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Abstract

The turbulent stresses must be defined to calculate the velocity distributions in open
channel flows. In the paper, the turbulent stresses are presented as a sum of the
normal and shear turbulent stresses. The normal turbulent stresses act like pressure,
i.e., they are isotropic and can be absorbed by the pressure-gradient term in the mo-
mentum equations. Therefore, only the shear stresses have to be defined to describe
the velocity distribution, e.g., the prime velocity distribution in an open channel flow.
The shear turbulent stresses are defined by the 3D mixing length hypothesis. This
hypothesis is based on the mixing length tensor (MLT). It is shown how to define the
components of MLT for compound channels and how to relate it to the turbulent
stress tensor. The components of the MLT are defined based on the concept of the
generic mixing length (GML). This concept is presented. Having calculated the gen-
eric mixing length, the main components of the MLT as well as the turbulent shear
stresses can be calculated.

The presented concept is applied to calculate the prime velocity distribution in
laboratory open channels with two-stage cross-section. Two channels are considered,
one with vertical sidewalls and one with inclined sidewalls. The basic hydrodynamics
equations (parabolic approximation of Reynolds equations) together with the tur-
bulence model are solved. The well-known Patankar-Spalding algorithm was used
to solve these equations. Some numerical simulations were performed for different
components of MLT, i.e. for different structure of turbulence. The results of numer-
ical simulations were compared with the primary velocity distribution measured in
the laboratory channel. These comparisons show that the model predicts the velocity
field reasonably well.

1. Introduction

An important feature of most rivers is a two-stage cross-section consisting of
a deep main channel and shallow flood plains, which are often rough due to
vegetation. In these channels flood conditions lead to a complex, 3D flow situation
with intensive mass and momentum exchange between the main channel and
the flood plains. Therefore the flow structures that occur in these channels are
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extremely complex. They arise mainly from boundary-generated turbulence and
from free shear layer turbulence. The latter reason appears between the main
channel and flood plain, where the depth-mean velocities vary laterally, creating
a transverse shear layer.

To describe the velocity field in two-stage channels very advanced mathemat-
ical models are developed, like the algebraic stress model (ASM) (see for example
Krishnappan and Lau (1986) or Naot, Nezu and Nakagawa (1993)) or the com-
plete Reynolds-stress-transport model of turbulence (see for example Cokljat and
Younis (1995)). However, these 3D models require a large number of empirical
constants that make them of little use for engineering purposes. For example,
equations of the algebraic stress model can be classified into three groups (see
Naot, Nezu and Nakagawa 1993):

1. Three momentum equations plus the continuity equation governing the
three-dimensional mean motion and mean pressure.

2. Two differential equations for the energy of turbulence and the rate of their
dissipation. These equations contain four standard empirical coefficients,
two additional coefficients and two empirical functions to introduce aniso-
tropic eddy viscosity in transvers directions.

3. Six algebraic (semi-empirical) equations representing the anisotropy of tur-
bulence stresses in terms of the turbulent energy, dissipation rate, and mean
velocity gradients. These equations introduce additionally, four empirical
functions and two coefficients.

These six differential equations and six algebraic equations are quite complic-
ated. They require eight empirical constants and five empirical functions. Thus,
they are not useful for engineering purposes. It is very difficult to understand
the roles of all empirical coefficients involved in the models. Then, applying any
calibration procedure for these models is almost impossible, and in turn, using
these models for other channels is questionable. Engineers need a model that is
easy to understand, simple to calibrate and reasonably good.

The three dimensional turbulent models for compound channel flows fulfilled
all engineering demands are rather scarce. The main goal of this paper is to
present a new model that can be accepted by engineers. The model is based
on 3D generalization of widely known MLH of Prandtl. This generalization of
Prandtl’s mixing length concept consists in transition from scalar mixing length
to mixing length second rank tensor. This generalization is related only to turbu-
lence shear stresses and was developed by Czernuszenko and Rylov (2000). This
approach allows mixing length to vary between different space directions. It is
shown how to define the mixing length tensor for compound channels and re-
late it to the turbulent stress tensor. The numerical simulation results of primary
velocity distributions show that they are very close to those from measurements.
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2. Basic Hydrodynamics Equations

