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Abstract

A method of the numerical solution of a 2-D linear advection equation is proposed.
In the solution, the modified finite element method and directional splitting tech-
nique is used. For the time integration the two-step differential scheme is used. Two
weighting parameters introduced into the scheme determine the accuracy and sta-
bility of the solution. Numerical diffusion and dispersion tensors are derived for the
pure advection equation solved using the proposed method. They enable the explan-
ation of numerical properties and applicability of this scheme. The proposed scheme
is of third-order accuracy and is adaptive, allowing for simultaneous elimination of
numerical diffusion and dispersion from the solution of a 2-D advection equation.

1. Introduction

Problems with numerical diffusion and dispersion may be avoided if a more ac-
curate scheme is used, for instance, of third order accuracy. In this paper such a
scheme will be proposed.

An advection-diffusion equation may be solved using the splitting technique.
However, this is not a numerical method of solution, but rather a technique
that enables significant simplification of the solving procedure. The numerical
solution is usually obtained applying well-known finite differences or finite element
schemes.

In scientific literature, many versions of the splitting technique are described.
They are applied to different problems, including hydrodynamics as well as mass
and energy transport. A basis to all the later techniques was the fractional step
method developed by Chorin (1967) for incompressible flow, consequently im-
proved and used by other authors including: Cunge et al. (1980), Donea et al.
(1982), Gresho et al. (1984), Kim and Moin (1985), Kawahara and Ohmiya (1985),
Ramaswamy (1988), Shimura and Kawahara (1988), Zienkiewicz et al. (1990),
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Laval and Quartapelle (1990), Pecters et al. (1991), Yeh and Chang (1992), Jiang
and Kawahara (1993), Pinelli and Vacca (1994) and many others. Unfortunately
not all attempts at implementing the splitting technique were satisfactory. This was
possibly the result of insufficient quality of methods used for solving equations ob-
tained due to the application of the splitting procedure. For instance, in the case
of the ADI method, the finite differences method is used most often. The method
has limitations influencing the quality of the solution. Szymkiewicz (1993) presen-
ted an interesting proposition for solving shallow water equations that combined
directional splitting technique with the splitting technique referring to physical
processes. The method proved effective for relatively high Courant numbers. The
splitting technique significantly simplifies the solution of the algorithm in which
sets of algebraic equation systems of tridiagonal matrixes are solved. In this paper
it will be proved that in the case of the advection-diffusion equation, a combin-
ation of the directional splitting technique with the finite clement method gives
very good results.

2. Formulation of a Problem

Let us write a 2D advection equation (1)

of  of of
S pg e plgete e ()
ot +u3x+vay - (1)
where:

x,y - space coordinates,

u,v — velocity vector components in xand y directions respectively,

f - any scalar value,

t — time,
in the following form: ;

a

where F includes all terms of Eq. (1) excluding the derivative in relation to time,
ie.

Feudl - % (2a)

The Eq. (2) may be integrated in time within the limits from ¢ to ¢ + At giving
the general formula

t+AL
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where f; describes the initial condition.

All known methods of solving equation (2) differ depending on the method
of approximation of differential operators included in F and the numerical cal-
culating of the integral in (3). Since function F depicts the process of advection
of quantity f in directions x and y, it may be presented as the sum of two terms:

F = Fx + F Y (4)
where
of o _ . of
Thus the equation (2) may be written as follows:
d
¥ -k+F, ©)

and its general solution (3) assumes the form:

t+At 1+At t+At
fevar = fi + f (Fr+ F))dt = f; + f F.dt + f Fydt. (6)

t t t
Implementation of auxiliary denotation

1+At

Fions =Fi+ f Fedt 0
t
results in
14 AL
fuas= 180+ [ Bar ®)

t

As can be noticed, the advection equation is solved in two stages in each time step
At: first 1D equation is solved for direction x (Eq. 7), then the result obtained is
used to solve similar equation (8) in direction y.

The technique presented above enables the solving of Eq. (1) by splitting it in
two directions in relation to independent variables x and y, and may be written
as:

af M
ot
with the initial condition " = f, and

afr@
>, o)

= F,, (%9a)
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with the initial condition f;® = ,(_&,

Calculations on the level ¢ + At are conducted in two stages. In thc ﬁrst an
1D differential equation is solved for direction x (9a) giving as a result £ +a¢+ This
is an intermediate value being an initial condition for calculations in direction y
(Eq. 2b). The value in question on the level t + At is fiias = f,(f)m.

