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Abstract

The present paper proposes a simple model for the calculation of a time series
to control the horizontal motion of the piston of a wavemaker. It is assumed that
the initial conditions correspond to water at rest. It is assumed that parameters of
kinematics of the fluid (displacement, velocity and acceleration fields) at the initial
time are equal to zero. In the first interval the amplitudes grow to an asymptote
that corresponds to a regular monochromatic wave. In the second interval the waves
decay. Calculated time series were fed into the control system of our wavemaker and
the measured horizontal displacements of the piston compared. The control series
was supplemented by terms corresponding to the Stokes type solution by addition of
terms with multiples of the basic frequency.

1. Introduction

The Institute of Hydroengineering of the Polish Academy of Sciences in Gdansk
has a new wave flume. It is 64 m long, 0.60 m wide and has a depth of 1.40
m. A piston type generator generates the waves. It is possible to create regular
monochromatic, irregular and random waves. A time series calculated on the
computer may be fed into the control system to obtain the desired displacements
of the piston. The displacements must correspond to smooth curves.

The aim of a research program conducted at the Institute is to obtain a com-
puter program based on a rigorous theoretical formulation for irregular waves
and reproduces the phenomena observed in the flume. The motion of a piston
type generator corresponds to the horizontal component of the orbital motion of
long waves and thus long waves are the aim of preliminary studies. In a rigorous
theoretical formulation, initial and boundary conditions must be given. The initial
conditions correspond to the situation in which at time zero the piston is at rest.
The boundary condition at the actual position of the piston corresponds to its
position and is thus given in a Lagrange description. Within the standard water
wave theory, the fluid is incompressible and thus sudden application of a finite
acceleration leads to an acceleration field in the neighbourhood of the piston,
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resulting immediately in a mass of fluid covibrating with the piston. Thus it is
convenient to assume that at the initial time the velocity and acceleration of the
piston are zero. Such initial conditions lead to a smooth transition from rest (no
velocities and no accelerations in the fluid) to the desired waves.

The theoretical description of long waves is described in detail in an unpub-
lished paper written by P. Wilde (1999) and available in the library of our Institute.
The complete experimental data are described in the paper published by the au-
thors P. Wilde, E. Sobierajski and £. Sobczak (2000).

The case of monochromatic waves is considered in Chapter Two. The math-
ematical model of the transient corresponds to the set of differential equations
(1). Random functions defined on a similar set, but within the theory of It6 differ-
ential equations are studied in the book by P. Wilde and A. Kozakiewicz (1993).
The application, of the results presented in this book, leads to the possibility of
constructing sample functions for piston motion of random waves.

The motion of the piston must go back to rest in a slow and smooth man-
ner. Thus two regions are defined. In the first interval the amplitudes grow (first
subinterval) to an asymptote that corresponds to a regular monochromatic wave
(second subinterval). In the second interval the amplitude tends to zero. At the
point of transition to the decay interval the values of the displacement, velocity
and acceleration have to be continuous. The first interval must be long enough to
obtain a part that corresponds to an almost regular wave and the second interval
long enough, for the displacements, velocities and accelerations at its cnd to be
negligible.

The measurements in the flume, based on the boundary condition presented
in Chapter 2 indicate that along the flume components with multiple frequen-
cies are created. The multiple frequency components take energy from the first
one. There is an exchange of energy between the components along the flume.
Thus, it is interesting to construct a boundary condition that includes the multiple
frequency components in an approximate Stokes type way. Such an approximate
boundary condition is presented in Chapter Three. The procedure is similar to
the method proposed by Wilde P. & Romanczyk W. (1989) for the construction of
a mathematical model used in the analysis of Stokes’ type waves. The introduced
boundary condition defines the displacements of the piston as a function of time
and is thus given in a material description.