Three-dimensional, steady and uniform turbulent flow in compound channels is
governed by the Reynolds-averaged Navier-Stokes equations. The continuity and
momentum equations for incompressible turbulent flows may be written in the
Cartesian tensor notation as follows:

— continuity equation

o U;
e 1
T 1
— momentum equations
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where U; and u; are the i-th component of the time average velocity and
turbulent velocity, respectively (i =1,2,3), P is the pressure, p is density,
v is viscosity and F = (g sina, g cosa, 0) is a gravity force. A notation of
x for horizontal (longitudinal), y for vertical (downwards) and z for lateral
coordinates as well as U, V, W for corresponding velocity components will
also be used in the paper.

3. Turbulence Model

The turbulent stresses which appeared in Eq. (2), are described by the 3D mixing
length hypothesis (MLH) introduced by Czernuszenko and Rylov (2000). This
hypothesis assumes that the mixing length is different in different directions, i.e.,
the mixing lengths create the mixing length ellipsoid (MLE) at any point of flow.
The general form of the turbulence stresses reads:
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where [;; is the mixing length tensor (MLT), D is the deformation rate tensor
defined by the formula

au;  dU;
o= —  —L 4
D;j ox; ox; “)
and quantity S by the formula (Czernuszenko and Rylov 2000)
aU;
S= — 5
iF | ox 0

Eq. (3) states that turbulent stresses are expressed as the sum of normal
and shear stresses. It is assumed that the normal stresses are isotropic, but the
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shear stresses can differ for different components. For the open channel flows the
right-hand sum in Eq. (5) may be reduced to two terms containing derivatives
of streamwise velocities in lateral and vertical directions respectively. The other
term, in the sum above, contain the lateral and vertical components of the mean
velocity vector and do not exceed 1-2% of the streamwise component.

4. Mixing Length Tensor
4.1. Local Coordinate System (LCS)

The MLT (/;;) in a local coordinate system has a diagonal form, i.e., the tensor has
only three non-zero components: /11, /27, and /33. Below, these three components
are referred to as Iy, Iy, and [, respectively, ie.

L 0 0
Li=|01 0]. (6)
0 0 I

To calculate the shear stresses, first the components of MLT must be prescribed
in some way. Czernuszenko and Rylov (2002) presented the method of calculating
the components of MLT based on a concept of generic mixing length (GML). The
slight modified method of calculating these components is presented below.

A generic mixing length, denoted as /g, is defined in the whole cross-section
of a channel. It is assumed that the GML depends only on the distances from the
bed and from the water surface. For any point P, the mixing length /s is defined
as follows

di
! b3
di+d; @
where d; and d; are distances from the nearest wall and from the water surface,
respectively (see Figure 1) and Lw(§) is the function which describes Prandtl’s
mixing length in a turbulent boundary layer given by Nezu and Rodi (1986)

lg(P) = (d1 +dy)LwE where £ =

-1
:—I =k1-§& (é + I sin(n&')) = Lw(§), (8)

where: « is the Karman constant, IT is the Coles wake function (wake coefficient).
The wake coefficient for open channel flows is close to zero at moderate Reynolds
number. It is worth noting that the generic mixing length calculated from Eq. (7)
for verticals located in the middle zone of the channel is the same as mixing length
calculated from Eq. (8). Close to inclined or vertical walls the water depth is not
equal to the sum of d; and dj, therefore these formulae give different values.
Based on the generic mixing length the main components of the mixing length
tensor can be defined as follows
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Fig. 1. Definitions of distances d; and d7 in compound cross-section. The marked areas show
where the mixing length is reduced compare to Prandtl’s mixing length

Lk=plip, L=ql, L=ql, 9)

where p, g, and g, are empirical, positive coefficients. Bearing in mind that Eq.
(3) should converge with Prandtl’s formula in the middle zone of the channel, it
results in constrains on the above mentioned coefficients

p’a +q3) =2 for p<+2. (10)

The decomposition of /i into three main components of the mixing length
tensor gives in turn, the decomposition of a sphere with a diameter of /; into a
3D mixing length ellipsoid with main axes /;, /, and /,. The decomposition means
that the scalar mixing length in Prandtl’s approach becomes the mixing length
ellipse in 2D flow or ellipsoid in the 3D case.

