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Abstract. The paper concerns the problem of calculation of the maximum horizontal
forces that a floating ice cover can exert on isolated, vertical-walled, engineering
structures. The analysis is carried out on the assumption that the largest possible
force which can occur in a floating ice plate is determined by the elastic buckling
failure mechanism. Hence, the buckling loads of a semi-infinite, wedge-shaped in-
plane, thin elastic plate resting on a liquid base and pressing against a rigid structure
of a limited width are evaluated. The problem is solved by applying the finite-element
method. The results of numerical calculations illustrate the variation of the buckling
force with the thickness of ice, the width of the structure, the angle defining the
in-plane shape of the plate, and the type of boundary conditions at the ice-structure
contact zone. The comparison of the results obtained in this work with those given
by approximate analytic estimates available in literature, has shown that the latter
considerably overestimate the bearing capacity of ice, therefore new relations are

proposed in this paper.

Notations

plate width at x,

structure width,

plate flexural rigidity,

Young’s modulus of elasticity,

acceleration due to gravity,

plate thickness,

bending moment per unit width of a plate,
normal tensile force per unit width of a plate,
ice porosity,

total compressive force in a plate cross-section,
buckling force for a plate of uniform width,
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0 shear force per unit width of a plate,
q distributed load intensity,

T ice temperature,

w plate deflection,

x,y,z  rectangular Cartesian coordinates,

20 plate neutral plane position,

o wedge angle,

€xx, €yy infinitesimal strain tensor components,
K curvature of a plate deflection curve,
v Poisson’s ratio,

0 water density,

oxx, Oyy Cauchy stress tensor components.

1. Introduction

Ice cover which is formed on the free surface of freezing sea, lake, or river water
is capable of exerting large-magnitude forces on engineering structures, such as
dams, breakwaters, bridge piers, or legs of off-shore oil drilling platforms. Since
the ice forces acting on a structure result from the wind and water current action,
as well as ice thermal expansion, all taking place over areas exceeding many
times the dimensions of the structure itself, their net effect on the structure can
be significant. Therefore, for the structure failure risk assessment, the proper
calculation of loads exerted by a floating ice cover is of prime importance. In this
work we focus on the determination of the maximum horizontal forces to which a
structure can be subjected due to the action of a floating ice sheet.

It is well known that ice is a highly creeping material, in which, under typical
loading conditions, creep deformations relatively quickly (in a matter of minutes)
overtake elastic strains (Mellor 1980, Sanderson 1988, Staroszczyk 2001). Because
of the viscoelastic, rather than purely elastic, behaviour of ice, the failure mode
which is most commonly observed in relatively thin (up to ~ 0.5 m thick) float-
ing ice sheets during ice — structure interaction events is that of creep buckling.
Usually, creep buckles develop in ice over periods ranging from several hours to
several days, during which the ice deformations grow steadily with time. Also, the
contact forces exerted on a structure by the floating ice vary with time, depending
on the current and past loading. The magnitudes of these contact forces, however,
are bounded by either a force which leads to the purely elastic buckling of the ice
plate, or a force which gives rise to crushing (brittle fracture) of ice, whichever of
the two is smaller in magnitude. For this reason, even though purely elastic buck-
ling modes are rarely observed in the field, we are concerned here with the elastic
buckling forces alone, since these forces, as the largest possible forces acting on
the structure, determine the design loads for an engineer. Such an approach not
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only simplifies the analysis, but also gives us the certainty that we are on the safe
side when designing a structure.

The considerations are carried out on the assumption that the behaviour of
an ice cover can be approximated by that of an elastic plate floating on a liquid
base, and the standard theory of elastic plates can be applied. The floating plate is
bent by the lateral (vertical) loads caused by the elastic reaction of the underlying
water, and is also subjected to in-plane compression due to the action of wind and
water currents pushing the plate towards an engineering structure. The structure
is supposed to be a rigid and vertical wall of finite length, and is treated as
an isolated structure, that is no interaction between a group of structures and
the floating plate is considered. The floating plate is assumed to be of uniform
thickness, with the elastic properties varying with depth to account for the possible
nonhomogeneity of the ice due to the presence of pores in the material. In the
horizontal plane, the floating plate is supposed to have the shape of a truncated
wedge of semi-infinite length. Such a geometry is adopted in order to reflect
realistic conditions occurring in the field, in which, at sufficiently large loads,
radial cracks emanating from the edges of the structure usually develop in the ice
plate, thus bounding the domain of the cover that is involved in the interaction
with the structure (Sanderson 1988).

