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Abstract

Water motion in lower courses of large rivers is generated by series of different
factors, including also wind. Hitherto existing solutions of wind influence on vertical
velocity distribution were obtained by assuming a fixed bottom. However, series of
field measurements indicate that the problem of the moveable bottom should not be
neglected. Under conditions of acting wind, high velocities are generated close to the
bottom. They create so-called slip velocity at the border between mediums, which has
an important impact on changes in bottom position. An attempt to solve this problem
has been presented in this article.
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Notations

area of a channel cross-section,

channel width at a water surface,

velocity coefficient in Chezy formula,
acceleration of gravity,

channel depth,

average depth at a cross-section,

bottom slope,

water surface slope caused by wind,

water surface slope,

turbulent viscosity coefficient steady at a vertical,
roughness coefficient in Manning formula,

flow through a unit width,

hydraulic radius,

flow velocity average at a vertical,

wind velocity at a level of 10 m above water surface,
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x - “horizontal” axis of rectangular co-ordination system - directed
along a bottom slope at bottom level,

z — “vertical” axis,

v - coefficient of kinematical viscosity,

x - wetted perimeter,

A — ratio of wind stresses at water surface and stresses tangent at the
bottom,

o - water density above a moveable bottom,

op — water density within a moveable bottom,

7, — stresses tangent to bottom,

1, - wind stresses tangent to water surface,

1. Introduction

Vertical velocity distribution is one of characteristic properties of flow in open
channels. In a selected transverse cross-section a flow velocity vector is assigned
to each point. The ends of these vectors create a surface called the velocity sur-
face. Cross-section points where flow velocity vectors have the same value, create
lines of equal velocity. It is usually accepted that at the wetted perimeter flow
velocity is equal to zero. The envelope of ends of flow velocity vectors that are
situated at one vertical line on a surface of transverse cross-section, presents ver-
tical distribution of flow velocity from the bottom to the water surface. The shape
of vertical distribution of flow velocity changes with the change of transverse
cross-section and at selected transverse cross-sections differs for different vertical
profiles. However, it always has two essential properties:

— it is usually described with the same equation,

— it is assumed that the velocity component at the bottom in the direction of
the main flow is equal to 0; V, = 0.

As regards wide channels - of large width — it is usually assumed that average ve-
locity distribution in the plane is almost rectangular and one characteristic vertical
distribution of flow velocity that represents a whole cross-section of a channel is
used.

Wind influencing water surface can change typical shapes of vertical distribu-
tions of flow. At the same time, while taking into account natural channels, there
is always a smaller or bigger layer of moveable bottom depending on its type. The
longitudinal component at the level of the so-called moveable bottom - the bor-
der between typical water and moveable bottom — cannot therefore be assumed
tobe 1, =0.
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It is therefore important not only to state changes, but also to have formulae
allowing definition of these changes. Such a problem is analysed further in the

paper.

2. Physical Assumptions of the Model

Mathematical model of vertical distribution of flow velocity in channels with acting
wind and moveable bottom assumed in the further part of this paper is based on
the following assumptions and simplifications:

— uniform and steady movement in a wide prismatic channel is assumed; the

channel depth is H, unit flow g = const., average velocity V, = % = const.,

- channel flow is treated as a flat issue in a vertical cross-section along the
channel axis and along the moveable bottom, ¥}, # 0,

- there are tangent stresses at the water surface level, caused by wind friction;
the wave phenomenon that can influence vertical change of momentum,
especially in subsurface layers, and transfer of wind stresses was omitted,

— water motion is caused by a component of a weight force in the direction
of movement and wind friction on the flow surface (z,,); there are tangent
stresses at the bottom (7,) as a reaction to forces causing movement,

— turbulent transfer of momentum in a vertical direction occurs inside a
stream,

— the one-dimensional equation of vertical flow distribution arises from the
fact that only vertical transfer of momentum is taken into account,
— the Boussinesq hypothesis on turbulent stresses is valid,

— bank influence being insignificant, is omitted.

Remaining assumptions and simplifications have been given further in the text.

3. Mathematical Model of Vertical Distribution of Flow Velocity
Including Wind Influence

The solution of the phenomenon of vertical distribution of flow velocity in chan-
nels subjected to wind actions has been presented in Buchholz’s works (Buchholz
1989, 1990).