4.2. Global Coordinate System

Equations (7), (8) and (9) enable calculation of the main components of the
mixing length tensor in the local coordinate system where the tensor has a diagonal
form. Coordinate axes of this system have different directions from those of the
global coordinate system in which hydrodynamic equations (1) and (2) are written
(LCS and GCS are presented in Figure 2). Therefore MLT components in GCS
generally differ from their values in LCS. It depends on the geometry of a channel,
whether GCS and LCS coordinate axes actually have the same directions or not.
For the central part of the channel these axes are the same, but not for areas close
to sidewalls and over inclined walls. For these areas of channels the GCS and LCS
are rigidly rotated to each other. The rotation is specified by the angle between
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Fig. 2. Local coordinate systems (y’, z") defined at point P located over the inclined and the
horizontal walls; (v, z) — the global coordinate system; d; — distance from a point P to the nearest
wall, d; — distance to the water surface

the axes of LCS and GCS. This angle differ for different parts of the compound
channel. If the angle is equal to «, the transformation will be described by the

matrix
1 0 0
T'=| 0 cose —sine |. (11)

0 sina cosa

This means that if a point P has coordinates (x}, x,, x3) in LCS and (x1, x2, x3)
in GCS, then the relation between these coordinates is

Xi =t,-,-xjf. (12)

Further in the text, coordinates of points or vectors in LCS as well as the com-
ponents of MLT in LCS will be primed, but in GCS these quantities will appear
without a prime. Please note that so far the coordinates of the local coordinate
system have been used without prime. Components of MLT in GCS can be found
from the formula (Aris 1989)

Combining Eq.(11) with Eq.(13) gives an explicit formula for components of MLH
in GCS

I 0 0
in 2o
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It is easy to notice that when [ =[; =/ the above formula gives an isotropic
MLT.

5. Hydrodynamic Model

Having defined the turbulence model by Eq. (3) and the mixing length tensor by
Eq. (14), one can rewrite the basic hydrodynamic equations. Because the continu-
ity equation remain unchanged then only the momentum equations are written
below:
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where P is the total pressure, ie., the sum of the pressure resulting from the
normal components of the molecular forces and the pressure arising from turbu-
lence; S is defined by Eq. (5); I, ly, I; and Iy, are functions of I}, /), I; and can
be found from Eq. (14).

It is assumed that the considered flow is steady and uniform with constant
depth. (rigid lid approximation (Rastogi and Rodi 1978)). The boundary condi-
tions need to be specified along solid boundaries, water surface and upstream
cross-section bounding the calculation domain. Since parabolic flows are con-
sidered, boundary conditions do not need be given at the downstream end of the
calculation domain. The conditions at the solid boundaries were specified using
the wall functions technique proposed by Launder and Spalding (1974). According
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to this, the conditions are specified at a point near a wall which lies outside the
laminar sublayer and satisfies the condition: 30 < u,y,,/v < 100. The shear stress
and velocity at this grid point satisfy the logarithmic portion of the universal law
of the wall

hy  1jp¥adey 4 (18)
Uy K v
where u, = friction velocity, u,, = velocity along the wall, y,, = distance from
the wall, v = molecular viscosity, 4 = 5.3.

Normal velocity components at the solid boundaries and free surface are set at
zero. The free surface boundary conditions were specified following the approach
of Rastogi and Rodi (1978) which considers free surface to act as a plane of
symmetry. Therefore, the gradients of u and v in the y-direction are zeros. The
condition at the initial cross section x = 0 for longitudinal velocity u was taken
along with logarithmic distribution. Components v and w were set as equal to
zero.

To solve the above set of equations the numerical parabolic procedure known
as the Patankar-Spalding algorithm is used. It solves the set of the above equations
for three components of velocity U, V, W and pressure P, at each forward step
in a longitudinal direction. Equation for P is derived from (1) to hold it at every
computation step. The scheme has HYBRID pattern approximation of convective
terms (Leschziner 1980). This scheme gives a reasonably accurate solution for the
case considered, as the flow is steady and the numerical grid is aligned with
the main flow direction. Due to insignificant secondary velocities the scheme has
actually the second order of accuracy.