The calculated time series of displacements were fed into the control system
of the wave generator. The measured displacements of the piston were very close
to those given.
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2. The Transient to a Regular Monochromatic Wave
2.1. The Mathematical Model of the Proposed Transient

Let us consider the transient motion of the piston of a wave generator described
with the help of the solution of the following set of differential equations

dAy/dt +nAg =0,
dAy/dt + nA; = nAy,

i 1
dA/dt + nAx = N1, 1)

dAn/dt +nAd, = r)An—L

where 7 is a parameter with dimensions 1/s and the set of unknown functions may
be represented by the matrix A () = [4; (t), A2(), ..., Ap (), .. Ay (t)]T, where
the superscript Tdenotes the transpose. The general solution of the set (1) for
initial conditions given at the time t = 0 is

AN)=P@)A0), ()

where ® is the (n + 1) x (# + 1) matrix corresponding to the fundamental solution

10 0 i W |
-1-1—!1: 1 0 0
® (nt) =exp (—1) %rz ﬁr 1 0 |, (€)]
,%f" (n_-}'lﬁrn_l (njz)!f"_z 1

where T = nf is dimensionless time.
By climination we may express the derivatives of the function 4, (¢), as a linear
combination of the functionsAg (¢), k =0, 1...n, by the relations

An (1) = A @),
dA, (1) /dt = n(B—1)A, (1),
d?A, (t) /dt? = n? (B —1)* 4, (1), (4)

d" Ay () Jdi" =1 (B — 1) An 0) ,

where B is the backshift operator defined by B*A, (t) = Aw—k, k=0,1, ... ,n.
The relations (4) may be written in the form of the matrix relation

A1) = LpaA (1), (5)
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T
where the column matrix on the left A =|A®, AP, .., ,(,k), AP the

superscript (k) means the k-derivative of the function A, (¢), and Lpa is the
(n + 1) x (n + 1) matrix of coefficients defined in the relations (4). The most com-
mon case is #n = 3, and in this case the matrix equation (4) is

AD ) o0 0 1 Ay ()
AP | _ |0 0o g - AL @) (6
AP@ | | 0w =2p% o A @) | )
AD @) n’ =3n° 3 -’ [[ A0

In our case of control of transient motion of the piston of the wave generator,
we want the displacement, the velocity and the acceleration to be zero at the
initial time. Thus we have to consider at least the case n = 3. (If we assume that
the initial displacement and velocity is zero then n = 2 is sufficient.) In general
we can take any value of ».

Let us construct such a function D, (¢) that for ¢ equal to zero the value is
one and the values of all derivatives up to the n-derivative are equal to zero. This
means

P, (0) = [D},“) ©) =1, DM ©) =0, D® ©) =0, ..., D™ (0) = O]T.

Multiplication of the matrix equation (5) by the inverse of the matrix Lpa leads
to the following initial values for the matrix D(0)

D©0)=[Do(0)=1,D1(0)=1,D,(0) =1, ..., D, 0 =1]".
Thus according to the relation (2) and (3) we have

11 1
D, ()= [1 + it ot rﬁr":l exp (7).

When the time goes to infinity this function tends to zero. A suitable function
that deals with our control problem is

k=n
~ 1
D,t)=1- (1 +Z—,r“) exp (—1). (7
o ni
The first derivative of the function (7) with respect to time is
~ 1
D (nt) = —nt" exp (~1). ®)

Now let us construct a function A, (¢) that at time ¢ = 0 its value and the
values of its derivatives up to the n — 1 are zero and the n-derivative is equal to
one. Following the above outlined procedure the final expression is

~ 1
A (i) = at" exp(—1). 9)
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We now define a complex signal
Zn (t) = XoAn () +1[ Dy @) +x24n )], (10)

where x,,xy are real numerical coefficients with dimensions of seconds to the
power of —n. The square of the absolute value is

W = D2 )+ 2taDn 0 An 0 + (x2+31) B 0, (11)
and the phase can be calculated from the relation
tan W (1) = Dx (;)a};:‘(i:;l" ® (12)
The complex signal (10) may be written in the following trigonometric form
Zy (t) = Wp @) exp [iW (1)].. (13)

To obtain a signal that has a dominant angular frequency @ one has to multiply
the signal (13) by exp(—iwt). It follows that

Xn () +iY, @) = Wa @) exp {i[¥ (1) — w1]}, (14)
and the separation into real and imaginary parts leads to the expressions

X, ) = xaﬁ£ (t)coswt + [Tl(t) +ch:‘i’5l (t)] sin wt
Y, (1) = —xqAn () sinowt + [D (t) +xaA4n ()] coswt.

The procedure to calculate the time series of values of real and imaginary parts
is completed when a suitable time step At is assumed.