The problem of calculating the buckling forces in a wedge-shaped elastic plate
on an elastic foundation has already been considered in a number of papers, see,
for instance (Kerr 1978, Nevel 1980 and Sanderson 1988), in which approxim-
ate estimates, obtained analytically, are given. Some relevant analytical results
can also be found in (Kerr, Palmer 1972), and some experimental data on elastic
buckling of ice have been reported by (Sodhi et al. 1983). In this work the problem
under investigation is solved by using the finite-element method. Assuming that
the forces driving the plate towards the rigid wall act in the direction normal to
the wall, the elastic buckling forces are determined as a function of the structure
width, ice thickness, the angle defining the plate shape, and the type of bound-
ary conditions at the contact zone. The results obtained are compared with those
predicted by approximate solutions given by (Kerr 1978), and subsequently repro-
duced by (Sanderson 1988). It turns out that the results given by the latter authors
lead to a significant overestimation of the buckling forces that a wedge-shaped
elastic plate can sustain, and some inconsistency in the analytical results by (Kerr
1978) also exists. Therefore, by fitting to our numerical results, new approxim-
ate formulae for determining the buckling forces in floating wedge-shaped elastic
plates are proposed. :

2. Formulation of the Problem

When a coherent floating ice cover is pressed, as a result of wind and current
forces, against a flat structure of limited width, at a certain magnitude of load-
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ing, radial cracks usually form in ice near the vertical edges and subsequently
propagate through the cover. Such a phenomenon, observed in both laboratory
tests and in the field (Kerr 1978, Sanderson 1988), leads to the separation of a
wedge-shaped plate, shown in Fig. 1a, which interacts with the structure, while the
other part of the cover no exerts practically loads on the structure. We idealise the
problem by supposing that the wedge is symmetric around the x-axis, its geometry
described by the structure width by and the angle @, and the ice cover extends
to infinity. We further assume that the action of wind and water currents is such
that the plate is pushed towards the structure, modelled as a rigid, vertical wall, in
the direction normal to the structure face, i.e. in the direction of negative x. The
plate is assumed to be of a uniform thickness, denoted by 4 (see Fig. 1b), and the
ice sheet in perfect contact with the underlying water, i.e. no lift-off of the plate
occurs. Since the elastic properties of floating ice, and in particular sea ice, can
vary significantly with depth due to variation of ice temperature and porosity, we
assume that the Young modulus changes through the depth of the ice cover. Our
aim is to determine the magnitude of a compressive force in the ice at which the
wedge-shaped plate buckles in an elastic manner.

!

!

!
wind and water drag

!

>

!

!

= a7,

Fig. 1. Geometry of a wedge-shaped plate of floating ice interacting with a rigid structure of the
width bg: (a) plane view, (b) plate cross-section, (c) definition of internal forces

In order to solve the problem, we apply the classical, linear theory of thin
elastic plates (Timoshenko, Woinowsky-Krieger 1959), based on the assumptions
that (1) the plate deflections are small (that is of the order of its thickness), (2) the
ratio of the deflection to a characteristic length (here the half-wavelength of elastic
buckles) is small too, (3) the effects due to shear stresses are neglected, so (4) the
plate cross-sections which are normal to the middle plane before bending remain



On the Maximum Horizontal Forces Exerted by Floating Ice ... 21

plane and normal to the middle surface during deformation (the Bernoulli-Euler
assumption), and (5) the normal stresses in the direction transverse to the plate are
disregarded. In our case, the plate is bent by the lateral loads caused by the elastic
reaction of the liquid base when the ice cover is either lifted or depressed from its
floating equilibrium state, with the magnitude of the restoring force proportional
to the plate deflection. Besides the bending, the plate is also under the action
of compressive stresses along the x-axis, coming from the wind and water drag
forces at the upper and lower plate surfaces.