6. Computational Simulation
6.1. Compound Channel with Vertical Side Walls

The hydrodynamic model Egs. (1), (15), (16) and (17) together with boundary
conditions was applied to simulate the 3D mean stream velocity distribution in
compound channel flows. The results of numerical simulations were compared
with recently published experimental data by Nezu at el. (1999). The experiments
were conducted in a 10 m long and 0.4 m wide tilting flume with compound cross
section. Asymmetrical compound open channel was composed of a main channel
and a flood plane as shown in Figure 3. The ratio of the flood plain width to the
channel width is constant and equal to 0.5. The fully developed turbulent flows
were established in the channel for three different rations of depths in flood plain
and main channel (k/H), namely: 1/6, 2/7 and 3/8. The Experimental conditions
are shown in Table 1.
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Fig. 3. Contours of primary mean velocity in compound channels with vertical sidewalls: results

of numerical simulations
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Table 1. Hydraulic conditions data and the numerical simulation results

Numerical
Case S H | h/H | Upean | Unax | simulation
slope | M | cm/cm m/s m/s | Unean | Umax
H6 | 1/3000 | 0.06 1/6 0.10 | 0.13 | 0.09 | 0.118
H7 | 1/4000 | 0.07 2/7 0.11 0.15 | 0.11 | 0.142
HE | 1/5000 | 0.08 3/8 0.124 | 0.16 | 0.12 | 0.156
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Fig, 4. Contours of primary mean velocity: results of measurements by Nezu et al. (1999)

Figure 3 (H6, H7 and H8) show the isovel lines patterns of the primary velocity
normalised by the maximum velocity, Una. The measurements show that the
isovel lines bulge considerably towards the corner from the core of the main
channel. Also, at the junction between the main channel and the flood plane in
case HB, the isovel lines bulge toward the free surface area of the main channel
from the corner of the flood plane (Figure 4). The model does not give this
kind of behaviour of isovel lines. The model takes into account the influences
of the sidewall as well as the junction between the main channel and the flood
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plane on the streamwise velocity distribution. These influences are expressed by
reduction of the mixing length in suitable areas (see Figure 1). It reduces, in turn,
the eddy viscosity in these areas, which allows to increase the velocity gradient.
However, this mechanism does not describe these influences with the accuracy
desired. To do it, the mechanism of secondary currents must be taken into account.
It needs additional information on the distribution of normal turbulent stresses
as well as on the distribution of boundary shear stresses. Generally, the normal
turbulent stresses are anisotropic, and so far there is not any available model
for theses stresses. Neither is there any approach on how to model the boundary
shear stresses. Therefore, the secondary currents in this channel are not modelling
properly. They are very small and do not influence the prime velocity distribution.
Additionally, for this channel equations (15), (16) and (17) are simpler because
the mixed mixing lengths are zeros. These resulted in the solution of the whole
system of equation and only longitudinal momentum equation are almost the
same.

The calculated velocities in the floodplain are much less than those in the
main channel. In case H6 the highest velocity in this area is less than 0.6 of the
total maximum velocity (Unax), for H7 this velocity is generally less than 0.7 Upax
and in the case of H8 the highest velocity in the flood plain is less than 0.8 Upax.
The measurements give the similar numbers, ie., 0.6, 0.7 and 0.8, respectively.
The more global characteristics like the mean velocity and Upqx received from
numerical simulation are very close to those from measurements. All numerical
simulations were performed using the spherical mixing length tensor. This is the
simplest model that does not need any calibration procedure and that in the 2D
case, reduces to the Prandtl model. It was also assumed that the bed shear stress
is constant along the wetted perimeter of the compound cross-section.

6.2. Compound Channel with Inclined Side Walls

The second channel considered is straight with longitudinal bed slope equal to
1.03 x 1073, The cross-section geometry of the channel is shown in Figure 5 and
some data is displayed in Table 2. The channel has inclined sidewalls 45 degrees
and the total width at water surface 52 cm. Measurements of velocity distributions
and other parameters are described by Knight el al. (1994).

