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Abstract

In the paper, the problem of reverse flow routing (RFR) is examined. The case of
gradually varied unsteady flow in an open channel described by the Saint Venant
system of equations is considered. The specific difficulties connected with solving the
inverse problem are studied and the efficient solution algorithm, based on Space-Time
Conservation Method (STC) is presented. The most important features of the pro-
posed scheme are local and global mass conservation and high accuracy, that are of
special importance in the case of the reverse flow routing problem. Additionally, the
distinguishing feature of the scheme is space and time unification and treating them
on the same footing. The way of constructing the computational grid and achieving
the final approximation formulas are described in detail. Stability and accuracy ana-
lysis, and the numerical examples confirming the good features of the scheme, are
developed. Good conformity between the results obtained and required is observed.

1. Introduction

One of the basic problems, which is the starting point of investigating different
aspects of open channel hydraulics, is that of unsteady gradually varied flow. Such
flow arises as the effect of the forced slow changes of the flow variables (e.g.
discharge, water stage etc) and is the common form of the water movement in
open channels.

Usually, for most cases of such flow, a sufficiently accurate mathematical de-
scription of the phenomenon is achieved by using the system of equations presen-
ted in 1871 by Barré de Saint-Venant, which may be written as (Cunge et al.
1980)
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where Q is discharge, H — water depth, 4 — wetted cross-sectional area, Sf
— friction slope, Sy — channel bottom slope, g — acceleration due to gravity,
x characterizes longitudinal distance and ¢ time. The 1D model presented is often
called the dynamic wave model. The system of partial differential equations given
above is of the hyperbolic type (Cunge et al. 1980, Szymkiewicz 2000), and has
two families of real characteristics.

Modeling of the gradually varied unsteady flow in open channels is usually
connected with solving classical initial — boundary (also called “mixed”) problems
for the Saint-Venant equation system. Such approach represents so-called direct
problems. It enables calculation of the functions describing discharge and water
stage changes in time in the considered channel reach, for the imposed changes of
these variables in the upstream and/or downstream ends. The problem has been
widely analyzed and commonly applied in various practical cases, hence it can
be stated that it is well recognized and described, not only as regards the rules
governing its proper formulation, but also the methods of solution. Formally,
such an approach is connected with integrating the equation system (1a, b) in the
increasing time direction.

flow __ direction
directon  of calculations

T x=L

Fig. 1. Solution domain and structure of the characteristics in the reverse flow routing problem

However, the problem mentioned above is not the only one that may be for-
mulated for the system of equations (1a, b) (Eli et al. 1974, Szymkiewicz 2000,
Weinerowska 2001). From the practical point of view, there is also another in-
teresting and important case that may be posed for this system of equations. It
is connected with calculations in decreasing x direction (Fig. 1). Solving such a
problem enables us to obtain Qo(¢) and Ao(¢) functions, representing discharge
and water stage changes in the upstream cross-section, on the basis of known
conditions of flow in the downstream cross-section. Such an approach is called
reverse flow routing (RFR) and it is formally an example of the inverse problems
in open channel hydraulics. The RFR problem is of considerable practical value,
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e.g. in the case of flow controlling, in water resources systems management, when
it is important to predict or determine the mode of operation at an upstream
point, in order to obtain the desired flow conditions downstream.

Contrary to the classical initial-boundary problem, there is still no successful
and detailed recognition of the RFR problem. As the result of the first analysis
(e.g. Eli et al. 1974, Cunge et al. 1980) the problem was described as ill-posed,
at least for non-linear equations of the hyperbolic type. Achieving its reasonable
solution was considered to be possible only in particular cases, when several con-
ditions are satisfied, such as negligibly small friction, short length of the channel
and the non-linearity of the advective velocity term not strong (Cunge et al. 1980).
Even then, Cunge found it possible to solve the problem only if the method of
characteristics was used. Eli (Eli et al. 1974) presented the results of solving the
inverse problems for Saint-Venant equations using the implicit differential scheme.
Further analysis (Szymkiewicz 1993, Szymkiewicz 1996) proved that the problem
can be properly posed if formulated for subcritical flow and provided that an
additional set of information at the domain borders is correctly imposed, which
enables achievement of the unique solution.

The conditions of proper formulation of the problem can be established on
the grounds of the analyses of the characteristics. As presented by Szymkiewicz
(1993), the system of equations (1a, b) has two families of characteristics defined

as

dt 1 dt 1

dx U+ gH dx U-./gH
The slopes of the characteristic curves in the RFR problem are the inverse of
those referred in the classical initial-boundary flow routing problem.