We adopt the z coordinate axis directed downwards, as shown in Fig. 1b,
with the upper face of the plate at z = 0, and the lower face at z = A. The plate
deflection along the z-axis is denoted by w, and the plate internal forces per
unit length: the bending moment M, the vertical shear force Q, and the normal
(tensile) force N, are all defined in Fig. 1c. Neglecting the body forces (e.g. the
own weight) in the plate, and considering the equilibrium of forces in the z-axis
direction as well as the bending moments acting on an infinitesimal element of
the plate cut by a pair of planes parallel to the yz coordinate planes, we obtain
the following differential equations:

2
a'_Q+Ndw aM

— I — % — y 1
dx dx? 1 dx Q )
where g is the lateral distributed load acting along the z-axis. By eliminating the
shear force O between the two latter equations, we obtain the relation

da’m d*w
TNz = @

We assume that the only lateral load which is exerted on the plate is that of the
clastic reaction of the underlying water. Adopting the Winkler-Zimmerman as-
sumption that the plate deflection w at any point is proportional to the foundation
pressure p at that point, and does not depend on the pressure at any other point
of the foundation, the load g is expressed by

q = —ogw, (3)

where @ is the water density and g the acceleration due to gravity. We further
assume that, due to the symmetry of the problem about the x-axis, the plate
displacement w and all the loads acting on the plate are the function of x only,
that is w = w(x), M = M(x), g = q(x), etc., and there is no bending of the plate
in the direction of the y-axis, i.e. that the plate is bent cylindrically in the plane
xz. Hence, in fact, we reduce the problem to that of a beam of variable cross-
section resting on an elastic foundation and subjected to bending and compression
(retaining, however, the dependence of flexural rigidity on the Poisson ratio, in
a form characteristic of plates). Although the assumption introduced above is a




22 R. Staroszczyk

considerable simplification, it is believed that the results obtained, at least for
small wedge angles «, will not differ significantly from those obtained by solving
a full two-dimensional plate problem, and therefore will be useful in engineering
practice.

In order to relate the bending moment M(x) to the plate deflection w(x),
we employ the standard methods of the classical theory of thin plates, which
we now summarise in brief. Due to the nonuniformity of the plate, resulting
from the variation of the Young modulus with depth, we should account for the
fact that the neutral plane does not coincide with the middle plane which is
defined, in undeformed state, by z = h/2. However, we still adopt the plane cross-
section assumption, which implies a linear variation of normal strains €, (x, z) and
€,y (x, z) in the plate. Hence, denoting the location of the neutral plane by 29, and
assuming that the normal strains in the yz cross-section are proportional to the
curvature « of the deformed plate, we can express €., by means of the relation

€xx = K(Z — 20). 4)
By virtue of Hooke’s law, the normal strains €., and ¢, are given by

0, v [0 Vo,
= -, =L, ©)
where oy, and oy, denote the normal stresses, E is Young’s modulus, and v is
Poisson’s ratio. Since the lateral strain in the y direction has to be zero to maintain
the plate continuity during bending, that is €,y = 0, we obtain from equations (4)
and (5) the relation for the normal stress in the x direction in the form:

Ek(z — zp)

Oxx = R I (6)
which indicates that the normal stress distribution is not linear in the z direction
as E is a function of z. The bending moment M(x) per unit width of the plate is
determined by integrating the normal stress oy, over the plate cross-section, that
is

h
M= [ ez — 20)dz, %
0
which, after substituting (6), yields the expression
h
Mo =2 f @ — 20)* E(z)dz = kD, 8)
1-12
0

in which D is the flexural rigidity of the plate defined by

h
D f (z — 20)? E@)dz. ©)
1-v
0
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The location of the neutral plane is determined from the condition that the res-
ultant normal force due to bending, obtained by integrating the stress oy, over
0 <z <h, is zero, which, in view of (6), yiclds

[(z -20)E@)dz=0. (10)
0

Now, assuming that the plate displacement w is small enough to make
(dw/dx)* « 1, we can express the curvature (considered positive if it is con-
vex downward) in terms of the plate deflection by means of k = —d2w/dx2. By
substituting first the latter relation for « into (8), and then (8) and (3) into (2),
we arrive at the following differential equation

d*w d*w
Dd4 Nd—+qgw 0. (11)
The latter relation describes the behaviour of the plate of a unit width. To derive
the relation for the wedge-shaped plate, we multiply both sides of (11) by the
plate width b(x), defined by

b(x) = bp+ 2x tana, (12)

to obtain the following equation for an elastic plate on a liquid base subjected to
the combined action of bending and axial compression:

d*w 2o

Db(x) + P‘; 5 +ogbx)w=0, 0<x <oo. (13)
In (13), P = —Nb is the total compressive load carried through the whole cross-
section b of the wedge. The load P is assumed to be independent of x in the
region adjacent to the structure located at x = 0, that is, in the region where, for
a > 0, elastic buckling is expected to occur. Such an approximation seems to be
permitted, since a typical magnitude of the buckling force is much larger than the
resultant tangential load due to wind and current drags acting over a relatively
small area of ice cover in the vicinity of the structure.

