standing wave grew in time. The ana-
lysis has been confined to the second order approximation expressed in the material
variables. Theoretical results have been compared with experimental data.

1. Introduction

In analysis of water waves an important problem is the description of waves of
finite amplitude propagating in fluid of constant depth. The importance of the
problem results from its relative simplicity which is specially appreciated when
performing laboratory experiments in a hydraulic flume. Results of such experi-
ments are used to estimate the accuracy of theoretical models of description of the
phenomenon. One of the problems of this kind is the generation of standing waves
of finite amplitude increasing in time. In the paper, we investigate the initial value
problem of the standing waves generated in fluid of constant depth. The fluid, ini-
tially at rest, starts to move at a certain moment in time. We focus our attention
on the potential motion of the fluid with the potential function ® depending on
material variables and time. The results of the theoretical model considered are
assumed to describe the main features of the phenomenon. Most of solutions of
such problems encountered in the literature of the subject is described by means
of space variables. With these variables and under the assumption that the fluid is
inviscid and incompressible, and the flow is irrotational, the relevant differential
equations of fluid dynamics are reduced to the Laplace equation for the velocity
potential. The main difficulty in obtaining a solution of the problem is the solution
to the initial and boundary conditions, especially on moving boundaries of the fluid
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domain. There are also regions of our interest however, where it is more prefer-
able to use the material (Lagrangian) description of the problem considered. An
example of such a problem is the structure-fluid dynamic interaction, where the
Lagrangian variables are more convenient in constructing a solution to the bound-
ary condition on the wetted surface of the structure. As concerns the Lagrangian
description of the phenomenon, an important contribution belongs to Fontanet
(1961) who gave the complete second order solution to the harmonic generation
of waves in fluid of constant depth. The solution was obtained by means of the
method of successive approximations. Madsen (1970) discussed the problem of
water waves generated by a piston-type wave maker starting from rest. In this case,
a more familiar Eulerian description has been applied. The second component of
the solution was constructed for a relatively large lapse of time from the starting
point, it thus being justified to confine the analysis to the classical steady state
wave maker theory. Madsen, Mei and Savage (1970) analysed the evolution of
time-periodic long waves of finite amplitude. They found that the occurrence of
the secondary crests of the waves is a dominant feature and that waves periodic
in time do not remain simply periodic in space. Tadjbakhsh and Keller (1960)
considered periodic in time and horizontal direction, wave motion of an inviscid
incompressible fluid bounded by a rigid horizontal bottom and a free surface. It
was assumed that the motion is symmetric about a vertical plane x = 0, where
x is the horizontal Cartesian coordinate. In this way their solution describes the
standing wave, which results from the reflection of a normally incident wave from
the wall x = 0. Applying a perturbation procedure, the authors obtained a third
order formula describing the fluid pressure on the vertical wall. Goda (1967) in-
vestigated a similar problem of standing water waves. He extended the solution of
Tadjbakhsh and Keller to the fourth order approximation. The pressure obtained
in this way was in good conformity with experimental data. For wave steepness
exceeding a critical value double humps may be observed in the wave pressure on
its time history. Third order approximate solution to short crested waves corres-
ponding to an oblique reflection of an incident wave from a vertical wall has been
given by Hsu, Tsuchiya and Silvester (1979). The formulation reduces to stand-
ing waves for the normal, to the boundary, incidence of an approaching wave.
An interesting problem of small vibrations of a vertical plate immersed in water
of finite depth and loaded with pressure resulting from a breaking standing wave
has been discussed by Romariczyk (1994). In the theoretical model considered the
breaking wave was obtained as a limiting case of a standing wave with amplitude
growing in time. The latter was created with the help of a generation of the wa-
ter wave with the frequency belonging to the resonance range of the rectangular
fluid domain. The domain was bounded on one side by a rigid vertical plate of
the generator and on the other — by the vertical plate suspended elastically within
the fluid. Starting from rest, after a sufficiently long lapse of time, the growing
standing wave reached the breaking point. The approximate analytical solution of
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the problem was in good conformity with data obtained in experiments performed
in a hydraulic flume. In the present paper a similar problem of standing waves
generated in the rectangular fluid domain is considered. The problem is similar
to that described by Romanczyk, but now, a material description of the problem
on hand is investigated. In particular, we are looking for an approximate solution
of the initial boundary value problem of the potential motion of fluid within the
rectangular domain. The analysis is confined to the second order approximation
of an equations describing water waves.

