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Abstract

Previous papers showed that the model of stratified flow, which was originally invented
by Meyer, could be applied to describe changes of river bottom. Enabling the selection
of circulation areas, this model allows the including of dead zones in flow patterns,
which occur in the river bottom cavern. The intensity of sediment transport and
analysis of changes of the river bottom cavern was specified on the basis of Ackers-
White’s known method.

A

Notations

- dimensionless parameter characterising the density stratific-

ation and water flow,

A1n, @2ns bn, Clny Con, din, don — development coefficients of function into

the Fourier’s series,

length of reservoir [m],

sediment diameter [m)],

dimensionless sediment diameter,

dimensionless sediment mobility,

dimensionless function of sediment transport,

depth of reservoir [m],

transit stream depth [m],

eddy viscosity coefficients in the x and y axis’ direction cor-
respondingly [m?/s],

exponent in the equation of sediment transport function,
elemental flow through the reservoir [m?/s),
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sediment density by volume to water density ratio,
shear velocity [m/s],
average velocity [m/s],

dimensionless horizontal component of velocity at the water
surface in the inflow,

average velocity in the transit stream [m/s],
components of flow velocity in the x and y directions [m/s],

dimensionless components of velocity correspondingly in
the & and n directions,

distribution of dimensionless component of vertical velocity
in the inflow,

dimensionless parameter of sediment transport rate,
axes of dimensionless co-ordinates’ system,

dimensionless co-ordinate of reservoir’s outflow cross-section
location,

dimensionless co-ordinate of reservoir’s inflow cross-section
location,

dimensionless interface area between the transit and circu-
lating streams,

dimensionless co-ordinate describing the reservoir’s length,
bottom shear stress [m%/s],

shear stress at the water surface [m?/s],

kinematic coefficient of water viscosity [m?/s],

water density [kg/m?],

water density at the bottom [kg/m?],

water density at the water surface [kg/m’],

dimensionless current function,

function of current,

dimensionless current function in the inflow,

intensity of sediment transport rate in the transit stream
[N/sm],

function of rotation.

1. Introduction

The physical and mathematical description of morphological processes occurring
in riverbeds — due to their complexity and diversity — is one of the most difficult
problems, which we have to cope with when modelling the flows in rivers. The
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bottom wash-out phenomenon below the hydrotechnical structures, influence of
hydraulic conditions of water flow upon the sediment erosion and accumulation
downstream of these structures, belong to the least recognised problems. The
authors hope that the presented model of the water and sediment flow in the
river cavern can be applied in the future to describe the hydraulic conditions of
local scour downstream the weir.

The elaborated model of sediment transport in the river bottom cavern uses
the description of stratified flow according to Meyer (Meyer 1981) and the Ackers-
White’s method of sediment transport in rivers (Ackers, White 1973). The applic-
ation of stratified flow model enabling the selection of circulation areas in the
reservoir enabled to defining of flow dead zones appearing in the local scour.

The model presented was modified by inserting a changeable — along the
researched river section — parameter A. It was assumed that the change of 4
can be caused by the change of density distribution in the flow area, as well as
reservoir’s depth or variable turbulence. This allowed — while solving the reverse
problem - searching for such a function 4 = A(x), that the assumed bottom profile
could be obtained.

2. Phenomenon Analysis and Accepted Assumptions

The flow in the reservoirs under circumstances of vertical stratification of water
density is analysed in this paper (it is assumed that this reservoir illustrates the
cavern in the river bottom). The following assumptions and simplifications were
made to describe the phenomenon mathematically:

- the steady motion in the wide reservoir with H depth and B length,
— the flow is treated as the flat one in the reservoir’s vertical cross-section,

— in the reservoir there is a water density gradient — this varies from the p;
value at the water surface to the p; value at the bottom,

— the field of stream line and the field of flow velocity, which were taken
from the model of vertical circulation, constitute the initial conditions for
hydraulic calculations of water flow and sediment transport,

- sediment transport rate intensity and analysis of river bottom shape changes
in the caverns were specified on the basis of Ackers-White’s method,

- the sediment composition is assumed to be steady in the evaluations,

— the waves’ influence and - due to small sizes of the analysed reservoir —
Coriolis force influence are neglected in the calculations.

The co-ordinates’ system in the model was assumed as follows (Fig. 1):

- the abscissa (x) covers the reservoir’s bottom line and is directed opposite
to the main direction of flow,
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Area of fransit flow

Interface

Area of bottom circulation

Fig. 1. Flow scheme in the rectangular reservoir

— the y-axis (y) covers the vertical reservoir’s wall in the area of outflow and
is directed upwards.