The differential equation (13) is solved with two types of boundary conditions
at the ice-structure contact area. The first type describes the case of a simply-
supported edge of the plate, with zero deflection and bending moment at x = 0,
while the other corresponds to the case of a rigidly-supported (clamped) end, with
zero deflection and slope at x = 0. According to Sanderson 1988, the first case
is more realistic in practice, as perfect adfreezing between ice and a structure is
rarely observed in the field. These two types of boundary conditions are expressed,
respectively, by

: d*w
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dw
w0 =0, —=(@©=0. (15)

Apart from the conditions (14) and (15), the regularity conditions are to be sat-
isfied at x — oo.

The variation of Young’s modulus E with depth is primarily caused by the
change of ice temperature and porosity across an ice cover, which may result in a
substantial reduction of E in the warmer, and usually more porous, lower layers
of an ice plate. In the case of ice sheets thicker than about 0.5 m, the modulus
E also varies due to the presence of different types of ice — typically ice in the
upper layer is isotropic, while that in the lower layer is anisotropic. In this work we
restrict our attention to plates of thicknesses not exceeding 0.5 m (since for thicker
plates the elastic buckling mechanism plays no practical role), and therefore we
consider only isotropic ice. For such ice, the dependence of the Young modulus
on temperature T can be described by the relation given by (Sinha 1989)

E(T)=893+12x107%T,,—T) [GPa, (16)

where T, is the ice melting temperature. Slightly different relations describing
the variation of E with T have been proposed by (Hutter 1983 and Nanthikesan,
Sunder 1994).

The porosity of floating ice is mainly due to the formation and subsequent
development of pockets of a solution of salt and water. The latter process, in which
the brine pockets migrate through the ice cover in the direction of temperature
gradients, is of a thermodynamic nature (Schwarz, Weeks 1977, Sanderson 1988,
Staroszczyk 2001) and requires sufficient time, measured in weeks and months, to
develop. For this reason, the process is of little importance in the case of thin (that
is young) ice. On the other hand, its role significantly increases with the increase of
ice thickness, and in sufficiently old ice sheets, depending on temperature and the
salinity of sea water, the porosity of ice due to brine content can well exceed 10%
(Sanderson 1988). Experimental evidence proves that the effect of ice porosity on
Young’s modulus is pronounced. (Hutter 1983) has suggested the following fit to
empirical data to describe the weakening of ice with its porosity:

1-—>5n, 0<n <0.15,
E(n) | 47.168(0.15 — n)® — 45.97(0.15 — n)*+ (17)
Er | +0.5(0.15-n)+0.25, 0.15<n <04,

0.06(1 —n), 04<n<l,

where n denotes porosity and E7 is the value of Young’s modulus for pure (bubble-
free) ice at a given temperature. It follows from (17) that, for example, 10%
(n = 0.1) volume porosity of isotropic ice leads to a 50% reduction of the elastic
modulus.
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Contrary to the Young modulus, the Poisson ratio v is much less sensitive to
ice temperature and porosity. Its temperature dependence can be approximated
by the relation proposed by (Sinha 1989)

v(T) = 0.308 +7 x 10~3(T;, — T). (18)

There is some variation of v with the porosity of ice, but (Hutter 1975) has
demonstrated that in typical sea ice problems this variation can be ignored, and
hence a constant value of the Poisson ratio can be applied.