Starting with general equations of turbulent movement written with compon-
ents of turbulent stresses and using the Boussinesq hypothesis, the general equa-
tion of vertical distribution of flow has been obtained:

B[1-1+1)- %]
V, (z) =
i f p-K; (@)

dz + const. (1)
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The solution of this equation depends on the choice of turbulence model - i.e. tur-
bulent viscosity coefficient K (z). Seceral authors, including (Elsner 1987), assume
that in wide and relatively deep rivers, this coefficient is constant:

K, (z) = const = K,,. (2)
It was shown in previous works that Eq. 2. can be written as:
K@ =const=K,=8,-V,-H (3)

where: 8, — coefficient.
The assumption of a turbulent viscosity coefficient steady in the vertical and
on a fixed bottom with velocity component at the bottom equal to zero, gives the

following Eq. 4:
ne= 20 (5)[1- 12 (5] 2

whereas the average velocity in the vertical is given by:

=322 (35). ©

The relation between surface stresses (wind) and bottom stresses is as follows:
VK,

2tp — Ty = 60— 7,

or : (6)

whereas the vertically constant turbulent viscosity coefficient is written as:

K;(z)=Ko=3—§,—2i4-H
where

c#% (7)

Ro = %g n?. R;llls

All relationships presented here have been obtained on the assumption that of a
fixed bottom and that the velocity component at the bottom is ¥ = 0.

4. Mathematical Model of the Vertical Distribution of Flow Velocity
Including a Moveable Bottom

Water flow in natural channels is characterised by a fact that the phenomenon of a
moveable bottom and another movement of sediments accompanying it. Assuming
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that there is a moveable bottom phenomenon in channels, it is obvious that the
velocity at the contact point of water and moveable bottom will not be equal to
zero: V, # 0.

Zero velocity — V31 = 0 — will move “deeper” into the bottom by the value
defined here as Z, (Fig. 1).

z4

A 4

NN 0 NN Py N,

Fig. 1. Calculation zone

With such assumptions the curve of vertical distribution of flow velocity cannot
be described by the previously presented Eq. 4.
Assuming the boundary condition (Fig. 1):

Vi @) = Volp=z, ®)
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and taking this into account in Eq. 1. (general equation of vertical distribution of
flow velocity) the solution to Eq. 1. is obtained:

ro- 2R ER)-(R) (E)n o

This means, that the boundary condition mentioned does not change the vertical
distribution of velocity but only moves it by a constant. Average velocity calculated
on that basis in the perpendicular is equal to:

H
z—Zb lw-H (z-2 Ty
= = [V o S i | gt i v 0
Vo=qH fx(z)d( H) 6p_Ko( = )+b (10)
0
and the resulting relationship
Zrb—rw=%@-P-Ko- (11)

The most important problem here is to define velocity ¥} and value of Z,.
An attempt to define this velocity was made assuming the following:

— that the layer of moveable bottom is Z, (Fig. 1),

— that water density above the layer of moveable bottom is constant; p =
const (Fig. 1),

— that density within the moveable bottom is changing linearly from the water
density p = const. to the soil density, saturated with water at a point where
the bottom particles are immobile p = p; (Fig. 1),

— it is assumed (this is a significant simplification), that within the moveable
bottom layer, the turbulent viscosity coefficient K, (z) = const. as in water.

Assumptions and simplifications mentioned along with symbols have been presen-
ted in Fig. 1.

In practice, vertical distribution of velocity will consist of two parts (with pre-
viously made simplifications and assumptions):

— a part within a layer with depth H, where water density is constant and
equal to p,

- a part within a layer with depth Z;, where water density changes — from p
topp with steady bottom, whereas both these values are treated as known.

There is the same common velocity ¥}, and the same tangent stresses 7, at the
border of these two distributions. It is obvious that due to the different character
of these curves, they will not have a common tangent at the level of velocity V},
as tthe result of previous simplifications and assumptions.
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The change of density within the Z; layer can be defined as follows:

Po— P
Zy

p2)= (Zp—2)+p (12)

or after transformations:

Zyp-pp+2(p— pp)

p@)=

Zp
or (13)
T s D = -
@)= b Pb—Z(pp — P)
Zyp

It is easy to notice that:

for z=0— p(2) = pp } (14)

for z=2Zp, > p(2)=0p

Substituting varying o(z) into the general equation of vertical distribution of ve-
locity Eq. 1. and using symbols as in Fig. 1., one can obtain the equation of flow
distribution within layer Zp:

y , [1= (14 2) ﬁ-]d i
"'(Z)'f @K, - ®)
where:
1p, — stresses at the level of a steady bottom,
T
Al = —.