The families of the characteristics (2a) and (2b) are of opposite signs where
Vg H > U, which refers to the case of subcritical flow. As the equal number of
characteristics of both signs is the condition of invertibility of the flow routing
problem (Godunow 1975), the subcritical flow is the only situation in which the
proper formulation of the RFR problem is possible. Moreover, the next require-
ment of this proper posedness is to impose at each boundary of the solution
domain (Fig. 1) one boundary condition for every characteristic line leaving the
solution domain through this boundary (Godunow 1975). Thus

e two conditions at the boundaryx =L, eg. Ulx =L,t)=UL({)

(downstream boundary conditions) and H(x = L,t) = H.(t)
forO<t < T

e one condition at the boundary t =0 eg Hx,t =0)= Hy(x)

(2a, b)

(initial boundary condition) forx < L
e one condition at the boundaryt =7 eg. Hx,t=T) = Hr(x)
(final boundary condition) forx < L

must be imposed. The proper specification of the initial and boundary conditions
is essential to obtain the unique solution.
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As for the direct problem, it is necessary to apply numerical methods in order
to solve the RFR problem. The method of characteristics, suggested by Cunge
(1980), is — because of its complexity — rather unwieldy. The application of the
finite difference method schemes in such cases is much more convenient, relatively
easy and it enables one to obtain a solution of good quality. The effective algorithm
of solving the reverse flow routing problem by applying the implicit four-point
scheme, was presented by Szymkiewicz (1993, 1996, 2000). Unfortunately, even
when the conditions of the proper formulation are satisfied, numerical solution of
the problem is not always successful. In some cases the solution may suffer from
considerable numerical errors arising during calculations. For the RFR problem
this question is of particular importance, as - running the calculations backwards,
in the opposite direction to the flow - it is necessary to reconstruct the rising
gradients of the dependent flow variables. Applying finite differential dissipative
or dispersive schemes causes distortions such as unphysical oscillations or the
excessive smoothing of the solution. That is why, in the case of inverse problems,
special attention must be paid to the choice of the solution method. Because
of this, it is worth searching for effective algorithms to solve the problem. In this
paper the application of the Space-Time Conservation (STC) Method is proposed.

The relatively new approach presented by Chang (1995), different from those
traditionally described in literature (e.g. Potter 1977, Cunge et al. 1980), is an
interesting alternative to the commonly applied numerical methods of solving the
partial differential equations. The calculations are run on the basis of the enforce-
ment of flux conservation (which is also the basic assumption of the Finite Volume
Method), but the distinguishing feature of the STC method is the unification of
space and time, and treating them on the same footing. Such approach leads to
the construction of the “space-time” cells (in 1D problem — the rectangles in the
x-t plane), in which the flux conservation is enforced.

The STC scheme, applied to solve the classical initial-boundary problem for
Saint-Venant equations (Molls and Molls 1998), is the modification of the scheme
called ,a — 1” (Chang 1995), which was originally applied to solve the advection-
diffusion equation. As it occurs (Weinerowska 2001), the STC scheme may also
be successfully used to solve the reverse flow routing problem. It requires some
necessary modifications and finally leads to the algorithm the numerical properties
of which are better than in the case of the methods used so far e.g. the four-point
scheme. The short description of the STC scheme applied to the direct problem of
flow routing was presented by Molls and Molls (1998), also, the detailed analyses,
including the questions of stability and accuracy, were developed by Weinerowska
(2001). In the next section the application of the STC scheme to the inverse
problem for Saint-Venant equations is presented.



Reverse Flow Routing Problem Solved by the ... 87

2. Solution to the RFR Problem by the STC Method

Let the system of the Saint-Venant equations be written in its conservation form
as
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Fig. 2. Area Q in the x-t plane

The solution in 2D space-time (x, ¢) — in which the element of an area Q and
the boundary s(£2) (Fig. 2) is established — is searched. For the chosen element
the flux conservation is enforced and the Eq. (3a) is demanded to be satisfied. The
vectorial Eq. (3a) is the differential form of the conservation laws, the integral
form of which may be achieved by applying Green’s theorem (Peyret and Taylor

1983):
f[(a_fq.ﬁ)dsh ffdx-(;dm fhds,
at  dx
Q

s(82) s(2)

where h = (G, f), and hds represents the space-time flux of h through s(R2). The
integration along the boundary of the Q domain is run anti-clockwise (Dziubiriski
and Swiatkowski 1985).