2.1. Model of Stratified Flow

A two-dimensional equation of turbulent flow was applied (Meyer 1981):

dV; aP a aV; d v,
ek )2 2

dt a ax ox ay )
dv, aP 9 oV a al
G- (T PR (T
pa’t 3 3y+8x(px8x)+ay(py8y
as was the equation of flow continuity:
av,
1do 0% 0% o )

pdt  ox dy

After introducing the stream function ¥ and rotation function 2, the dimen-
sionless co-ordinates » and &, dimensionless stream function ¥ and dimensionless
components of flow velocities V; and ¥, into the constitutive equations (1) and
(2) as well as after further transformations, the equation of stratified flow finally
takes the following form (Meyer 1981):

2v2
B, v

A
o an?

=0 3)
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where: A — dimensionless parameter equal to:

ApgH? 1
B T8 ; )

Equation (3) was solved by adopting Fourier’s series, achieving the following
dimensionless form of stream function (Meyer 1981):

Ve =V
+ 5 {lamexp @) + (@ exp(—daner - 5)]-sinnm) O

and dimensionless velocity components:

Vi 6,m) =V )+
+ gl {[a10 €%p (@1nE) + (@20 €xp(—d2n(51 = £))] - 7n cos(mnn)}, ®)

Vy &) ==Y {[a1n %P (@1n) + (@2 exp(=dn(E1 = §))] -sinGram} (7

n=1

where: & - dimensionless co-ordinate describing the reservoir’s length is equal

to:
B[ K
=B _ 8
h=g K +K ®)

On the grounds of the former researches the rectangular distribution of ve-
locities in the inflow and the parabolic one in outflow were assumed for cal-
culation purposes. The following formulae (Meyer 1981) define the coefficients
1n, Ao, d1n, d2n appearing in the equation (5) + (7) for the assumed boundary
conditions:

A — VA% + 4nn® p A+ A%+ 4nnb

dl = =
4 272n2 2n 2m2n?

n=1,2... (%9, b)

Cin —C2n * €XP (—dZn * “El) = bn [1 — €Xp ("dZn ' 51)]
1 — exp [—£1(d2n — din)] ‘

Aip = (103)

_ €21~ Cin - €XP (d1n - &1) — by [1 — exp (1 - £1)]

10b
T — oxp [—&, @an — din)] (100)

azn

where:
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C2(=1" 4

by =———+—= [ +3)+ 2N +3)- (-], (11)
n m3n3
2(=1D" 2 sin(mwn) — sin(wan;)
- _ 12
‘i nn nln? 1-m ' (12)
—_— 2(-1) 2 sin(wn) — sm(;mnz). (12b)

n min? 1—m

The following parameters of the solution decide on the shape of the stream
line for the assumed geometrical dimensions of the reservoir:

- dimensionless parameter A — including the vertical gradient of water density
and flow conditions,

— dimensionless co-ordinate & describing the reservoir’s length,

— dimensionless wind dependent velocity V] at the water surface, coming from
wind surface shear stress.

The influence of wind upon the circulation areas and water flow conditions in the
reservoir were neglected, assuming the velocity V) = —1.5 (Meyer 1981).

2.2. Model of Sediment Transport

The intensity of sediment transport in the river was calculated on the basis of
the known Ackers-White’s method (Ackers, White 1973), thus its values depend
upon the bottom shear velocity, average velocity, stream’s depth and sediment
parameters.

The evaluation procedure of Ackers-White’s method includes determination
of the following parameters:

— dimensionless D, diameter of sediment particles:

1y l/3
Dgr=D[g(s ”] . (13)

V2

— coefficients of sediment motion: n, A, m and C:

n - exponent defining the kind of transported material:
n=0 — bed sediment, n =1 - floated sediment,
ne (0,1) - bed and floated sediment,

A - momentum of particle motion,

C - friction coefficient of sediment motion,

m - exponent,
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for D, € (1, 60 >:

(14)
A= 23 +014 m= i +1.34

A / Dgr Dg.’

for D, > 60 parameters are constant: n = 0.0, A =0.17, C = 0.025, m =
135,

- sediment mobility Fg,:

Vor ! X /32log °‘H"] (15)

F, = , .
# [\/gD(s -1 \/3_210g“Tﬁ"] I:Vs'r D

— function of sediment transport Gg,:

Fr "
r=0C\—=-— ' 1
Gy =c(Z-1) (16)
— dimensionless parameter of sediment transport rate X:
sD Ve \"
X=32Gy (u* ) , (a7)

— sediment transport intensity in flow Q:
w = Xpg Q. (18)

Hydraulic parameters of river water flow, i.e. main stream’s depth H;, (&), av-
erage velocity V5, (&) and shear velocity u. (&), which are necessary to calculate the
intensity of sediment transport rate carried by the transit stream, were evaluated
by applying — according to the following formulae - the field of stream line as
well as the field of horizontal component of flow velocity, which were achieved
from the model of stratified flow:

- interface between transit flow and circulating n,(¢§) from the condition:
W (Ealntr) = 0 ’
— transit stream’s depth: H, &) = (1—n,(§))- H ,

1
— average velocity of transit stream: V;, (§) = W [ Vidn,
Ntr

— shear velocity of transit flow at the interface: u.(§) = /K, %&.
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2.3. Analysis of Eddy Viscosity Coefficients

Practical application of the suggested model requires the values of eddy viscosity
coefficients to be specified both in vertical K; and horizontal K, direction so
that they could include the water flow conditions occurring in the modelled river
section. In order to do so, the eddy viscosity coefficients were made dependent on
the hydraulic flow parameters, inter alia average velocity to shear velocity ratio
and elemental flow intensity.

Introducing the Boussinesq’s hypothesis into the equations of turbulent motion
and defining the shear stress 7, (y) according to the Prandtl’s formula concerning
the mixing way, we obtain as follows:

Ty () (19)

However, it can also be assumed (Meyer 1985), that vertical turbulent stresses
7, (¥) get changed linearly — from the t; value at the bottom to the —r,, value
at the water surface. If the wind influence upon the flowing water (z,, =0 ) is
neglected, the following will be obtained:

n0) = (1-%)- (20)

The comparison of (19) and (20) relationships enables specifying the relation
between the K, K, eddy viscosity coefficients and river water flow conditions. In
further analysis it is very convenient to assume that the K, viscosity coefficient
is — as in the flow model - constant and proportional to the elemental g flow
according to the formula:

Ky(y)=Ky =Kq. (21)
Assuming this, the vertical distribution of water velocities can be described as
follows:
y? 22
hoy =L (y-22). @)
Integrating the velocity ¥, (y) by depth we obtain the elemental flow intensity g:
! 1
T,
a= [ Viory = 32 23)
pkq’
0
hence:
4= 3”;; (24)

Bottom shear stress 7; can be described — according to Du Boys’ formula — also
as:
1y =yHI, (25)
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where: I — hydraulic slope equal to:
2
__9
I= ET7ch

Comparison of relationships (24) and (25) allows the calculating of the « coeffi-
cient as:

(26)

lg
obtaining finally:
1/ ug 2
==|—] 9. 28
i 3(%) ! @

The formulae (28) describing the relation between the coefficient of eddy
viscosity K, and flow conditions was determined on the assumption that this
coefficient is constant in the vertical direction. In the reservoir with the finite
length the formula (28) should be written in the generalised form as:

1 (uy &
=—[— - 29
by an ( Ver ) q, @)

where: a, — numerical coefficient.

The eddy viscosity coefficient in the horizontal K; direction can be defined
- with a good approximation and basing on former researches (Coufal, Meyer
1999) — according to the following relationship:

ug \X
&-(%)-¢ (30)

where: x¥ — numerical coefficient, dependent on the reservoir’s geometrical para-
meters.

The previous numerical evaluations and analysis of the obtained results (Pluta
2002) show that the a, coefficient in formula (29) assumes values within the range
of 0.5 + 3.5, while the x coefficient in the (30) formula — within the range of
0.6 + 1.0.

3. Numerical Experiments
3.1. Influence of 4 Parameter on the Model Solution

The dimensionless parameter A, which is defined by the relationship (4), is the
basic parameter deciding upon the solution of stratified flow. This parameter
includes the intensity of density stratification and flow conditions. In the natural
environment it can oscillate between 0 (no stratification) and around 105

In the basic solution of the vertical stratification the model it is assumed that
the parameter A is constant along the reservoir. In the general case the A4 value
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can vary due to the changes in density distribution in the flow area, changes of

reservoir’s depth or changeable turbulence. The motion equation (3) then assumes
the following form:

ay 82 (Vi)