2. Fundamental Relations

In the following we confine our attention to the plane problem of fluid motion
in Euclidean space. In order to describe the motion we introduce the Cartesian
coordinate system z", (r = 1, 2) in an actual configuration. In the reference config-
uration, the Cartesian coordinates, corresponding to names of the fluid particles,
are denoted by ZM =12 ). In the cases considered it is convenient to intro-
duce a common Cartesian coordinate system. The motion of the fluid is described
by the mapping of the names into the positions occupied by the material points
at the time ¢t > 0

2(Z%t) = 8 Z* + u' (Z 1), 6y

where & is the Kronecker’s delta and w’ are components of the displacement
vector.
The Jacobian of the transformation is the determinant of the matrix of the
transformation gradient
J=det[z,], ()

where the symbol , @ denotes the partial derivative with respect to Z“. Similarly,
the symbol ,i denotes the partial derivative with respect to z‘, and the subscript
,t means the partial derivative with respect to time. For the assumed fluid in-
compressibility the Jacobian is equal to one. The inverse of the matrix of the
transformation gradient reads

a_1[ 72 -7
-3 5 k] i
Knowing the above relations we may transform important formulae from the
Eulerian variables into the Lagrangian variables and vice versa. Thus, let us con-
sider a potential motion of the fluid with the potential function ®(z', ¢) expressed
in terms of the space variables. In these variables the potential should satisfy the

Laplace equation
Vo =0 4)
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and appropriate initial and boundary conditions.
With respect to the potential ®(Z*,¢), the velocity components are

Wy (2',1) = @ 2, | 6)

where the dot denotes the material time derivative.
At the same time, the Laplace equation (4) in the material coordinates assumes
the form
& [@,25] 25 =0. (6)

The fluid pressure in the material variables describes the formula
p(ZMt)y=p [—h - &+ %8”@,52%‘,,2; + C(t)] : (M

where C(¢) is a “constant” of the solution, and A is the potential of the mass force
due to the gravitational field. In the spatial description the potential is given by
the relation

W) = g2’ ®)

When the coordinates are chosen in such a way that z* acts vertically upwards
the coefficients g; are: g1 = g2 =0, g3 = —g, where g is the gravitational accel-
eration. In the case discussed the fluid density is constant and in what follows, it
is convenient to introduce the “pressure” function

P(Z* 1) = % =—h—-&+ %s’*cb,ﬁzgcb_,,z; + C(t). 9)

For the two-dimensional problem considered one may introduce the classic
notation z! =x, z2 =y for the current configuration and Z' = X, Z2=Y for
the reference configuration. With respect to this notation Eq. (5) may be written
in the form as follows

wl =U= ¢.X(1 G U‘Y) 2 ¢.Y'u."l' ’ (10)
Wy =0=—®xuy+®y(l+ux)

Having the velocity we may calculate the displacement components

t
u(Z*, 1) = [u(Z® £)dE +u(Z*,t =0),
: (11)
U(Zl,i) = f v(Z*, E)dE + v(Z",t =0).

0
In order to describe the initial and boundary conditions, let us consider the
case shown in Fig. 1. The motion of the fluid is induced by the piston-type
wave-maker (the rigid wall 4B in the figure) starting to move at a certain moment

of time. For the case shown in the figure the boundary conditions are:
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Fig. 1. Fluid domain with piston-type wave-maker

a) u(21 = O,t) =xo(t),

b) w(Z'=L,t)=0,
(12)
¢ ¥(Z?=0,1)=0,

d) P(Z?= H,t) = const.,

where xg(¢) describes the horizontal displacement of the wall AB and the constant
in Eq. (12d) will be assumed equal to zero.