The integral form of Eq. (3a) is

fhﬁ:ffﬁ—ﬁd::ffscm. @)
5(2) 5(82) Q

It can be seen that the unification of x and ¢ variables is applied. They are treated
in the same manner, and the integrating is run along the s(2) curve in the (x,
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t) plane. Such approach is considerably different from those of other methods,
including Final Volume Method, applied for the volumes in geometrical space
(Szydtowski 1998).
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Fig. 3. a) Computational grid in the inverse problem solved by the STC scheme,
b) solution element (j, n)

The solution domain in an inverse problem is covered with the set of nodal
points (j, n), described by indices j = M, M —1,...andn =0, 1, ..., N (Fig. 3a).
The grid constructed in such a way is additionally covered by a set of intermediate
points in the middle of each mesh, with the indices (j £1/2, n+1/2) for j =
M—-1, M-2,..;n=1,2,3,...N—1. In consequence, a grid as in Fig. 3a is
obtained. While the values in the nodes at the j + 1 cross section are known, the
calculation of the unknown values at the j cross section is run in two stages. First
the values in the intermediate points at the j + 1/2 cross section are computed,
then — according to the same formulas — the next step from j + 1/2 to j is made.

Every mesh point of the grid is associated with a solution element SE, that
consists of vertical and horizontal segments of the grid (lengths of which are At/2
and Ax /2, respectively), protruding from the referred mesh point in the positive
and negative direction of ¢ and xaxes, and the closest neighbourhood of these
segments. For example, the SE connected with the node (j,n), defined as an
interior of the space-time region bounded by a dashed curve, is shown in Fig. 3b.

For any (x,t) € SE(j, n) variables f and G are approximated by f* i G* ac-
cording to formulae:

£5Ce, 5 j,n) = + (B &0 —xp) + @] (¢ — 1), (5a)
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G (x,1: j,n) =G +(G)] (& —x;) + (G (t —1™), (5b)

where: £, (£)], (f,);-‘ and G, (G, )}', (Gf);.’ respectively are constant in SE(j, n)
and (x;, t") are the coordinates of the node (j, n). As results from Eq. (5a) and
(5b):
£ 0% jom) =1, (62)
* *
%(xj,t"; Jim = (&)}, %t;—(xj,t"; Jn) = {7, (6b, c)
and for G respectively.

The values of the variables t}f’, (f, )}‘ and (f,)J’,-’, which occur in formula (5a),
may be identified as the values of the function f and its af/ax and 8f/3¢ in the
node (j, n) (for G analogously (5b)). As the result, the right side expressions in
(5a) and (5b) become first order Taylor series expansions of f and G around the
node (j, n). Thus, the values of t:,‘-", (£, )? 1 (f;)! may be treated as the numerical
equivalents of f and its derivatives of/dx ‘and 3f/8¢ (for G respectively) in the node
(J, n). Moreover, f = f*(x, t; j,n) and G = G*(x, #; j, n) should satisfy the Eq.
(3a), which implies that

G =8~ 6)]. (7)

It is required that Eq. (4), which is the integral form of Eq. (3a), is satisfied
in the whole domain, which means the global flux conservation. In addition, also
the local flux conservation is required. This local flux conservation refers to the
particular cells, called the ,,Conservation Elements” (CE). These CE are the rect-
angles on the (x, t) plane, with the length of the sides Ax /2 and At /2. Each CE is
defined by two nodes on the diagonal of the rectangle and each solution element
SE is associated with four CEs (Fig. 4a).

Any segment that is a side of the CE (e.g. AB in Fig. 4b) is also an interface
separating two adjoin cells (e.g. CE~(j,n) i CE*(j,n)). The flux through this
interface is evaluated using the information from only one SE (SE(j, n)).

In each cell CE flux conservation is required. The values of f and G for each
cell are approximated by f* and G* according to formulas (5a) and (5b) for suitable
solution elements SE that constitute the cell boundary. As the boundary of each
cell is constructed by segments belonging to two neighbouring solution elements
SE, only the values from two nodes appear in the conservation equation for each
cell. One node is from the “known” cross section and one is from the “unknown”
one.

Let the j +1/2 cross section variables be known and variables in J cross
section searched. The values of any function computed in the node (j,n) depend
on the information from CE~(j,n) and CE*(j, n) only (Fig. 4b).