Due to rather small thicknesses of ice plates considered in this analysis, it
seems justified to assume for practical purposes a linear variation of Young’s
modulus with the depth of ice. Denote the value of the elastic modulus E at the
upper surface of the plate (z = 0) by Ep, and that at the lower surface (z = h) by
BEy, where 0 < 8 < 1. Then, with the linear variation of E(z) between the two
values, the relation (10) determines the position of the neutral plane z by

., 1+28
T3+’

which, obviously, yields for 8 = 1 (FE is constant across the plate) the value zp =
h/2, meaning that the neutral plane coincides with the middle plane. With zo given
by (19), the relation (9) defines the plate flexural rigidity by

_ Eg® 1+4ﬁ+ﬁz]
_12(1—v2)[3(1+ﬁ) i

For the particular case of 8 = 1, the term in the square brackets becomes unity,
hence the expression for the rigidity reduces to that for a homogeneous plate,
D = Eoh®/[12(1 — v?)]. For B = 0.5 (the modulus at the top of the plate is twice as
high as at the bottom) the rigidity reduces to about 0.72 of that of a homogeneous
plate, while for the limit case g = 0 the plate rigidity decreases to 1/3 of that for
uniform pure ice.

(19)

¥4

D

(20)

3. Solution of the Problem

The fourth-order differential equation (13), supplemented by the appropriate
boundary conditions, either (14) or (15), describes the eigenvalue problem from
which the buckling force P can be determined. Because of the presence of the
variable coefficient b(x) in (13), no exact closed-form of analytical solution is avail-
able for the general case of a wedge-shaped plate defined by « > 0. However, in
the particular case of o = 0, corresponding to the case of a parallel-sided plate
with b(x) = by, equation (13) reduces to the equation with constant coefficients,
for which an analytical solution can be obtained in a straightforward manner, and

has the form
Py = Zbo\/ o8 D, (21)
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valid for both simply-supported and clamped boundary conditions at x = 0 (Kerr
1978). An approximate, semi-analytical solution of equation (13) for the general
case of & > 0 was constructed by (Kerr 1978) who obtained, for the boundary
conditions (14) and (15) for a simply-supported and a clamped plate end, the
following two relations respectively:

simply-supported end: P =ci1uD (ubg + 2tana), (22)
rigidly-supported end: P =couD 2ubg + 2 tana), (23)

with
yt = % ‘ (24)

and the constants ¢; =5.3 and ¢z = 8. The same relations were subsequently
repeated in the book by Sanderson 1988. We immediately observe, however, that
the above two approximate results are inconsistent with the relation (21), as they
yield for the wedge angle o = 0 the values of the buckling forces P for a parallel-
sided plate which: (1) are different for both types of boundary conditions at x = 0,
whereas they should be identical, and (2) neither of them equals the value given by
(21), since (22) supplies P = 2.65 bg(og D)'/?, and (23) leads to P = 8 bo(og D)'/2.
Thus the approximations (22) and (23) are apparently erroneous, and for this
reason we solve the problem under consideration by employing a discrete method
in order to explore in detail the quantitative features of the behaviour of a plate
subjected to elastic buckling, and, on the basis of the results obtained, to formulate
in Section 5 new approximate relations that can be useful for an engineer.

The eigenvalue problem defined by equations (13)-(15) can be solved by
a number of discrete methods. For instance, by applying the finite-difference
method. In such a case, however, the discretisation of the problem leads to the
solution of a generalised eigenvalue problem for nonsymmetric matrices, which is
much more difficult to solve than that involving symmetric matrices. Therefore,
we use here the finite-element method, in which case all the matrices resulting
from the discretisation of the problem given by (13) are symmetric, which leads
to a significant simplification of the numerics involved in the solution process.

We employ the weighted residual, or Galerkin, method (Zienkiewicz, Taylor
1989), in which the problem equation is satisfied in an integral mean sense. Fol-
lowing this method, the plate is discretised along the x-axis by introducing one-
dimensional finite elements. To ensure that both the plate deflection and its slope
are continuous between elements, at each nodal point two parameters are used
to describe the plate deformations, namely w and dw/dx at that discrete point.
Assuming that a given finite element is defined by nodes i and j, located at x;
and x;, respectively, we approximate the continuous function w(x) within the ele-
ment ij by means of four interpolation (shape) functions ®,(x) (r =1,...,4) as
follows:
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wx) = w; ®1 + 6, P2 + w; 3 + 6, Py, (25)
where 6; = (dw/dx); and 6; = (dw/dx); are the nodal values of the plate slope.
Introducing a dimensionless coordinate & defined by

X — xc n X; +x1'

g = a xC =] 2 ’
where 2a is the length of the element ij, the adopted shape functions are given
by

-1<¢ <1, (26)

=1E-DX2+8), d3=;E+122-¥9),

27)
=$E-DXE+D,  @a=5E+DXE-D).