3. Generation of Standing Waves

Let us consider the piston type generator starting to move at a certain moment
in time. The simplest case is the harmonic generation of the fluid motion with
smooth beginning for which not only velocities, but also the acceleration field
disappears at the initial moment of time. Now, we aim to construct a harmonic
generation of the waves by the piston-type generator whose displacement, velocity
and acceleration are equal to zero at the beginning and thus no abrupt fluid
loading exists. In describing the generation we follow the method developed by
Wilde and Wilde (2001). We outline here some important results. The motion of
the generator is assumed in the form

xo(t) = As(tr) coswt + Ds(t) sinet, (13)
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where w is the angular frequency, and
53
3!
Ds(r) =1- (1 +1+ %rz + lr?’) exp(—1), T =nt,

As(r) = =17 exp(—1),

(14)
3!

where ¢ means time and 5 is a memory parameter.

Eq. (13) corresponds to the unit amplitude of generator motion. Having the
descriptions one may calculate the required time derivatives of the displacement
(13). From Egs. (13) and (14) the following relation is obtained

xo(2) [ R 1 [ 47
Xo(t) | R R - A3 +
Xo(t) = Ry 2R R As
Xo (1) | R1 3Ry 3Ry R | [ A3 _
R 1D (15)
4| B R Ds
R 2R; R; D; |’
| R 3R, 3R, Ry | | Ds

where R; = coswt and R; = sinwt, and the dots denote derivatives with respect
to time.

One may check that the displacement together with its first and second de-
rivatives are equal to zero at the starting point. Moreover, with the passage of
time the motion of the generator goes asymptotically to the case of harmonic
displacement with constant amplitude. In the further discussion we confine our
attention to generation described by the formulae.

4. Small Parameter Representation of the Fundamental Relations

The non-linear problem considered has no closed analytical solution and there-
fore, in order to find a solution to this, we have to approximate the fundamental
equations by ones which are more tractable. For waves of small amplitude one of
the methods of approximation is based on the assumption that the potential func-
tion and the surface elevation possess power series expansions with respect to a
small parameter ¢ (Stoker 1957). Although the method applies to the infinitesimal
wave approximation it fits into a general scheme for the approximating non-linear
equations (Wehausen and Laitone 1960) and is therefore applied to the problem
discussed in this paper. Thus, let us consider the following expansions in the small
parameter &

q)(zl't) = 8¢} re 82¢2 + 83¢3 K ——

u(Z*y=eul + e+ + - - ., (16)

v(ZM ) = + 2 + 33+
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where ¢, 4! and v fori =1,2,3, - are “components” of the solutions.
Substituting these expansions into Eq. (6) and collecting terms with the same
powers in ¢, one finds

FLN ¢?11+¢ +2[¢nv — ¢y (uhy+ v4) + ol | = 0. (th

where the terms up to the second order have been displayed.

It is seen that the linear component results in the Laplace equation for the

velocity potential ¢!(Z?, ¢), and the higher component leads to Poisson’s equation
for ¢?(Z*, ). In a similar way, the expansion of the velocity components reads

u(Zh )= £ 0+ [¢% +ohuh —shvl]

(18)

WZh 1)=& 9h+ 87 0% + plul — plub)] .

Knowing that
W(Z* 1) =gz (Z 1) =¢ [23 +v(Z, :)] , (19)
we may assume C = g H in equation (9) and write
P(Z*t)=g(H - Z%) —gv(Z*,t) - ®(Z . 1) + %.s”cb'ﬂzgcp,,,z;;. (20)

The first term on the right hand side of the equation means the hydrostatic
pressure P? = g(H — Z?). The pressure function may also be written in the fol-
lowing form

P=P°4+eP! +6%2P?, (21)
where .
Pl ik _gvl i d)l

P? = g7 -+ 3 [@1) + 0Y] -

With respect to the expansion (21) we can write the sequence of the dynamic
boundary conditions on the upper boundary. From the first of equations (22) it
follows

(22)

gvi(Z', H,t) + ¢'(Z!, H,t) = 0. (23)

Calculating the partial time derivative of the equation one obtains
P +g0" =0. 4
' +goh| =0 (24)