2.2. The Properties of the Mathematical Model

The time derivative of the square of the absolute value (11) is

d[W2 1))/dt = 2D, © D @) + 264 D ) A ©) + DI° 0 A2 )
F2(x24+x2) A, ) AP @)

Let us commence the discussion on the properties of the phase function by cal-
culation of the time derivative of the function sinW

xf}iﬁ['",‘,” + xdﬁﬁ.”] — 124, A’ [ Dy +x4.4n]
W3 1

n

J*+ (15)

v cos W, =

where the dependence of functions on time is understood without direct notation.
Finally in view of cos ¥,, = x, A, /W, it follows that

xa[ A, ) B ) - AP 0 D )]
Wi @) ' )

v @) =
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The phase of the complex signal with the dominant frequency is given in the
relation (14). Let us consider the phase at time ¢ + At. It follows within an ap-
proximation to linear terms

W, (1) — ot = Wy, () — ot + [w,g‘) (%) —w] (t—1). (17)

and thus the time derivative of the phase has the meaning of a local contribution
to the angular frequency.

The asymptotic behaviour is clear, as the product of any finite polynomial with
the exponential function of a negative argument tends to zero. The behaviour
around the initial time (f = 0) has to be studied. The expansion of the function
Ay (t) given by the relation (9) in power series is

A, a)——[z +E( L :ﬂ (18)

and that of the function D, (f) obtained by expansion in power series its time
derivative given by the relation (8) and integration finally is

= n+l| sn+1 _onk antk+1
D) =" {t ) o Ll ] (19)

n+l &K nt+k+1

It is worthwhile noting that the lowest power term approximations of the functions
A (t) and D,l (t) are

1 n+l "
Ay ()~ = D.(t)~ &
and thus in the limit for the time going to zero tan(V¥) given by (12) tends to
W, (0) = tan™" (x4/%a) . (20)
The limit for the time derivative of the phase is

Xa T:‘"H
x24+xin+1

W () = @1
Now let us calculate the second derivative with respect to time by taking the first
derivative of the relation (16). We then substitute the expansions in power series
(18) and (19) and go to the limit when times reaches zero. One should be careful,
as the denominator has as the lowest power term time to the power 12 and in the
numerator the terms with the power 11 cancel and the limit when time approaches

Zero is
n+1 n
¥@ () = —— 1 [ ERIE. . } (22)

x§+x§n+1 n+2 x3+x§n+1

il
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In the model there are two wave parameters, the period of motion and the
amplitude, and there are three parameters that control the behaviour of the tran-
sient, x,, x4 and 7. It is a linear model and thus the amplitude may be assumed
equal to one and the final time series multiplied by its actual value. The value
of n is crucial for the asymptotic behaviour. (The dimensionless parameter n7,
where T is the period, is more convenient in calculations.) The values of the two
last parameters may be chosen arbitrarily.

2.3. The Choice of Parameters and Numerical Examples

There are two possibilities, either the period T of the regular wave or its length
L is given. In a linear approximation when one is given the second value this can
be calculated from the dispersion relation. The parameter 5 decides how fast the
time series approaches the regular wave. It is reasonable to fix the dimensionless
number n7, (for examples equal to one or two). The behaviour depends upon the
choice of the number n that fixes the number of equations in the set (1) equal to
n + 1. In examples the standard value will be n = 3. Let us discuss the choice of
the values of the two parameters x,, x4. From the point of view of physics there
should be a smooth transition from rest to harmonic motion.

As a first case let us assume that the time derivative of the phase at time equal
to zero is equal to @, wb (0) = w and thus the local angular frequency, according
to the relation (17), is equal to zero. As the second condition let us assume that
the second derivative of the phase is equal to zero at ¢t =0, lIJ,Ez) (0) = 0. These
conditions lead to the following expressions for the coefficients

i
n " n? 1 n 1
N 1+~ |, xg=t——x,. 23
i aJn+1|: +w2(n+2)2] 4 w”"‘zxa @)

In the second case let us assume that x, = x; and lll,fzj (0) = 0. In this case
the expressions for the coefficients are

ln+2 ,
= = = i 24
Yo S = 1" 4
The third, and simplest case is
Xg=x4=0. (25)