By multiplying equation (13), in turn, by a set of weighting functions, which in
the Galerkin method are identical with the interpolation functions ®;, and then
integrating the resulting relations over the plate length x > 0 and applying in the
process Green’s theorem to reduce the order of differentiation, we obtain a system
of 2N linear algebraic equations, with N being the number of nodes, which can
be written as ;

(K+PB+C)w=0, (28)

where the vector w = (w1, 61, ..., w;, 6;, wj, 6, ..., wn, 6n)T contains the values
of the plate deflections and slopes at all nodal points of the discrete system.
The plate stiffness matrix K and the matrices B and C are aggregated from the
respective element matrices K¢, B® and C° in a way typical of the finite-clement
method (Zienkiewicz, Taylor 1989). The element matrices, each of the dimension
4 x 4, have the entries defined for the element ij by the following integrals:

2 2
X, be( 204 ¥ - f¢rd 42,

dx? dx 7 dx dx?
N (29)
G, =08 [b(x)d),d) dx,
where r,s = 1, ..., 4, and the functions involved are given by (27).

Equation (28) defines a generalised eigenvalue problem from which the value
of the buckling force P, the lowest eigenvalue of the problem, can be calculated
together with the associated eigenvector w. To accomplish this, the matrix B is
first decomposed into a product of the lower and upper triangular matrices by
using the Cholesky method, and then, by matrix inversions and multiplications,
the general eigenvalue problem is reduced into a standard eigenvalue problem
for a real and symmetric matrix, subsequently solved by applying the Householder
transformation and the QL algorithm.
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4. Numerical Results

In numerical computations, 200 finite elements of the same length for plates
thinner than A = 0.2 m, and 100 otherwise, were used, and the element length
was assumed to be equal to 3h. This means that the length of the plate adopted
to approximate the behaviour of a semi-infinite plate was equal to either 600A
or 300h. The material constants were taken to be those pertinent to ice at a
temperature of —5°C, that is, on account of (16) and (18), equal to E = 8.99 GPa
and v = 0.308. The water density was assumed to be ¢ = 10° kgm™~3, and g =
9.81 ms~2.

The results of numerical calculations illustrating the dependence of the elastic
buckling load P on the ice cover thickness 4 and the angle a defining the shape
of the truncated wedge, in the case of a structure of the width by = 10 m, are
presented in Fig. 2. The solid lines in the figure show the results obtained for
a simply-supported edge of the plate at x =0, and the dashed lines correspond
to the case of a rigidly-supported edge. The labels by the curves indicate the ice
cover thickness in metres. The values of the buckling forces are normalised by
the magnitude of the load P, causing the buckling of a parallel-sided plate of the
width bg and the respective thickness A, defined by equation (21), that is the ratios
P/ P, are plotted in the graph.
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Fig. 2. Variation of the normalised buckling load P/Py with the wedge angle « and the ice plate
thickness A for simply-supported (solid lines) and rigidly-supported (dashed lines) edge conditions
at x = 0, for the structure width bg = 10 m

Corresponding to the previous diagram is Fig. 3, showing the variation of
the normalised buckling load P/Py with the structure width by and the wedge

|
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Fig. 3. Variation of the normalised buckling load P/P, with the wedge angle o and the structure
width bg for simply-supported (solid lines) and rigidly-supported (dashed lines) edge conditions at
x =0, for the ice plate thickness h = 0.2 m

angle « for a fixed ice thickness A = 0.2 m. Again, the results obtained for both
simply-supported (solid lines) and clamped (dashed lines) plate edge conditions
at x = 0 are shown. We note an increasing influence of the boundary conditions
at x = 0 on the buckling force with a decreasing width of the structure.