A similar procedure for the square term (the second equation in relations 22)
gives
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¢ +eds+eg (¢.12“.11 = ¢,11“.12) ) (¢,11‘i’,11 W ¢,12¢,12) | A iRt 420
The boundary condition on the bottom Z2 = 0 results in

ST 1 B
|p=0 — ¢,2|zz=o ke

2 2 pakad  a1. N
Ppo=0 — ¢5+ehul - ¢.1"‘2Izz=o =y

(26)

On the rigid vertical wall Z! = 0 we have the prescribed velocity £o(¢), and
thus

1 ik
¢'1 e xo(), 27)
$1+ehve— 9o, =0
Similarly, on the right boundary Z! = L we have
1 =
B! ’Z‘:L =0, (28)

Z'=L

B i ad g A
Pt vy —d5v,

5. First Order Solution of the Potential Motion

The first order solution of the problem in the Lagrangian variables is similar to
the linear solution of the potential flow in the Eulerian variables. In both cases
we have to solve the Laplace equation for the velocity potential satisfying given
boundary and initial conditions. The only difference between the formulations is
the system of coordinates. In the first description we have functions dependent on
the material coordinates while in the second one, the relevant functions depend on
space coordinates with the obvious relation that at ¢t = 0, 27 = 8;2*. Therefore,
in constructing the first order solution for the velocity potential ¢'(Z*,¢) we do
not need to distinguish the coordinate systems.

Thus, let us consider the first order solution. With respect to the boundary con-
ditions on hand, the solution for the velocity potential ¢!(Z?, t) may be expressed
in the form

oL (2, 1) = %o(t) l:zl = (_Z'l_)-zz—L(_Zz)z] + iB,.,(t)c,oshk,,Z2 cosk,Z',  (29)
n=0

where ot
kﬂ=f’n=011;2|”' (30)

From substitution of the equation into condition (24) the following differential
equations are obtained
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2 o 3 (H\? gH
Bo +§L |:1 + 5 (Z) :|x0 & TXU =0, (31)

Bﬂ +rEBH=RAIIr n=1|2,"'s

where

r? = gk, tanhk, H,

32)
__ Zo() (
RA'"(‘)_’C’% Shan l;2o" -
The solutions of the equations are |
4 1 3 (H\?]. gH
By(t) = _§L |:1 t3 (Z) j|xo(t) - Txo(t) + Co,
' (33)

B,(t) = Clcosrpt + C2sinryt + ;}- f RA,(§)sinr,(t — &) dE
n
n=12..-

The constants Cy, C! and C? (n = 1,2, - ) in the last relations are obtained
from initial conditions.

Knowing the potential function (29) one may calculate the first order hydro-
dynamic part of the pressure on the free surface. The first relation (22) leads to
the expression

—PYZ'H,t =0) =¢!(Z, H,t =0) =

00 34
ZL(H)]+B9+ZB,,coshk,.Hcosk,,zl =0. 4

n=1 t=0

From the first formula in (33) and equation (34) one obtains
o %H-fo(z = 0™). (35)

At the same time from the second formula in (33) and relation (34) it follows
that
as N+ [ — N+
2ot = 07) . C3= 269t = 07) o)
k2L coshk, H kZrnLcoshk, H

In order to find the remaining constants we evaluate the components of the
velocity field

B, = =1,2,---. (36)
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1 00
il = ¢ =xo(t) (1 » gL—) =" Bu(ten coshk, Z? sink, Z',
L (37
2z &,
h=¢h= %o(t) L + " Bu(t Yk sinh knZ? coskn Z.
n=1

Assuming that at ¢ = 0% we have a zero velocity field the following is obtained
Bn(t=0+)=0, = C’}=D‘ n=1!2|"' (38)

On the basis of the above results we get

2
Bty = —3L [1 +3(%) }fo(t) + 82 (00 —xat0].

2%0(0%) sinrpt
k2r, coshk, H

(39)

Bn(t) = +rlfRAu(§)Si1]r,,(t -§)dé,n=1,2,---,
0

where RA,(£) is described by the second of (32).

In further calculations we will also need values of By(t) and B,(t) for chosen
moments of time #; = kAt, where At is the time step. In order to obtain the latter
quantities we have to integrate the formulae (39) in the time domain, i.e.