Let

Ft(,n) = f —-G*dt +f*dx = F*, (8a)

s(CE(‘J'._m)



90 K. Weinerowska

) e n#12 b | . n+1/2

. § =
CEgaz ) |if|  CEgm g
... -t1n-172 e ﬁ n-1/2
j112 j j*12 j j+112

Fig. 4. a) Structure of the cells associated with solution element SE (j, n),
b) cells taking part in evaluation of functions and their derivatives (j,n)

F~(j,n) = 55 —G*dt +f*dx = F~. (8b)

(CE( %)

Substituting (5a), (5b) in Eq. (8a), (8b) and integrating along the boundary of
CE*(j,n) and CE™(j, n) yields

2 At (AI)2 172 1/2
A AxG;-‘ T G HINE -WE 69
. Ax (At)2 -1/2 1/2
=l = '+ & ) - G" (G,) —£0 + Wi (9b)
where 5
£1/2 _ +1/2 _ At _nt12 +172 (A1)
Wi = (5: 2 F A 12 (Gf);+1/24_A“x_- (9¢)
According to (4) it is required that
B f f §*dQ = S, (10a)
Q(CE
P f f s'de =S, (10b)
Q(CE)
and in the case of lack of the source terms
Ft=0, (11a)
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F-=0. (11b)
The vector §* in Eq. (10a, b) is determined as follows:
e in CE™:
S =S+ A ) + SE(-r). o
e in CE™:
F =B B xj+1/2)+(sr)f:11//§( t"“/z), (12b)
thus
2
2 Ax At n+1/2 At (Ax)? nt12 Ax (AD)
S =Sap—g ~ Gap —3g— ~ Ohp —3e—  (139)
_ w-1j2 Ax At n-12 At (Ax)? n-1/2 Ax (A1)
s = S;'1+1/2 el o (Sx)j+1/2 .16 - + (8); +12 T 16 (13b)
where .
as aS [aG\~
== == - 14
Se = orh = o (af) (S - 1), (14a)
aS
S = E—f'fr- (14b)

Substituting the formulas for F* and F~ (9a, b) and for S+ and S~ (13a,
b) in Eq. (10 a, b) or (11a, b) yields the set of two vectorial equations with two
vectorial unknowns treated independently — f and (f)7, as all the other variables
computed in the unknown cross section j, may be expressed as the combination

of the two above;
G\ !
f = (gf—) S—1), (15a)

G = (%) f. (15b)

However, it is not possible to obtain the explicit formulas for f and f, , as the
system of the non-linear equations of a relatively complex form is achieved. Much
simpler formulas are obtained if the values of G and G, are determined from this
system and then the values of f and f; are computed.

Unfortunately, if this approach is applied in the form presented above, the
calculations do not lead to a successful result, as the solution suffers from consid-
erable numerical errors. The same problem may be observed in the case of direct
problems. Thus the scheme presented requires some modifications.

Applying such an approach to the direct problem for the advection-diffusion
equation Chang (1995) showed that in the case of pure advection the absolute
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value of the amplification factor for this scheme is equal to unity irrespective of
the grid size. This means that the scheme is always non-dissipative. The accuracy
analysis shows in addition, that the scheme is dispersive, and only for the Courant
.number equal to unity does the dispersion disappear. As in real cases it is not
possible to run the computations with C, = 1, in consequence, a solution suffering
from unphysical oscillations is obtained. In order to improve the properties of the
scheme, Chang (1995) presented its modification by introducing on the right sides
of the equations (11a, b) non-zero terms, responsible for numerical dissipation.
The magnitude of such terms depends on the values of the derivatives on the
known time level and from a numerical parameter (0 < ¢ < 1), irrespective of
any other variables. The numerical dissipation is controlled by the value of the
parameter ¢ which can be modified in the scheme. For ¢ = 0 the values of the ad-
ditional terms are equal to zero (no numerical dissipation). The terms introduced
into the equations are of the same magnitude, but opposite signs (positive for F*,
negative for F~). As a result, in each of the cells CE* and CE~ the conservation
law is not satisfied and the symmetry is broken. However, the conservation law is
satisfied in CE, which is the sum of CE™ and CE™, as the artificially introduced
terms are reduced.

The modified approach proposed by Chang (1995) for the advection-diffussion
equation may also be successfully applied in the case of the inverse problem. The
conservation law for CE, which is the sum of CE™ and CE~, may be written as
follows:

Ft+F = ¢ -G*dt+fdx+ § —G*dt+frdx=
S(CE*+(j,n) S(CE-(j.n) (16&)
=f [ Sde+[ [ $dQ=8"+S",
QUCEY) Q(CE)
that is
2 2
— (Ft+F)=—(S"+§ 16b

where F* and F~ are obtained from Eq. (9a, b, ¢) and S* and S~ from (13a, b).
The formulas for G and G, obtained by solving the modified system of equa-
tions are as follows:

1 +172 1,2 ~1/2 +1/2
G =3 {A— (G507 - Caf + Wi - W) ~Ef. (7a)
where:
o BF [ 4( g 1/2+Sn+1/2) [(S Y2 g )n+1/2]
=8 i+1/2 +1/2 J+1/2 j+1/2

(17b)
+ar[@nz- s |
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and
!‘t+1/2 _ (;’."1/2
G)f = ——F———+ @2 =1 @G, (18)
i +1/2 1/2 +172 1/2
n n— I n—
G = G2 + G Giie — Gy (19)
el 2 At ’
£1/2 _ qntl2 DX +1/2
Gi™ " =Gy — 2 Gz 20)

and G, in any node is obtained according to Eq. (7).
According to the definition

Q
= 2 2
¢ l g+l } -

the values of Q and O, may be determined explicitly; the remaining unknowns
are the result of solving the non-linear equations:
QZ

2
7-{-3]1:(}‘2! M

where G, and (G;); are the second co-ordinates of the column vectors G and G;.

Thus the computing of the values in cross-section j on the basis of known
values in the cross-section j + 1 is run in two stages. Each stage requires com-
putations that can be characterised by three steps. For example, when computing
the values of the j cross-section when the values of the j + 1/2 cross-section are
known, the following three steps are carried out:

= (Gi)z, (22a, b)

step la:  calculations of G in the nodes (j,n £k) fork =0,1, 2, ... accord-
: ing to formulas (17a, b);
step Ib: calculation of f in the nodes (j,n £ k) fork=0,1,2,...;
step II: calculation of G in the nodes (j,n £m - %) form=1,3.5,... ac-
cording to formula (20);
step IIla: calculation of derivatives G, in the nodes (j,n k) for k=
. 0,1,2,... according to formula (18);
step IIIb: calculation of derivatives f; in the nodes (j,n £ k) fork =0, 1, 2.
The sequence of the computations and flow of information on the computa-
tional grid are shown in Fig. 5.

3. Stability Analysis

More information concerning features of the numerical scheme may be achieved
by investigating its stability. It is usually examined for the following linear system
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Fig. 5. Scheme of the flow of information on the computational grid in reverse flow routing
problem solved by STC method

of partial differential equations (Szymkiewicz 1996):

oH __aU
E‘ -+ Ha =0, (233)
U oH

where H is the constant average flow depth. The system (23a, b) can be obtained
by the simplification of the Saint-Venant system of equations and vectors f and G
in this case are as follows:
H HU
l‘_[Ul, G= 28 " (24a, b)
Applying the formulas (17 + 20) to solve (23a, b), the system of equations
that may be written in the following form is obtained:

. . 1 | 1
t = — —— - i =
(j,n) P+t(j+2,n 2)+P t(j+2,n+2), (25)
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where
U[.m
. &y
ti, m) = H (26)
T H"
1 I=&%: —LE D
| -1 2e-1 0 —AL
P+_§ _ﬁx__ 0 1 lft;éQ ]
N 1 2e-1
0 —=2L e £ —
Atg
1 _(1_K2) Ax 0 (27)
AMH
p 1 1—¢ 2-1 0 %
L 1 -(1-K?)
0 ﬁ 1—¢ 2-1
and "
Ax
K=—= (28)
G Ve H At
is the inverse of the Courant number.
- 1 1
t(j+§,n—§)=P+t(j+1,n——1)+P_t(j+1,n), (29a)
1 1 : .
t(}+§,n+§)=P+t(;+1,n)+P_t(j+1,n+1), (29b)

the full transition from the cross-section j + 1 to cross-section j is carried out in
accordance with the formula

t(j,n) = P +1,n— 1)+ (PLP_ +P_P,) t(j + 1,n)+

+P_)’t(j +1,n+1) . (30)

where: (P,)? = P,P,, (P_)2 = P_P_.

Applying the von Neumann stability analysis (Fletcher 1991), functions U, H
and U, H, that appear in (26) and (27), are extended into the finite Fourier
series and the behaviour of the single k component when passing from j + 1 to j
is examined. It can be proved (Weinerowska 2001), that the amplification matrix
A in this case may be written as

A=P,P,. e_'lkAt + (P.P_+ P_P,)+ P_P_eikar —
iy a2
= [P+e‘”"%“ 2 P_efk%] =pl. (31)
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where
P pi2 P13 Dia
p=| P P2 P3 Pu
P31 P32 Pz P
P41 D42 P43 Paa
A—— i - 2 _ .
P11 = P33 = CO8 (2) P12 =pi = (K= 1) sm(2)
_ _ Ax .. /@ - - xAx . . @
p13—p24-mﬁt Sln(z), p31—p4z——mglsm(2),
e ot e T e, e ¢
pu=pasz=(1-¢) sm(z), P22 = psa = (2 I)COS(Z)'
pu=pn=pn=pa=0
and ¢ = kAt.