)
After subst]ituting Eq. 13. into Eq. 15. one obtains:

V (z)_ Zb'tbl [1-—(1+A1) Zib]dz

) Ko[Zeps +2 (0 — pp)]

or 1 (16)
., ()—belrbl[I_(l_FM)zL"]d

5= KD+m-2] ¢

After differentiating and assuming conditions V;1(z) = 0 for z = 0, the equation
of vertical distribution of flow velocity in Z, layer is:

Vi, (2) = ;‘;—fn” [(1 + -1-%5-1) In (1 +ﬁzib) —(1+ A1) zi,,] a7

where:
m=p— Pp,
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D = Zy - pp,
Zb m
B=—5—.
Taking into account condition V%, (Zp) = V} in the analysis, one obtains:
T - Zp 14+ M
Vp=—"—|{1+——)In(1 —(A+Ar)], 18
b Kg-m[(+ ﬁ)n(+ﬂ) (+1)] (18)

whereas the relationship for average velocity with condition:

7
Vo= 7= [ V@2 (19)
o

gives the form:
g (Ll Edda) 1+8 "
V;’“Ko-m{ﬁ[H 5 ] [(1+ﬁ)ln( 2 )+1] 2(1+)~)}. (20)

By transforming Eq. 11, one obtains the formula for velocity V; from within H
layer in the following form:

. 2w — )
=, -2y ey

and comparing it with Eq. 18. we obtain:
2t — Ty) Tp, + Lp 1+x
——— H=— 1

60 K, K,om |\ "

Assuming a rectangular channel and that Ry &~ H, and by analysing the equi-
librium of stream forces (Buchholz 1989, 1990), values of 7, and 1 can be defined
as:

-

)lnam—uﬂn]. 22)

: B
tb=p.g.H.1b_rw._.

(23)
W =P8 Lo ip—Tp —
X1
and:
P'g'H'ib—Tw"E
A= £
op-8Zois—(p-g - Hip—7y- £) - £ .
and ( (24
Tw
A=
og Heip—1y-L
where:

Tw = Ry, - W2 — measurement data,
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R,, — wind roughness coefficient.
Assuming further that unit flow g and depth H are known (from measurements),
the only unknown in Eq. 22. will be the value of Z,. The value of K, can be taken
after (Buchholz 1989):

g
K, = 3C2Va'(H+Zb)
[z
C=3c » (25)
1
Ro =38 n? (H+2Zp)}

The following equation may also be formed:
g=qi+q=Vo-H+ Vo, -Zp) - 1 (26)

which would unfortunately complicate calculations.

After defining the Z, value, the remaining values in Eq. 17-25 can be calcu-
lated, while taking into account previous simplifications and assumptions.

Analyses presented here indicate that one can assume the existence of a
certain velocity V; (slip velocity) at a level of moveable bottom and thick-
ness of moveable layer. The presented method which bases on previous solu-
tions (Buchholz 1989, 1990) for a fixed bottom and assuming that certain values
(Q.q, H, B, x, Ry, n, p, pp, Wig) are known, enables us to define Z; and V}, both
on conditions of wind acting on a water surface in a river and without wind
(ti:=10);

5. Conclusions

The solution presented is an attempt at the analytical definition of the layer
of moveable bottom Z, and slip velocity V5. A solution can be obtained with
significant simplifications and having series of very good quality measurement
data. The solution would allow for approximate definition of Z; value, depending
on flow and external conditions (wind). It seems that the greatest simplification is
the “broken” vertical distribution of density p(z) at the Z; level. As a result, the
curve of vertical distribution of flow velocity is not smooth at that point, which
definitely does not correspond to a real phenomenon.

It is therefore proposed that in further investigations the continuous distribu-
tion of density p(z) at a significant distance from the water surface in the direction
of the bottom which would be close to the steady one (Fig. 2), without the broken
point at the level of Z, should be assumed.

The equation of p(z) distribution can be obtained by detailed measurements of
vertical distributions of velocities at selected base cross-sections with and without
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Fig. 2. Vertical distribution of density and velocity

wind and for different flows. For these purposes using an ADCP (Acoustic Dop-
pler Current Profiler) e.g. “Rio Grande” seems appropriate. This would allow the
defining of a more real course of phenomenon.
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