2
Bo(t) = —%L [1 + % (%) :\io(t)+ ‘%—r [xo((ff) - fxo(t)dt:I ;

t
2k0(0%) (40)
k2r, coshk, H

1

n=1'2,...‘

t
By(t) = sinr,,xdx+rl f f RA(E)sinralt — £) dEdt,
n y 0

The integrals entering the last relations may be evaluated numerically, accord-
ing to the formulae

I
Jite) = Ni(te—1) + [ xo0()dt,

fie—1

i
Ja(t) = Ja(te-1) + [ Xo (§) cosrpé dE,

fe—1

I
J3(te) = J3(t-1) +¢f X (&) sinry& d§,
k—1
Ja(ti) = J2(te) sinraty — J3(t) cOSraly,

1
Js () = Js(te-1) + 5 [Jate) + Ja(te-1)] - At .

(41)
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With the last relations all constants of the solution (33) are determined. Know-
ing the solution it is a simple task to calculate the first order velocity field and
the first order pressure field as functions of the material variables and time.

6. Second Order Solution of the Motion

In order to find a second order solution we have to solve Poisson’s equation for
the second component of the velocity potential together with proper boundary
and initial conditions. The equation contains terms resulting from the first order
solution. In order to calculate the terms we have to know the first and second
order derivatives of the first order potential function with respect to the ma-
terial variables. As compared with the first order solution the problem becomes
more complicated. Poissons’s equation for the second order velocity potential (the
second of equation 17) is written in the form

V23(Z!, Z% t) = —RA(Z!, Z%, 1), (42)

where

RA(Z®,1) = 2 [qbuv — ¢ (w +v}) + ! 1] - (43)

The solution to the Poisson’s equation (42) may be obtained by means of the
Green theorem (Sokolnikoff and Redheffer 1966)

2oy 1 3¢2 23 ) A 1 2
¢(P>-2n;f(1 " ds+2H[SfRA(z.Z>lnrds, (44)

where § is the fluid region, C is the fluid contour in the reference configuration
and r =r(P, C) the vector connecting the domain point P with the boundary
point C.

The right hand side term of equation (42) reads

R4 =-4 [‘b.luf‘p dt+¢)! 2f¢112d‘:|
= —4 [ +ZB,,k3coshk,,chosk,,Zl:|
n=1
x ["—[‘j 2 n);B,,kf coshk, Z? cosk,,Zl:l + (45)
—4 [Z B,,k,fsinhk,,zzsink,.zl]x
n=1

X Lf: B,k sinh k, Z* sink,,zl] .
=1
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At the same time, for Z! = 0 we have the boundary condition

x
¢4 ]Zl —%o(t) [ o®) 4 z B, (t)k? coshk,,zz] (46)
The boundary conditions on the bottom and on the right vertical wall are
1 " 2 -
¢-2|22=o =0, ¢'1|Z’=L - =7

The dynamic boundary condition on the upper surface of the fluid assumes
the form i
¢* +g¢%+g RB—RC =0, (48)

where

RB = - l:xgﬁ + Z Bk smhk,,Hcosk,,Zl]

n=1

X (’% & i B,,k,fcoshancosk,,Zl] +

n=1

1 (49)
+ (1——) ZB,,k,,coshk,,Hsmk,,Zl]

n=1

Foo

x ZB,,k,%sinhk,.Hsink,.zl]

| n=1

and
1

5
RC = (1 - Z—) ZB,,k,, coshk, H sink,Z j'

1
x-|: (1_-2—) ZB,,k,,coshk,,Hsmk,,Zl]

n=1

- (50)
+ xo—+ZB,,k,,smhk,,Hcosk,,ZI X

L PI=I

x xUE + Z Buky sinh k, H cosk, Z'*
n=1

To find a solutlon to the problem at each level of time it is necessary to calcu-
late the integrals entering equation (44). In order to avoid tedious calculations we
resort to a discrete solution of the Poisson’s equation by means of the finite differ-
ence method (FDM). With this method only a finite number of nodal points of an
assumed net is considered. Thus, let us consider now the discrete formulation of
the problem within the rectangular domain (0 < Z! < L, 0 < Z2 < H). Let the
spacing of vertical lines of the assumed net be equal to a and of the horizontal
lines — to b, respectively. Since the main part of the Poisson’s equation is formed
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by the same operator as in the case of the Laplace equation, it is reasonable to
consider first the finite difference representation of the Laplace equation for the
potential function. To simplify the notation we shall use the notation ¢ for the
velocity potential ¢?(Z*, ¢). For a typical nodal point (i, j) within the fluid, where
i means the number of a vertical line and j denotes the number of a horizontal
line, the finite difference representation of the Laplace equation reads