(32)

It is known (Fletcher 1991), that any scheme is numerically stable if the
greatest modulus of eigenvalue of the amplification matrix is not greater than

unity, i.e.
Al < 1.

The eigenvalues of P obtained from the condition

det[P — AI] = 0
pomoecon (§) ¢ isin (§) + &
Ay _=g-cO8 (5) + Ki sin (%) R,
Bospiei cos(g- — Kisin (g) +R,
= e-o0s(L) - Kisin (Z) - R,
where

R= \/(1—8)[(1—8)0052(2) (- K?sin® (g)]

and ee<0,1>and K <1.
The eigenvalues of A satisfy the conditions

hars = 405 dg-= G203 A= 40 A =0

The modulus of the eigenvalues of P is

= (s (§) ]+ s (3)]

(33)

(34)

(35a)
(35b)
(35¢)

(35d)

(36)

(37

(38a)
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and for A

Pl = (3 = [e cos(z):i:R] + KZsin? (g) (38b)

Analysis of (38b) in the light of (33) leads to the following conclusions:

e fore €e<0,1> and K <1 (G, > 1) the values of |A| are in the range of
<0, 1 >, thus the scheme is stable then:

e for e =0 and K < 1 we obtain

Aq=1-2K?sin? (Z)ﬂ;ZK:sm(z)\/l—Kzsm (g) (39a)

and

A4l =1, (39b)
which means that the wave amplitude is neither damped nor amplified and
the scheme does not produce the numerical diffusion;

e for e # 0 and K <1 (G > 1) the scheme generates numerical dissipation,
the magnitude of which depends on the value of ¢;

e for ¢ # 0 and K =1 the scheme is non-dissipative as
|ha,.| = |24, _| =1,

Detailed information about numerical errors introduced by a scheme may be
achieved from the accuracy analysis.

4. Accuracy Analysis

After replacing the node values in (30) by their Taylor series extensions around the
node (j + 1, n) and after putting the expressions obtained in order, the following
equations are obtained:

”;‘;‘241(2(1 )f;{f
%;)f s 38K2)a;gf s (sz)4 %ms (e - 57 847’4" =0,  (40b)
s - -Sra-oRl fe e T (400)
82(4(2 K=K aazf’
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(At)? 5 (Ax)(m)‘ o\ 9*U
(O et —e - 3ok T + S50 (e - 0) B

The equations (40a, ¢) may be written (using the information from (40b, d))
as

=0, (40d)

aH  —3U _ a‘U *H a4U 9*H

5 TH3p =eugg Yeugy tmgr g {Hla)
au 5 3H _ a*U " 3 H . a4U 5 *H 41b)
f T8y T AGa Yy 15% T2 (
where:
el = €22 =0, (41c)
__ (Aan*fa-kK?% . 2
b1 = 21 = — e | e(4s — 3K* — 1) + 2K ] (41d)
and o p
H(At) » g(At) 2
=-—""_s(1-K?, =- —K5, 4le,
¥l 78 (Ax)a(l ), Y2 48(Ax)£(1 K*) (41e, f)
viz=ya1=0. (41g)

Analysis of (40) and (41) leads to the conclusions:

e the scheme leads to algebraic equations that are coincident with the differ-
ential ones. For Ax, At — 0 the right hand terms of (40a, c) and all terms
of (40b, d) tend to zero, thus the modified equations tend to the governing
system (23a, b);

e in the general case, the modified equations (41a,b) include third-order de-
rivative terms and higher; this means that the scheme is of second order
accuracy, it generates numerical dispersion connected with the third order
derivative and numerical dissipation resulting from the fourth order terms;

e for K = 1 the coefficients 12, £21 and y11, y22 are of zero value irrespective of
the value of . This means that for K = 1 the accurate solution is obtained;

e for ¢ = 0 the modified equations are simplified to:

oH ﬁaU (At)z(l—K2)83H

W TR 24 a3 (422)
aU aH (A1 — K% 83U

i T e Y . 42b
at 8 ox 24 PTE Cia)

The even order derivatives disappear from the right sides of these equa-
tions which results in the lack of numerical dissipation in this case. Such
conclusion is coincident with the results of the stability analysis for ¢ =0
and K < 1, when the scheme is non-dissipative but dispersive. Numerical
dispersion vanishes when K = 1, which gives the accurate solution;
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o if K is constant, the coefficients ¢, and &; are of the least value when

o 143K
=——.
For the maximum possible value of K which is equal to unity, the value of

this coefficient is ¢ = 0.5. With increasing value of ¢ the absolute values of
y11 and y»; responsible for numerical dissipation, also increase.