P A Wl G

(6) 3t + an?
The researches, which were carried out by Meyer (Meyer 1986), indicate that
in the conditions of changeable parameter A = A(¢) the equation of the current
function will take the following form:

=0. (31)

VED = v+ Y {[amexp[Du®)]+

a4 (32)
+  (azexp[—Du(&1) + Do (®)])] - sin(rnn)} .
where:
& &
Din(¥) = ] din(E)dE, Dy(E) = f don(§)dE, (33a, b)
0 0
A(E) — JAE)? + 4ntnb A A(E)? + 47n®
dyiy = 2B AAG) Ay = SOV AT PPV g )

2n2n? 2m2n?
Depending on the A = A(£) function, the analytical solution of equation (31)
can be very difficult or even impossible. This problem can be solved numerically,
dividing the flow field in the reservoir into vertical columns, in which the constant
A parameter is assumed. In order to define the stream function, the basic solution
that is described by the (5) + (12) equations can be then used, remembering that
the condition indicating that the stream functions are equal to each other at the
border of neighbouring elementary areas must be fulfilled.

Fig. 2 shows the influence of parameter 4 = A(£) that is changeable along the
reservoir upon the stream line.

Practical calculations were carried out for the following flow g = 3 m%/s as well
as for the following geometrical parameters of the reservoir: B=40m, H =10
m, n1 =}’1/H = 0.5, n2 =_V2/H—'= 07v & = 2.0.

From the calculations carried-out it results that for the assumed flow geometry
the A parameter influences the shape of forming circulation areas significantly.
Changing the A = A(¢) function along the reservoir, it is possible to model the
area of transit flow as well as circulating areas occurring in the reservoir’s bottom
zone.

3.2. Solution Optimisation for the Rectangular Reservoir

In the evaluation in point 3.1. the A = A(§) function was assumed freely. The flow
conditions in the reservoir, which are described by the K, and K, eddy viscosity
coefficients, were not taken into consideration. Similarly, the dimensionless



Application of Stratified Flow Model in Estimation ... 75
1
200 =
Aeconst 08— -
-08-
iiio - e ————
0.4.‘.‘.1“\
¢ vr—vv——r—r—r—r—r °2'Q“:> 0
0 02 04 06 D8 1 12 14 18 18 2 . \

o 02 04 06 08 1 12 14 16 18 2

1000

500
Ap

0

0 02 D4 08 08 1 12 14 18 18 2

0o 02 04 06 08 1 12 14 16 18 2

2500 Ak
2000
Ap ;
1800 06— _ﬁ
1000
As D.""‘hn______.‘ 0
500 ) N
D 02 D4 DB D8 1 1214 158 18 2 04
0 02 04 06 08 1 12 14 16 18 2
1000
Ak
L
500
As
0 e p————r—r—r—TT1
0 02 04 D6 D 1 12 14 18 18 2

Fig. 2. Influence of the parameter A = A(§) assumption on the stream line in a rectangular
reservoir

reservoir’s length & was assumed a priori. It is necessary to introduce the (27)
and (28) relationships into the description of the A parameter and & coefficient

in order to obtain the evaluated flow field corresponding with the real one.
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The model parameter’s optimisation under circumstances of density gradi-
ent, requires iterating calculations to be carried out. The simplified evaluative
algorithm is shown in Fig. 3 (jd = 0 + n, where n — number of elemental stripes).

Procedure
STRATIFICATION

Procedure

SEDIMENT TRANSPORT g

Fig. 3. Simplified evaluative algorithm

The suggested iteration enables the achieving of some solutions for both the
assumed parameters: elemental flow intensity g, reservoir’s geometrical dimen-
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sions H, B, n1, n2 and the given density gradient Ap/p;, and afterwards defining
the sediment transport rate intensity along the reservoir.

Some example optimisation results of eddy viscosity coefficient K, parameters
A, & and stratified flow solution are presented in Fig. 4. The following source
data were assumed in the calculations: H =10 m, B =40 m, n, = 0.5, nz = 0.7,
g =3 m?s, Ap/p1 = 0.001, k = 0.001, x =2/3.