The modified finite element method is used for solving both 1D equations
(Szymkiewicz 1995). The solution domain S is covered by the rectangular grid of
M columns and N rows, and dimensions of a grid cell are Ax - Ay (Fig. 1).

Ya
(1-w)
i+l -
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i
-
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il i e

Fig. 1. Grid of nodes applied in the proposed scheme

Each row and column is treated as a separate structure of the length L, con-
sisting of linear elements of elementary lengths Axand Ay respectively. Let us
solve equation (9a) in a selected row i first. Let us neglect index ,;” in the nota-

tion for simplicity. The Galerkin method requires the following condition to be
satisfied (Zienkiewicz 1972):

Jcj+1

b M-
f NQ(f,)dx = Z: f NQ(£)dx = 0, (10)
0 Jj=1

where:

Q - symbolic notation of equation (9a),
=M ®),...Ny@)T — vector of linear basis functions,

L — distance between the first and last nodes
in row i.

Substituting equation (9a) into condition (10) results in:

M-y 8 o )
f (af agx )dx =0, (11)

i=
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where:

M
o . oy £ Dy NTpD)
060 = 2 M@ 0 =Nt 025

is an approximation of function f),

O = (f1, fo .. o).

In this case also modification of the finite element method’s algorithm is pro-
posed, analogical to the case of the 2D equation. Szymkiewicz (1995) has presen-
ted a detailed description of the modified method proposing a following alterna-
tion of the condition (11):

Xj+1

M-1 (L (6]
o Y\
E:fN( o e )dx_[) (13)

=y

where:

Ja — depicts approximation according to the formula applied in (11),

fe — depicts approximation based on the weighting mean of nodal values
in the element.

In a selected element limited by nodes j and j + 1 the value f. is defined as
follows:

Je@) = wfj(t) + (1 — @) fi+1(t) for a product of type N f; (14a)
fe@) = (1 —w)fj(t) + wfj+1(@) for a product of type N1 fc (14b)

where o is a weighting parameter from the range < 0,1 >. According to this
method a differential equation is obtained for node j in which ! is denoted by
f for simplification of the notation:

uAt

A
[(1 -w) - 93] A+ 20 + [(1 —w)+ 95‘5’] =
(15a)

= [(1 - +d -‘9)%] fi + 20ff + [(1 —w)-( —9)%} f¥a

Notation of the above equation for all nodes j = 2,3,4,..M — 1 of row i leads
to a system of linear algebraic equations with tridiagonal matrix of the following
form (Szymkiewicz 1995):

A+ At0Ba) fiyar = (A— At (1-6)B))f;, (15b)

where:
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A - constant matrix, banded and symmetrical,
B - variable matrix, banded and asymmetrical,
# - weighting parameter from the range < 0,1 >.

The system of equations must be completed with given boundary conditions. The
system may be solved using Thomas method (Fortuna et al. 1982).

The same method is applied to solve equation (9b) for direction y. The fol-
lowing differential equation is then obtained :

[(1 —w) - ] fEl 4 20f + [(1 w)+e”—m] § =
) . (15¢)
[(1—w)+(1—6)”—’]ﬁ‘_1+2wf,-’° [(1—w)—(1—9)” ’] k.

which, for successive nodes, denoted i = 2,3,4,...N — 1 of the column j also leads
to a system of linear algebraic equations with tridiagonal matrix.

As a result of the applied technique the presented algorithm is faster and
requires less computational memory as compared with a 2D problem, since two
sets of 1D equations with tridiagonal matrixes are solved.

The described solution method has two weighting parameters. The parameter
¢ defines how the spatial derivatives are centered in time, whereas parameter @
determines the averaging of the variables in space. An analysis of accuracy and
stability for the assumed finite element grid enables estimation of the role of both
parameters.

The numerical stability analysis has been performed applying the Neumann
method (Fletcher 1991). It has been proved that the scheme is always stable when
6 >1/2 and @ > 1/2 (Bielecka-Kieloch 1998).