(43)

The values of the coefficients given above were obtained as the result of the
analysis of the linear problem. For non-linear problems the optimal value of ¢ is
difficult to determine. It is also difficult to estimate the magnitude of numerical
dissipation and dispersion. However, according to the analysis presented, it seems
reasonable to assume & = 0.5 or to determine this parameter on the ground of
the analysis of the specific practical cases.

5. Numerical Tests

The successful testing of the properties of the scheme and appraising the quality
of the numerical results, can be obtained by solving the inverse problem after
previously solving the direct problem, as the required and obtained results may
be compared. The tests presented below concern the solution of the Saint-Venant
equations in a rectangular channel with constant bottom slope. In both cases
the postulated discharge functions in upstream cross-section were imposed, the
direct problem was solved and the referred functions of Q;(t) and Ay (¢) in the
downstream cross-section obtained. These functions were next imposed as the
downstream conditions, the inverse problems were solved and the obtained and
required discharge functions Qy(t) compared. In both cases the flow resistance
was expressed by the Manning formula. The direct problem in both cases was
solved twice: by applying the implicit four-point scheme and STC scheme. Com-
parison of the solutions proved that in the case of direct problems, both schemes
lead to successful solution of comparable accuracy. In further analysis, the solution
achieved by the STC scheme was applied, as this provided better mass conserva-
tion.

Test 1

The rectangular channel of the constant bottom slope §, = 0.0001, length
L = 50 km, width 50 m, and constant Manning coefficient n = 0.02 is considered.
The channel is divided into 50 distance intervals of length Ax = 1000 m, which
gives M = 51 cross-sections. At time ¢ = 0 the condition of steady uniform flow
is imposed. The water depth is H = 2.5 m, and the discharge Q = 108.038 m3/s.
The imposed discharge function in upstream cross-section Qo(¢) is shown in Fig.
6a. It is also the upstream condition in the direct problem. Such a severe kind
of condition was chosen in order to examine the properties of the scheme. In
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Fig. 6. Comparison of the imposed and computed solutions of the reverse flow routing problem
(test 1): a) required discharge Q,(t) at x = 0 and imposed discharge Qy (¢) at x = L, b) discharge
functions calculated with four-point scheme and STC scheme, c) imposed and calculated water
level
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the downstream cross-section, the constant water stage is prescribed. The water
depth is constant and the downstream condition is H;(t) = 2.5 m. The values
of discharge function calculated in the direct problem, both with downstream
water stage condition were imposed as the conditions in the inverse problem. The
imposed discharge function in downstream cross-section is shown in Fig. 6a. The
initial and final boundary conditions on the boundaries ¢ = 0 and I =tmax =48 h
are prescribed as the steady flow condition Q = 108.038 m3s.

The inverse problem was solved with finite difference implicit four-point and
STC schemes. Comparisons of the best results obtained from each of the methods,
are presented in Fig. 6b. In the case of the four-point scheme the best results were
achieved when 8 = 0.5, y = 0.7, At = 600 s. The Courant’s number, defined as

cr = Ut veHar Xi Bar (44)

in this case took the values from the range (3.5 +4.3). The solution suffers from
the numerical diffusion error, which manifests itself in considerable smoothing of
the calculated discharge function. By applying other values of 6 and v the results
not only become worse, but also in some cases the computations fail due to loss
of numerical stability.

The results of the calculations confirmed that in the case of properly chosen
parameters, the numerical dissipation generated by the STC scheme is consider-
ably less (Fig. 6b). In consequence, the solution is much closer to that desired. The
smaller numerical dissipation error enables good matching of the peaks. However,
it happens at the cost of quality of results of the steady flow for ¢ > 12 h, where the
numerical dispersion error causes non-physical oscillations. The results presented
were obtained for £ = 0.5 and At = 600 s, C = (3.5+44). By increasing the time
interval At and changing the value of ¢, the magnitude of the numerical dissip-
ation and dispersion errors may be influenced. The reduction of the oscillations
for steady flow is possible, but at the cost of smoothing the upstream discharge
function (¢ = 0.5, At = 1200 s, C, = (7.0 + 8.7). However, where determination
of the wave culmination is essential, the application of the STC scheme, despite
its conditional stability, related parameter value and grid size limitations, leads to
results of higher accuracy than in the case of the four-point scheme. The second
one is less sensitive to the changes of At, but in practice, it always generates
numerical diffusion that smoothes the solution and underrates the Q values to a
higher degree than the STC scheme. Both methods ensure good mass conserva-
tion. The error is no more than 0.005%.