Table 2. Channel geometry and hydraulic conditions of measurements: 4 and H are depths in
flood plain and main channel, respectively, b and B are widths at the top of the main channel
and the water surface, § — longitudinal slope, U* - friction velocity

Discharge | U* S h/H b/B wall slope | Unean
m/s m/s | slope m/m m/m degrees | m/s
0.0158 0.023 | 0.00103 | 0.04/0.11 | 0.30/0.52 45 0.468
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Fig. 5. Contours of primary mean velocity in compound channels with inclined sidewalls: results
of numerical simulations
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The main objective of the numerical simulations is to show how the model
describes the primary velocity distributions in the cross-section of the channel for
different structure of turbulence. The structures was defined by the size of the
main components of the MLT or in other words by the relative magnitudes of
coefficients p, g, and g, defined by Eq. (9).

The results of numerical simulations are shown in Figure 5. There are three
cases of calculations, namely: — (a): [y = 056, [; = 03 1, = (b): Iy =1, =1
and - (c): I, = 051;,1, = 0.7 I;. In the case of spherical MLT (Figure 3b) the
prime velocity distribution is very regular with logarithmic vertical distribution in
the centre of the channel. The Uy, is located at the water surface in the centre
of the channel.

When the mixing length ellipse is narrow in transverse cross-section (Figure 5a,
Iy : I, = 1.6), the location of the Unpa moves in the direction of the side walls. In
this case the eddy viscosity in the lateral direction is small, i.e. the lateral transfer
of momentum is smaller compared with two other cases. Thus the velocities in
the area of flood plain are less than in cases b and c, and the vertical velocity
distribution in the centre of the channel is not logarithmic any more. Generally,
the transfer of momentum in a lateral direction is retarded.

In the case of wider ellipse (case c, Figure 5c, I, : I, = 0.7) the transfer of
momentum in lateral direction is larger than in the case of narrow ellipse, it also
exceeds the lateral transfer in the case of spherical mixing length tensor (case b,
Figure 3b). The influence of walls on velocity contour is much greater in case c
(Figure 3c) than in the two other cases.

(m)x10

Fig. 6. Contours of primary mean velocity: results of measurements by Knight et al. (1994)

Figure 6 shows the results of prime velocity measurements made by Knight
et al. (1994). Velocities in this figure are normalized by the average velocity Up.
Generally, the pattern of velocity contour is not very similar to that received
from the simulations. In the main channel, in the area at the water surface the
isovel lines bulge towards the inclined walls. This is the result of the influence of
both the inclined wall and the water surface. The model does give this kind of
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behavior of isovel lines. The model takes into account the influence of the inclined
walls as well as the free water surface on the streamwise velocity distribution. The
former influence is expressed by reduction of the mixing length in suitable areas. It
reduces, in turn, the eddy viscosity in these areas, which affords an increase in the
velocity gradient. However, this mechanism does not describe these influences
with the desired accuracy. The influence of water surface is expressed by the
boundary conditions, which are not suitable in this case.

7. Summary and Conclusions

The 3D MLH is a simple turbulence model that can be used to close the basic
hydrodynamics equations for anisotropic turbulence in open channel flows. The
model allows us to calculate the streamwise velocity distribution in the compound
channel with suitable accuracy for engineering applications. The isovel lines of
primary velocity are similar to those received from measurements, with the ex-
ception of the area near the water surface in the main channel.

The model is very simple and easy to calibrate. It is particularly simple in
the considered channels, i.e., channels with vertical sidewalls or sidewalls with
45 degree inclines. For these channels all mixed mixing lengths in the global
coordinate system are zeros. The simplest version of the model, using the spherical
mixing length tensor, does not need any calibration procedure. Only the friction
velocity and some flow parameters are needed.

A new approach for the estimation of components of MLT is presented. This
is based on the idea of generic mixing length and its empirical decomposition into
three main components of the MLT, This decomposition should be established
based on the procedure of validation and verification of the proposed model. It
gives realistically good results when the roughness of bed and sidewalls are close
to each other.
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