Fig. 4 presents the average critical buckling pressures, defined by P/(boh),
which are exerted by a floating ice cover on a structure 10 m wide. The depend-
ence of these pressures on the plate geometry given by the angle « for different
ice thicknesses A is illustrated for a plate which is simply-supported at its edge
x = 0. A horizontal dashed-dotted line in the figure indicates a pressure level at
which ice fails by crushing. Following Sanderson 1988, we assume that this limit
value is equal to 5 MPa. Above the latter value, elastic buckling is unlikely to
occur since the ice uniaxial crushing strength is exceeded earlier than the level of
compressive load P required to buckle the plate is attained. Accordingly, it fol-
lows from the figure that only ice plates thinner than about 0.15 m fail by elastic
buckling irrespective of the plate geometry (we confine our attention to the angles
@ < 50°, as larger values of « seem to be unrealistic, and also because of the sim-
plifications adopted in Section 2). On the other hand, it can be seen in the figure
that ice plates thicker than about 0.4 to 0.5 m are most likely to crush before they
buckle, even in the case of nearly parallel-sided plates, defined by small values of
the wedge angle, say o < 5°. When the edge of the plate is clamped, rather than
simply-supported, then the above limit ice thicknesses 4 are smaller by a factor
of about 1.5.
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Fig. 4. Variation of the average contact pressure with the angle « and the ice plate thickness & for
simply-supported edge conditions at x = 0 and the structure width by = 10 m. The dashed-dotted
line indicates the uniaxial crushing strength of ice

The results presented in Figs. 24 have been obtained for uniform ice, with
the elastic modulus E assumed to be constant throughout the plate. In Fig. 5 we
illustrate the effect of the weakening of ice with increasing depth on the average
contact pressures exerted on a structure. The plots, obtained for the fixed ice
thickness A = 0.2 m and structure width by = 10 m, show the variation of the
contact pressure P/(boh) with the wedge angle o and parameter B, the latter
used to describe a linear change of E from Eq to Ey between the upper and the
lower plate surfaces, respectively. For the angle @ = 0 (parallel-sided plate) the
buckling force P, and hence the average contact pressure, is proportional to +/D,
as follows from the relation (21), with D decreasing with decreasing g in the way
defined by (20). For larger values of @, the average contact pressures decrease
slightly faster than 4/D decreases.

Fig. 6 illustrates buckling modes for an ice plate of a thickness 2~ = 0.2 m
and width by = 10 m, with simply-supported edge conditions at x = 0. The curves
depict the plate displacement w for different wedge angles «, given in deg. For a
plate of uniform width, defined by & = 0, the buckling mode can be determined
analytically, and is described by the relation w(x) = sin(Ax), where A* = gg/D =
4u*. The latter yiclds the length of the buckling half-wave, given by L = /A, to
be equal to 16.01 m for the adopted ice thickness A, and we note that the buckling
mode for @ = 0 computed by solving the eigenvalue problem (28) numerically is
very close to that determined analytically. We also observe that for wedge angles
a > 0, even as small as 5°, the deformation of the plate in buckling attenuates
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Fig. 5. Variation of the average contact pressure with the angle o and parameter g for plate
h = 0.2 m thick and by = 10 m wide at x = 0, with a simply-supported edge. The dashed-dotted
line indicates the uniaxial crushing strength of ice

Fig. 6. Buckling modes for various wedge angles o (given in deg), for the plate & = 0.2 m thick
and by = 10 m wide at x = 0, with a simply-supported edge
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very rapidly with the distance from the structure, thus indicating that only a small
region of a wedge-shaped ice plate, adjacent to the edge x = 0, is susceptible to
elastic buckling.

5. Correlations

In Section 3 we presented the approximate relations (22) and (23), derived by
(Kerr 1978), for estimation of the magnitudes of buckling forces for floating plates
of a prescribed geometry. It has turned out that these two relations fail to pre-
dict correct values of the buckling loads for parallel-sided plates (in which case
analytical solutions are possible) and, what will shortly be demonstrated in Fig. 7,
they also considerably overestimate the magnitudes of buckling forces, in partic-
ular for the plate clamped at x = 0. For these reasons, the results given by our
finite-element model have been used to construct alternative relations that could
provide approximations of gn accuracy that will prove satisfactory for an engineer.
To accomplish this, we introduce two characteristic scales, namely A* = 0.1 m for
the plate thickness and b = 10 m for the width of a structure interacting with
ice. In terms of the latter two quantities, we adopt a dimensionless relation for
the buckling load P, in the form of the following representation:

P h n bo —r2 2 3
214 (5) () (satriat+rse?), (30)

where P, is the value of the buckling force for a parallel-sided plate, defined by
(21),andr; (i = 1,... 5) are coefficients. The coefficients r; have been determined
by correlating the relation (30) with the results obtained by the finite-element
method by using the method of least-squares. The correlations have been carried
out for ice thicknesses 4 ranging from 0.05 m to 0.5 m and structure widths bo
ranging from 5 m to 50 m, separately for the two types of boundary conditions
at the ice-structure contact zone, defined by (14) and (15). The best results were
obtained with the two sets of the coefficients r; given in Table 1.