Test 2

If smooth functions are imposed instead of the strict condition given in Test 1,
the results of the application of the STC method are even better. The following
test is carried out as in Test 1. The rectangular channel of L = 50 km, constant
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Fig. 7. Comparison of imposed and computed solutions of the reverse flow routing problem (test
1): a) discharge functions Q(t) for M =51 (Ax = 1000 m), b) water level h(t) for M =51
(Ax = 1000 m)

bottom slope S, = 0.0001, width B =30 m and Manning coefficient n = 0.03 is
considered. In steady state the depth in the channel is H = 3.0 m and the discharge
is O = 55.260 m®/s. The required discharge function in upstream cross-section is
shown in Fig. 7a. Its shape is described by a smooth function

t—1, t—tp\?
Q(7)=Qo+(Qm_“Qo)[: T ] exp 1_('T ) ’ (45)

where Q, = 55.260 m%/s, O, = 244.740 m*fs, t, =0, T, = 28800 s = 8 h. The
solution of the direct problem which was also the downstream condition in the
inverse problem is also shown in Fig. 7a. The second condition in the downstream
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cross-section was A(t) = H(t) = 3.0 m = const. The steady flow conditions Q(x) =
55.260 m*/s were imposed on the boundaries t = 0 and ¢ = tma = 100 h. The
distance interval Ax = 1000 m (M = 51) was assumed.

The results of the computations are shown in Fig. 7a. The best results in the
case of the four-point scheme were obtained for At = 1800 s, 8 = 0.45, v = 0.95,
G, = (10.8 = 18.9); in case of the STC scheme — for ¢ =02, At =1800s, C, =
(10.8 =+ 19.0). Also in this test the solution achieved with four-point scheme suffers
from higher numerical errors while the solution obtained with the STC scheme is
of very good quality (Fig. 7a, b).

In the next phase of the experiment, the grid size was changed and the distance
interval Ax = 500 m was assumed. In the case of the STC scheme, for & = 0.5,
At = 1800s, G, = (21.7 - 38.1) the results were of identical quality as in Fig. 7a,b.
When the problem is solved with the four-point scheme, many difficulties arise
during the obtaining of the solition. In spite of checking many combinations of
the values of 6, ¥ and At, the calculations failed because of the severe numerical
errors and no reasonable solution was obtained. It may be stated that the choice
of the values of 6 and v in inverse problem is not easy, which was proved by the
tests presented.

6. Final Remarks and Conclusions

The problem of reverse flow routing (RFR) and main difficulties arising during the
obtaining of its solution were studied. The main problem, apart from satisfying
the conditions of its proper formulation, is the choice of the effective solution
algorithm, as in the case of commonly used methods, considerable numerical
errors are often observed. As the result, the solution is smoothed or suffers from
unphysical oscillations. The Space-Time Conservation (STC) Method applied to
the RFR problem was considered in the paper and the stability and accuracy
analysis were developed. The proposed method can be successfully applied to
the RFR problem, especially in cases where the commonly used schemes fail
to produce solution of satisfactory quality. The most important features of the
STC scheme, which make the method efficient and attractive, are global and local
mass conservation and small dissipation and dispersion errors. In addition the
distinguishing features of the STC scheme are space and time unification and
relatively simple approximation formulas. The properties of the scheme afford
discharge function of a considerable accuracy to be obtained in the upstream
cross-section.

Comparison of the results obtained with the STC and the four-point implicit
differential schemes confirm that numerical errors produced by the former are
considerably smaller. It enables good matching of the peaks of the discharge
function, which is of considerable importance.
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The STC scheme also affords satisfactory results in the cases in which the
friction in the channel is not negligible. The examples presented in literature
(Szymkiewicz 1992) and in this paper prove that a satisfactory solution can be also
achieved when the Manning coefficient is of considerable value (n = 0.03). The
remarks of Cunge et al. (1980) concerning the limitations of the channel length
also seem too strict. It is obvious, that the accuracy increases in the case of shorter
channels. Nevertheless, in the case of a considerable number of channel cross-
sections it is also possible to obtain good results. Relatively severe requirements
concerning domain boundaries (Test 1) do not cause failure in calculations either.
The results are obviously worse than in the case of smooth functions, but in spite
of this, the quality of the solution is also satisfactory.

Good properties of the numerical scheme presented in the paper and satis-
factory results of the tests proved the effectiveness of the method, which anables
successful solving of the RFR problem.
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