—¥9i-1,j — ¢ij-1+ Kdij — dijr1 — ydiy1,j =0, (51)
where

b 2
g (a—) and K = 2(1 + y). (52)

The equations (51) are written for all nodal points of the assumed net, includ-
ing boundary points. In order to write the equations at the boundary points (at
Z'=0, Z'=L, Z?=0and Z2= H) we have to extend the discrete net in
such a way that together with each of the boundary points there is a neighbour-
ing nodal point placed on the outward normal to the boundary at the considered
point. The unknown value of the potential function at these external points is
expressed, by means of the boundary conditions, in terms of values of the func-
tion at internal and boundary nodal points. As compared with description (51),
in the finite difference representation of the Poisson’s equation we have non-zero
right hand side terms. Knowing the first order solution (relations 45, 49 and 50)
we can calculate the right hand side term of equation (42) at each point of the
assumed net including boundary points, and finally, we can establish the relevant
system of algebraic equations of the problem mentioned. It is worth adding that
the boundary conditions of the problem on hand involve not only the values of
the potential function but also the first and second time derivatives of it. For ex-
ample, the second time derivative of the potential function enters the boundary
condition on the upper surface of the fluid. In order to solve the problem in the
time domain we resort to discrete description of the time, i.e. instead of continu-
ous time we introduce a sequence of time steps with the increment Az > 0. With
the discrete time, the FD equations written for the assumed level of time, say at
% = k - At, contain an unknown value of the potential function corresponding to
the next moment of time. In order to overcome this difficulty and construct an
approximate solution to the initial value problem considered, it is convenient to
use the Wilson § method. The method enables us to build the discrete system
of FD equations for the unknown values of the potential function corresponding
to a single level of time. It is based on an assumed linear approximation to the
second order time derivative of a function at every point of the discrete time.
In the problem discussed, the second time derivative of the potential function is
approximated by a linear function within the vicinity of the considered moment
of time. To make the discussion clear, we attached here some of the fundamental
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equations of the method (for details see Bathe 1982). Assuming that we know
the solution of the problem at time ¢ (¢, ¢ and ¢) the standard equations of the
method are

é(r) = day + f)r—T(J’G) -y, (53)
and
¢(t) = day + Pyt + (¢(3) b)),
2DT ¢ (54)
d(v) = dq) + Py + 5‘1’(1)t2 + 6DT(¢(3) o)),

where ¢y = o(t), ¢p3) = ¢ + DT) and DT = 6At, 8 = 1.47, and 7 is measured
from the first point, i.e. ¢(t = 0) = ¢(2).
From the relations one obtains

i 3 : DT ..
o3 = —= (@) — ) — 200) — —dq).

@) = W(Qﬁ(s) - o) — ﬁd’(l) - 2¢q).
In the Wilson € method all equations of the problem together with boundary

conditions are written for the time (¢ + DT). Having the solution at this time we
can calculate the solution at the level (z + At)

, . Af . "
Pt + At) = ¢y + ﬁ(fﬁ(s) = o).

. . h At) "
ot + At) = gy + dayAt + Lo (¢(3) ¢y, (56)

2DT

. i At "
Pt + At) = pqy + Py At + 54’(1)(5‘ )2+ (5 D’i" (@) — ba).

The procedure is repeated for subsequent levels of discrete time.