Table 1. Coefficients 7; for two types of boundary conditions at x =0

n rz r3 r4 rs
simple support | 0.630 0.840 2.002 -1.959 1.681
rigid support | 0.590 0.786 4.276 -4.698 3.678

As an example, in Fig. 7 we demonstrate the accuracy of the approximate
formula (30) with the coefficients r; listed in Table 1, by comparing the estima-
tions given by (30) (dashed lines) with the results calculated by the finite-clement
method (solid lines). Dotted lines in the figure show the results predicted by (22)
and (23), obtained by (Kerr 1978) and subsequently repeated by Sanderson 1988.
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Fig. 7. Comparison of the finite-element results (solid lines) with the estimates given by eq. (30)
(dashed lines) for the plate A = 0.2 m thick and by = 10 m wide, for simply-supported and
rigidly-supported edge conditions. Dotted lines show the results predicted by egs. (22) and (23)

proposed by (Kerr 1978)

We see that the latter predictions, given by (22) and (23), differ very substan-
tially from the FEM results. On the other hand, we note a satisfactory agreement
between the approximations given by (30) and the “exact” finite-element res-
ults, for both simply-supported and clamped plate boundary conditions. For the
adopted plate parameters (h = 0.2 m and by = 10 m), the maximum relative dis-
crepancies between the FEM results and those determined by (30) are equal to
2.8% for the simply-supported plate and 4.0% for the clamped plate.

Table 2. Maximum relative discrepancies (in per cent) between the FEM results and those given
by the approximation (30) within the range 0 < a < 50° for plates with simply-supported edges at

x=0
h (m)
bp(m) (005 01 02 03 04 05
5 1.52 279 374 456 6.58 5.81
10 1.65 2.00 283 360 4.17 3.76
20 283 235 219 285 176 295
50 377 311 284 262 173 219

For other combinations of & and by than that illustrated in the previous fig-
ure, and we have explored the ranges Sm <bp <50 m, 0.05 m <k < 0.5 m, and
0° < & < 50°, the relative discrepancies are of a similar order, not exceeding 6.6%
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for simply-supported plates and 9.5% for rigidly-supported plates. The latter two
values have been obtained for the plate width by = 5 m. For wider plates, in gen-
eral, the accuracy of the formula (30) improves and the maximum discrepancies
decrease, as can be seen in Table 2. For instance, for by = 50 m, the maximum
relative differences between the FEM results and those given by the approxima-
tion (30) are equal to 3.8% and 5.7% for simply-supported and rigidly-supported
plates, respectively.

6. Conclusions

The maximum horizontal forces which a floating ice cover can exert on an en-
gineering structure in the form of a rigid vertical wall of limited width have
been determined by solving the problem of elastic buckling of a semi-infinite
wedge-shaped plate bent by the reaction of underlying water and subjected to
in-plane compression. Fhe results of numerical calculations carried out by the
finite-element method illustrate the dependence of the buckling load and the av-
erage pressures at the ice-structure contact zone on the shape of the ice cover, its
thickness, and a structure size. Due to some simplifying assumptions adopted in
the analysis, first of all the reduction of a two-dimensional plate problem to that
of a beam of variable cross-section, the results obtained for large wedge angles
o should be treated with some caution. Yet, it seems that the results presented
in this study can be relied on and applied while assessing a structure failure risk.
The comparison of our numerical results with the approximate relations known
in the literature has shown that the latter significantly overestimate the bending
forces which an ice plate can sustain. For this reason, new approximate relations,
derived by the least-squares correlations with the finite-element results, have been
proposed. These relations, in the form of simple formulae involving the paramet-
ers describing the geometry of an ice plate (its thickness, width at the truncated
edge, and the wedge angle) and a set of five parameters for each of the two types
of the boundary conditions adopted at the ice-structure interface, provide the es-
timates which seem to be reasonably accurate, with an error margin of the order
of several per cent. Undoubtedly, it would be desirable to compare the calculated
buckling forces with laboratory and field measurements. These are, however, very
scarce and restricted to laboratory conditions, and the full-scale empirical data
for wedge-shaped ice plates are still lacking. Nonetheless, before relevant exper-
imental work has been carried out it is believed that the results obtained in this
work are useful for the needs of engineering practice.
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