3. Accuracy Analysis

Application of the splitting technique leads to the solution of the following se-
quence of 1D differential equations:

af af(l)

16
TR ({5)
with the initial condition £’ = f; and
V)] @
™ e (16b)

at By

with the initial condition fr A= f;(i)m-
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As is known, the solution of the advection equation using the finite cle-
ment method modifies the initial equation (1) leading to the following formula
(Bielecka-Kieloch 1998):

of af @ 3 f) d (.. 98%f : |

bt £ — — — | D"— — T — e — =1,2.

o ¥ “ox  ox; ( ax; + ox; ax? + 0 ¥=12 (10
Further it has been proved that tensors D" and T® in equation (17) assume

the following form (Bielecka-Kieloch 1998):

D; 0
D" = [ 0 D"] (17a)
and
I o
n._.
r-[To] (170)
where:
D¢, Dy numerical diffusion tensors in the x and y directions respect-
ively and
I, T' - numerical dispersion tensors in the x and y directions respect-
ively.

Let us perform an accuracy analysis for equation (16a). Its discrete form is
represented by equation (15a). In this equation the nodal values are replaced by
their estimates resulting from Taylor-series expansion around the node ,,j” at time
level ¢ + 0 At. As a result of some transformations the modified initial equation
(16a) is obtained (Biclecka-Kieloch 1998):

2
-—f-+ —=(t9—l Atu? f+
at ox 2 ax2
{ Cz 33f (18a)
+uAx? +(1 6e+692)
2 ax3

The same procedure appllcs to the initial cquatlon (16b), the discrete form of
which is represented by equation (15c), giving as a result the modified equation
similar to equation (18a)

af 1 32f
a:+ ay (9 2)” 2T

‘1 C2 o]’
+vAy 3+(1 69+69) G 2] 3

(18b)
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The above equations allow for formulation of relations:

1 2 1 5
D;‘=(6—§)Atu, D;=(9—5)AI'U.
(19)
1 C? w 1 C? w
T =ubx?|—- —r=2 4+ = |, T"=vAy?|—<-rX+=|.
= U [3r6+2].yvAy|:3r6+2

The tensors in equation (17): T" and D" therefore assume the following form:

1
(9—5)A1u2 0
D" = 1 , (19a)
0 (e-i)mvz
2
sz(llz“%_%) 0
™= L, (19b)
0 s 4. 2
BaY ( 3776 +2)
r=1-60+66% (19¢)

In this case, both numerical diffusion, as well as numerical dispersion tensors
have elements different from zero only on the main diagonal. This is a result of
the application of the directional splitting technique. The method enables avoid-
ing the introduction of mixed derivatives, reducing in this way, the influence of
numerical diffusion and dispersion. At the same time it can be seen that pos-
itive elements in the numerical diffusion tensor are identical with the corres-
ponding elements of the tensor derived for the modified finite element method
(Szymkiewicz, Bielecka-Kieloch 1995). The tensor disappears when 8 = 1/2, i.c.
when the approximation of the derivatives in time is of the second order. It can
also be noticed that the stability condition # >1/2 assures positive values of tensor’s
D" elements.

The tensor of numerical dispersion also differs from the one derived for the
modified finite element method (Szymkiewicz, Bielecka-Kieloch 1995). Also in
this case only the tensor’s elements on the main diagonal differ from zero, what
is the result of the application of the directional splitting technique.

Rotation of the co-ordinate system x — y by an angle ¢ results in transforma-
tion of the numerical diffusion and dispersion tensors D" and T" respectively. In
the rotated [ — n co-ordinate system foru =v = w2, ¢=n / 4, Ax = Ay = A,
C: = C, = C the D" tensor assumes the following form:
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D' = o (20a)
1 w

0 0 —- ) At—

(o-3) a3
Since the tensor’s components for # > 1/2 have positive values for any At, it
proves that the scheme is stable, which is consistent with the previous stability

analysis.

Assuming additionally 6 = 1 / 2, i.e. the situation without numerical diffusion,

the numerical dispersion tensor form in the rotated ! — n co-ordinate system is as
follows:

-—~+—C2+la>) 0

wA? /1 1 1
0 oy SRS B o 8 W
V2 ( 3T T 2w)

Both numerical diffusion and dispersion tensors are symmetrical. The form of T'
tensor proves that it is possible to find such value of the parameter w, for which
cach all of the tensor’s elements are equal to zero. The described situation takes
place when

(20b)

-~ 1)

In this case the scheme does not introduce any numerical diffusion (8 = 1/2) as
well as dispersion. Therefore this is the third order approximation being a great
advantage of the presented scheme.