7. Numerical Examples

In order to illustrate the consideration and to investigate accuracy of the approx-
imate solution obtained above, some numerical examples are presented below.
Numerical computations have been performed for a set of different lengths of
the fluid domain, different amplitudes and frequencies of the generator motion.
In all cases the amplitudes of the standing waves grow in time, and therefore,
for each case we have to assume a range of time, measured from the starting
point, within which the approximate solution may be considered as being suffi-
ciently accurate. This range of time depends on the approximate formulation of
the original non-linear problem which is based on the fundamental assumption of
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small waves. Although the assumption does not form a precise limit, it is under-
stood that the amplitude of the standing wave should be small (small compared
to wave length and water depth) and the second order solution should be smal-
ler (much smaller) than that of first order. The range of time corresponds to a
continuous solution far from the point where the phenomenon of breaking of the
waves may occur. It should be stressed however that, because of the approximate
formulation, the computational model may formally lead to smooth solutions also
in the range corresponding to the breaking point. Some of the results obtained in
numerical calculations are presented in the subsequent graphs. Fig. 2 shows the
clevation of the free surface on the right boundary of the fluid domain (point D
in the figure). The plots correspond to the fluid domain L x H = 1.2 m x 0.6 m
and the generation frequency w = 4.8533 s™1. In Fig. 3 the resultant of pressure
force and its moment relative to the bottom as functions of time are presented. It
is seen that the hydrodynamic resultant exceeds the hydrostatic one significantly.
Subsequently, Fig. 4 shows the evolution in time of the pressure distribution on
the right boundary for the same fluid domain and frequency generation as in Fig
2. The amplitude of the generator motion is equal to 0.04 m. From the plots it can
be seen how the motion of the fluid influences the pressure distribution on the
vertical wall. In order to evaluate the accuracy of the numerical model and the
range of its reasonable application, the results of the discrete formulations should
be compared with results of experiments in a hydraulic flume. Such comparison
is presented in Fig. 5 where the results of calculations are compared with res-
ults of experiments described by Wilde et al. (1998). In experiments, the standing
waves were generated in the rectangular fluid domain of dimensions H x L = 0.8
m x2.325 m. The graphs in the figure correspond to water waves of a length
equal twice the length of the domain. From the plots it may be seen that the
computational model presented above gives surprisingly good results.

From the results of computations it follows that for the considered resonance
case the second component is responsible for the proper description of the bottom
influence on the final shape of the clevation wave. In the discussed case of the
standing wave the second component forces the mean level of the free surface on
the right vertical wall up over the fluid level at rest. At the same time the height of
the second order components grows non-linearly with time (the height of the first
order component grows linearly in time). From the solution it follows that in order
to get a more convincing results the higher order terms of the solution procedure
should be taken into account, especially for higher standing waves. This however,
may cause serious difficulties in a discrete formulation because higher order terms
need higher order derivatives of the functions entering the fundamental equations
of the problem which cannot be calculated with acceptable accuracy in the discrete
space.
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Fig. 2. Free surface elevation on the right boundary (H = 0.60 m, L = 2H, A = 2L)
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Fig. 3. Resultant of pressure on the right boundary and its moment relative to the fluid bottom
(H=060m, L=2H,,=2L)

8. Concluding Remarks

The approximate analysis of the non-linear problem of generation of standing
water waves allows us to formulate some important conclusions as follows

e The formulation of the problem in material coordinates leads to Poisson’s
equations for higher components of the velocity potential.

o The discrete formulation with the help of the FDM may be successfully
applied to solution of the Poisson’s equations only for the lowest orders of
the small parameter method. In the case of higher order terms, we have to
calculate higher order derivatives of the potential functions which may in-
troduce serious difficulties and errors because of an approximate description
of the functions in the discrete formulation.

e The amplitude of the first, linear term of the solution grows linearly in
time as it should be for the considered case of the resonance motion of the
generator-fluid system.
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e The second order component of the free surface elevation is not symmetrical
with respect to the free surface level at rest.

o The Wilson # method proved to be a convenient tool in performing numer-
ical integration of the equations of the problem in the time domain.

o The numerical calculations have been performed for a relatively large elapse
of time from the beginning, for which the amplitude of the standing wave
reached the level close to (or even exceeds) a level suited to a breaking
wave (Druet, 1978). In practical calculations however, one should limit the
computations to waves with relatively small amplitudes.
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