In this case it follows from the relations (11) and (12) that
W@ =D@®, ¥n(t)=n/2

In the fourth case let us assume that the first coefficient has a suitable value
‘while the second is zero

Xq #0,x4 =0. (26)
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A computer program in MATLAB was written. In the example, let us assume
that the wave period T is 2 s, the amplitude of the piston motion is one and
the parameter nT = 2. The values of the last two parameters are assumed to be
equal to zeros and n is equal to three. The functions An @) (9), D, (2) and D, @)=
1 — D, (t) (7) are depicted in Fig. 1. These functions are the basic elements for
the construction of the mathematical model. Two functions approach the zero line
when the time grows and the third has a horizontal asymptote of value one. The
complex signal (10) was calculated for case 3. The absolute value and the phase
are depicted in Fig. 2. The asymptote of the absolute value is one and the phase
/2.

0 5 10 15 20 25

Fig. 1. Basic elements ;f,, (), Dy (t) and f),, (t) =1 — D, (¢) for the construction of the
mathematical model
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Fig. 2. The absolute value and phase for the case x, =0,x4 =0

The calculations were repeated for the parameters of the experiment (8b60r)
with parameters: period T = 2.165 s, asymptotic wave length L = 6.466 m, number
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of waves in the group 10+5, the parameter nT = 1.5, the sampling frequency 50
Hz, the parameters x,,x4 equal to zeros and the asymptotic amplitude W; = 0.143
m. The complex.signal was calculated and its real part X, (f) was fed into the
control system of the generator. The measured displacements of the piston are
depicted in Fig. 3 and confronted by the values of the control time series depicted

by a dashed line. The differences are very small.
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Fig. 3. The motion of the piston corresponding to a Stokes type boundary condition

The curves in Fig. 3 have two intervals. In the first, the values of the envelope
grow to the asymptotic value and in its end part are almost exactly equal to it. In
the second interval the values decrease asymptotically to zero. At the boundary of
these intervals the values of the function and its first and second derivatives have
to be equal on both sides. The number n is chosen to be three and thus at time zero
the displacement, velocity and acceleration are equal to zeros. The control series
for the piston displacements and the measured horizontal displacements have only
one component. However, the measured displacements of the free surface and
horizontal components of velocities in the fluid have components with multiples

of the basic frequency.

3. The Motion of the Piston Corresponding to a Stokes Type Boundary
Condition

3.1. The Regular, Monochromatic and Long Wave

Let us assume that the solution for a regular non-linear wave can be approximated
by the expression

u(Z,t) = —W, sin(kZ — wt) — Wasin [2(kZ — wt)] — Wasin [B*Z —wt)]... (27)
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where u(Z,t) is the horizontal displacement, k = 2r/L the wave number, Z the
distance from the generator at rest and W; > 0. The motion of the piston corres-
ponds in the material description to Z = 0, and thus

u(t) = Wsinwt + W sin 2wt + Wasin 3wt ..., . (28)

For the case of very long, compared to depth water waves, it may be assumed
that the vertical material lines remain vertical lines during the motion. Details are
presented in the internal report by Wilde P. (1999). The condition of compressib-
ility leads to the expression

—u' (Z,1)

vED S TwEs

(29)
where w(Z, 1) is the vertical displacement of the free surface and u'(Z,1) the
partial derivative with respect to the variable Z that identifies vertical planes by
positions at rest. It follows from the relation (27) that

W(Z,t) = —Wikcos(kZ — wt) — 2Wsk cos [2(kZ — wt)] -

—3Wskcos [3(Z — wt)]..., (30)

Substitution into the relation (29) leads to the expression for the free surface in
a material description.

w(Z,t) = A cos (kZ — wt) + Ay cos (kZ — wt) + Azcos kZ —wt) ... (31)

The values of the coefficients A;, 43, A3, ... may be calculated from a set of
algebraic equations with the help of the relations (29) when the coefficients W1,
W5, Ws ... are known. The values of the coefficients W, W5, Ws... have to be
taken from experiments or Stokes types solutions in a material description.

3.2. The Control Time Series

For all the cases of mathematical models in Chapter 2 the complex asymptotic
displacements U for an amplitude equal to one are given by the following expres-
sion
U@)=iexp(—iwt), uy(t) =real (U)=sinwt. (32a)
It follows by raising to the consecutive powers that
Uy = imag (Uzg = sin 2wt
)

us = —real (U°) = sin 30t, (32b)
us = —imag (U*) = sindot...