4 Depth of transit flow Eddy viscosity coefficient Kx
0.6
[m) [ms]
D 0.4
5
B [m] 2z =
m
10 ) ol [m)
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Average velocity of transit flow Dimensionless parameter A
1 150
[mis]
0.5 100
Bm] B [m]
0 T T " - v v J 50 + v T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Shear velocity at interface Dimensionless coordinate £1
.06 1
001 sl
0.04
05 k.
0.02 8 [m]
B [m]
0+ v T v 7 v T T J o+ v . - v T -
[} 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Fig. 4. Hydraulic calculations’ results of flow in the rectangular reservoir

The results achieved indicate that due to the appearing of rapid changes of not
only transit stream depth, but vertical velocity distribution V; and shear velocity
at the interface area — the K, eddy viscosity coefficients and the 4 and £ para-
meters change definitely at both reservoir’s edges. Inside the reservoir the above-
mentioned parameters settle, achieving the following values: K, = (0.26 + 0.29)
m?/s, A = (110 < 115) and & = (0.40 < 0.45).

3.3. Solution Optimisation for Reservoir with Changeable Depth

In order to calculate the water flow through reservoir with changeable depth,
one can use the method of flow area digitisation into vertical columns (Fig. 5)
presented in point 3.1, assuming that the change of function A = A(§) results from
the reservoir’s changeable depth H = H(&). This problem can be put inversely —
knowing the shape of the reservoir’s bottom, the optimisation of function A =
A(&) can be carried out.

Some examples of calculation results — for the assumed function describing
the reservoir’s bottom — are presented in Fig. 6. The following source data were
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Fig. 5. Water flow scheme in the reservoir with changeable depth

g Depth of reservoir and transit flow - Eddy viscosity coefficient Ky
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Fig. 6. Hydraulic calculations’ results of flow in the reservoir with changeable depth
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taken for the calculations: Hpex = 10m, B=40m, g1 =0.5,72=0.7,9 =3 m?/s,
Ap/pr = 0.001, « = 0.001, x =2/3. in order to describe the shape of the reser-
voir’s bottom, the parabola of the second degree was applied.

The comparison of model calculations’ results, which were obtained for both
the rectangular (Fig. 4) and parabolic reservoir (Fig. 6) shows how the Ieservoir’s
shape determines the flow conditions through it.

The intensity rate of sediment transport, which is carried by the transit flow
and specified by the Ackers-White’s method, is greatest at the reservoir’s edges,
where are the greatest flow and shear velocities. In the reservoir’s centre part
the quantity of transported material is significantly smaller. The evaluated values
should be treated as the maximum sediment transport rate that can be transported
in the given conditions. In order to conserve the continuity of sediment transport
rate, it is necessary to include sediment material sorting in the calculations.

3.4. Solutions’ Survey

The selected calculation results that are presented in Fig. 7 illustrate how the
flow field is influenced by: elemental flow g, reservoir’s length B (conserving the
same shape) and depth Hpax (parameters 71 = 0.5, n = 0.7 are constant). Due
to different reservoir widths, in the diagrams the modelled H;, K, 4, & values
were linked with the numbers of succeeding evaluative cross-sections (n = 200).
The results obtained show that:

e the smaller the elemental flow g, the bigger the A parameter — this is not
a strictly inversely proportional relationship, because — as results from the
formula (4) — the change of A is also affected by the changeable H depth
and changeable K, coefficient;

o the reservoir’s length has less influence on the A parameter, however, the
dimensionless length & changes distinctly — according to the (8) formula,

e the change of reservoir depth visibly affects the change of the A parameter
(the increase of Hmax causes the increase of 4) as well as the § parameter
— the reverse relation.

4. Conclusions and Program of Further Research

The paper presents the model of sediment transport in the river bottom cavern.
This model uses both the description of stratified flow according to Meyer, as
well as the method of sediment transport calculation according to Ackers-White,
which was verified many times for the conditions of the Lower Odra River.

The model presented was modified by inserting the changeable - along the
examined river section — parameter A. It was analysed how the function scheme
A = A(x) affects the change of river bottom geometry, water flow conditions and
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sediment transport. The function A = A(x) was also optimised so that the assumed
bottom profile could be obtained, as the reverse problem.

In the model of vertical stratification it is very difficult to specify the eddy
viscosity coefficient correctly so that they could precisely reflect the flow conditions
in the reservoir. Having the practical application of calculation results in mind,
in this paper one put forward the optimisation procedure for the flow solution
through the reservoir under circumstances of vertical stratification, defining the
real values of K; and K, coefficients.

The presented method enables calculation of the intensity of the sediment
transport rate in the water flow through the cavern. Conservation of sediment
continuity in the inflow (at the weir entrance) and in the cavern, will allow future
modelling of the bottom formations.

The program of further researches provides for the application of the presen-
ted model to describe the hydraulic conditions of local scour formation in the
lower position of the weir.
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