For 6 > 1/2 numerical diffusion occurs, but it is symmetrical in both directions.
Its magnitude depends on parameter @, time step and flow velocity. However,
it is still possible to determine such value of parameter @ for which numerical
dispersion does not occur. In this case it is the following relation:

2 1-60+60% ,
=3+ -—3—C L (22)
Both condition (21) as well as (22) can be applied for such Courant numbers
for which parameter @ must be not less than 1/2, due to stability of the solution.
In case of relation (21) this is C < 1. If C > 1 occurs in calculations then w = 1/2

will not delete elements of tensor T”, however, their reduction will be significant.
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4. Numerical Tests

The presented solution method was applied for calculations of advection of initial
concentration in the form of Gaussian distribution of the maximum value fyax=
1.0, along the basin’s diagonal (Fig. 2).

t=00s

Fig. 2. The initial concentration distribution in case of flow along the basin’s diagonal

All calculations were performed for # = 1/2, assuring elimination of the nu-
merical diffusion. Simultaneously, variability in both directions of the parameter
, resulting from the dispersion tensor’s form (19b), were taken into account:

2 2

. 23

=T 2oy
C2

w,=§—?’. (23b)

" The calculations proved that the quality of results is exceptionally good and
depends on both parameter 8, as well as the Courant number. Solution using
the directional splitting technique for # =1/2 and C= 1 is accurate. After time
t = 200 s the maximum concentration was equal to the initial one. For greater
Courant numbers results are worse and oscillations occur. Decreasing C for 6
=1/2 does not practically influence the quality of the results and the obtained
solution is very accurate, without any oscillations or deformations (Tab. 1).

For instance for C = 0.1 the solution is very accurate with unnoticeable oscil-
lations (Fig. 3).

Values of 0 less than 1/2 make the scheme unstable. However, for 8 > 1/2 the
quality of the results significantly decreases with the increasing Courant number
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Table 1. Extreme concentrations calculated after 200 s of advection of the initial concentration
distribution along basin’s diagonal

6 =05 g =075 6 =10

c 0.1 05 1 01 | 05 1 X0 |00 ] 10
fmin | —0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
fmax | 0.988 | 0.993 | 0.797 | 0.446 | 0.290 | 0.667 | 0.170

Fig. 3. Advection of the initial concentration distribution along the basin’s diagonal for # = 0.5
and C = 0.1

(Tab. 1). As can be noticed for greater Courant numbers, strong numerical dif-
fusion is generated, but oscillations resulting from numerical dispersion do not
occur. Simultaneously, it should be mentioned that in the analyzed cases, distribu-
tions are axially symmetrical.

The presented scheme affords a highly accurate solution of pure advection
or advection-diffusion equation with dominant advection transport when 8 = 1/2
is assumed, Courant numbers are less than one and w is determined according
to (23a, b). In other cases cither an unstable solution is obtained or very strong
numerical diffusion occurs. The presented numerical tests fully confirmed the
conclusions resulting from stability and accuracy analysis of the proposed method.

5. Conclusions

In this paper a new method of solving linear advection equation has been presen-
ted. It was based on the modified linear finite element method where the integra-
tion procedure was generalized by introduction of weighting parameters and the
directional splitting technique was implemented to the previously modified finite
element solution. The method was analyzed by means of the derived numerical
diffusion and dispersion tensors.



14 M. Bielecka

Both accuracy analysis, as well as numerical tests showed that the proposed
method offers excellent accuracy of the solution. It is possible here not only to
eliminate numerical diffusion, but also numerical dispersion by proper selection of
two weighting parameters # and w. It was proved that for § = 1/2, @ determined
according to the formula (23) and for Courant number not greater than one, the
scheme does not generate any numerical diffusion or dispersion. It assures an
approximation of the IIIY order and produces a numerical solution very close
to the analytical one. Ability of continuos adjustment of the weighting parameter
w depending on variations of Courant number during calculations, is a great
advantage of this scheme. This is an adaptive scheme thanks to the possibility of
local application of the relation (23). Another important feature of the scheme is
its economical computational algorithm.
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