The above-defined functions may be generalised by taking U(¢) for any model
described in Chapter 2. The graphs of the functions uj, uz, u> are depicted in
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Fig. 4. The component with the amplitude equal to one for the asymptotic part and frequencies
equal to: a) basic frequency ®, b) 20, and ¢) 3w
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Figs. 4a, b, ¢ for the parameters of the experiment (14b95er). The parameters
were: the period T = 3.575 s, the wave length for the asymptotic behaviour was
L = 8.88 m, the two intervals were of lengths 87T, and 5T respectively, nT = 1.5,
the sampling frequency was 50 Hz and both the coefficients x,, x4 were equal
to zero. The asymptotic values of amplitudes are equal to one and the consecut-
ive angular frequencies are the multiples of the basic frequency. The asymptotic
values of time series of horizontal and vertical displacements of a material point
on the free surface are depicted in Fig. 5. The graph of the vertical displace-
ments shows standard Stokes type behaviour. The horizontal displacements are
characterised by a bigger slope upwards and a smaller absolute value of the slope
downwards. The vertical displacement was calculate with the help of the relation
(29) that follows from the assumption of incompressibility The difference in slopes
is a physical property that corresponds to the physical property that the absolute
values of displacement on the free surface at crest is bigger than at through. The
corresponding orbital motion of a material particle is shown in Fig. 6. A reason-
able approximation for a wave group, that gives correct values for the asymptotic
behaviour, may be written as

Fig. 5. Vertical and horizontal displacements of the free surface for a fixed material point as a
function of time in the part of asymptotic behaviour

ut) = Wireal (U) + Waimag (Uz) — Wireal (U3) — Wiimag (U“) (?;3)

Two components of the control time series for W, = 0.231 m, W2 = 0.044 m,
W3 = 0 m, W, = 0 are depicted in Fig. 7.




On the Generation of Water Waves in a Flume

// . =
-0.3 Q.z -0. 1 j | 041 oy ) 6 3

o2
T

Fig. 6. The path of the orbital motion of a material point on the free surface in the part of
asymptotic behaviour
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Fig. 7. The two components of the control time series
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Experiments were performed with fixed values of W), several values of W3
and Ws = 0. The decomposition into two components by a Kalman filter of the
measured displacements of the piston in experiment (14b95er) is depicted in Fig.
8. A part of the measured time series with almost equal amplitudes is shown in
Fig. 9. It can be seen (when the components are added) that the downward and
upward slopes differ just as it follows from the previous analysis. It may be also
seen that it is possible to choose the origin of the co-ordinate in such a way that
both amplitudes are positive or that they have different signs.
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Fig. 8. The estimated components of the measured time series of piston displacements
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Fig. 9. The estimated components of the piston motion in the asymptotic part (two periods)

The estimated values from the measured data are not exactly equal to the
values that have been used for the calculation of the time series. The comparison
of Figs. 7 and 8 indicates that the control system of the wavemaker, as it should
be expected, is not perfect. The second components differ substantially. Thus it
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is advisable to consider the measured horizontal displacements of the piston for
the boundary conditions in a theoretical analysis.

4. Results and Conclusions

1. The time series, with one dominant frequency, calculated on a computer
and given to the control system of the wave maker, results in the motion of
the piston. The calculated and measured displacements are very close.

2. As standard, at the initial time the displacements, velocities and accelera-
tions of the piston are zeros. Thus n = 3 and at the initial time the velocities
and accelerations in the fluid correspond to zero valued vector fields.

3. From the experiments described in the paper (cited in the reference) fol-
lows that the velocities and surface elevations might be decomposed into
components with multiples of the basic dominant frequency. In the interval
of asymptotic behaviour they may be represented by a cosine time series.

4. Tt follows from the incompressibility condition that for shallow waves the
motion of the piston may be decomposed into components with multiples
of the basic dominant frequency. In the interval of asymptotic behaviour it
may be represented by a sine time series.

5. The calculated control time series with a few components is not exactly
reproduced in the measured piston motion. It is better to use the measured
piston displacements for the boundary condition, and not the theoretical
values.
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