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Abstract

In the paper, the generation of narrow-band random waves in a semi-infinite layer of
fluid is considered. The problem is formulated in a discrete space of chosen points
by means of the finite difference method. The main goal of the investigations is to
construct radiation boundary conditions which enable us to replace the infinite fluid
area with a finite domain. The investigations are illustrated with experimental results
and numerical examples confirming efficiency of the discrete model developed in the

paper.

1. Introduction

In analysis of water waves we usually deal with infinitc fluid domains. Frequently
the waves are induced by sources of disturbances placed in a finite region of the
fluid. In the latter case of waves propagating to infinity the appropriate boundary
conditions at infinity are radiation conditions which protect our solution from
waves incoming from infinity. In many practical cases involving irregular geometry,
it is difficult to construct an analytical solution to the problem and thus we are
forced to resort to discrete methods such as the finite difference or the finite
element method. With these methods, however, only a finite number of nodal
points of an assumed net can be considered. Therefore, these methods are not
directly applicable to infinite systems. A standard way of treating the problems
is to replace them with problems formulated in finite domains. This can be done
by dividing the infinite fluid domain into two parts: a finite region enclosing all
sources of disturbances and a regular infinite region. On the boundary between the
finite and infinite regions, special boundary conditions (radiation or transmitting)
should be specified which allow us to limit our analysis to the finite region and
obtain a solution preserving the main features of an unknown solution in the
infinite region. Unfortunately, there is no general solution to the latter problem,
and thus, for particular cases, only approximate solutions can be obtained. One
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of the important problems in this field is the problem of radiation conditions for
random waves generated in fluid of constant depth. For this case, experimental
investigations in a hydraulic flume can be carried out and thus theoretical results
may be compared with experimental data. Usually, laboratory experiments provide
data describing the generation of water waves by a wavemaker. In the case of
random generation, the wavemaker motion is assumed in the form of a stochastic
process of known characteristics. In this way the theoretical problem of describing
the physical situation is reduced to the examination of the transformation of the
generator motion process into one describing the fluid motion. In experiments, a
set of sample functions of the processes mentioned is considered.

The literature on the subject is considerable. In order to make the discus-
sion clear and relate the present paper to previous works, some of the earlier
methods are quoted below. Lysmer and Kuhlemeyer (1969) proposed a method
through which an infinite system may be approximated by a finite system with
special viscous boundary conditions assumed on its boundary. They discussed the
problem of elastic waves propagating from an excited finite zone outwards, to an
exterior infinite region. The boundary conditions assumed on the convex artificial
boundary between the finite and infinite regions, ensure that all energy arriving
at the boundary is absorbed. In a discrete formulation of the plane problem for
an elastic half space, the authors developed a system of dash-pots at the artificial
boundary, which absorbs energy of impinging elastic waves. The dash-pots are
chosen in such a way that reflection of the waves from the boundary is minimised.
For the case of harmonic Love’s type waves propagating in an elastic layer Lys-
mer and Waas (1972) derived a finite element solution expressed in the form of
a linear combination of eigenvectors of a stiffness matrix corresponding to nodal
points assumed on the layer width. In this way the required boundary conditions
on the boundary between finite and infinite zones may be expressed in an explicit
form by means of a solution of the eigenvalue problem mentioned. A discussion
of absorbing boundary conditions for wave equations may be found in Enquist
and Majda (1977). The authors derived a hierarchy of absorbing local boundary
conditions for wave equations which approximate theoretical non-local boundary
conditions. The obtained local conditions give well-posed mixed initial boundary
value problems for the wave equation. The next paper of Enquist and Majda
(1979) concentrates on the same problems of radiation boundary conditions for
acoustic and elastic wave equations. The problem of approximation of radiation
boundary conditions is discussed in Isracli and Orszag (1981). The authors presen-
ted a survey of methods for imposition of the boundary conditions in numerical
schemes. They found out that a combination of absorbing boundary conditions
with damping and wave speed modification, may be a useful tool in construct-
ing solutions to the wave propagation phenomenon. Radiation conditions for the
Helmholtz equation in a semi-infinite layer of fluid have been investigated by
Szmidt (1983). His approach to solving the problem is similar to that of Lysmer
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and Waas (1972). The radiation problem is solved with the help of eigenvectors
resulting from the finite difference formulation. The final boundary condition is
cxpressed in the form of a linear combination of independent components cor-
responding to progressive and standing waves, respectively. Exact non-reflecting
boundary conditions for a solution of reduced wave equation in an infinite do-
main were proposed by Keller and Givoli (1989). The authors devised non-local
boundary conditions which lead to more accurate results than those obtained by
using approximate local conditions.

The problem of reduction of a boundary value problem posed on an infinite
domain to one posed on a finite domain emerges not only in analysis of wave equa-
tions. There were also other differential equations formulated in infinite domains
for which it was required to formulate an associated problem in finite domain.
Examples of the latter problems may be found in Lentini and Keller (1980a, b)
where the so-called asymptotic boundary conditions were devised.

In most of the papers the radiation conditions correspond to reduced wave
equations. In a general case of wave equation, the problem is solved by means
of approximate absorbing boundary conditions. The efficiency of applications of
the local boundary conditions to discrete formulations of the problems on hand
depends inherently on the structure of the conditions. For higher hierarchy of the
approximation, the boundary conditions are expressed by equations with higher
order derivatives with respect to space and time of solution. The last feature of the
conditions may cause some difficulties in their adaptation to discrete formulations.

In the present paper the finite difference solution to the linear problem of
random waves propagating in a layer of fluid is considered. We confine our at-
tention to water waves described by narrow-band stochastic processes with pre-
scribed characteristics. It has been found that a combination of local transmitting
boundary conditions with discrete integration of the relevant equations in the time
domain by means of the Wilson® method, gives very accurate results. The main
numerical results are compared with results of rigorous analytical solutions to the
problem considered and data obtained in experiments.

2. Generation of Water Waves — Formulation in Continuum

Let us consider a semi-infinite layer of fluid shown in Fig. 1. The motion of
the fluid is induced by a piston-type wavemaker (rigid vertical wall OA in the
figure) placed at the beginning of the layer. It is assumed the fluid is inviscid and
incompressible and the velocity field is potential, and thus, a velocity potential
® (x,z,1) exists which satisfies the Laplace equation

V2o =0 | (1)
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Fig. 1. Semi-infinite layer of fluid
and appropriate boundary conditions:
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where d is the water depth and the dots denote derivatives with respect to time.

The first condition means that a perfect reflection occurs on the bottom of
the layer. The second condition states that the horizontal component of the fluid
velocity at the rigid wall is equal to the wall velocity. The third condition is the
linearized boundary condition for the surface waves. In this condition g denotes
the gravitational acceleration. For the case of steady-state vibrations the above
boundary conditions should be supplemented with the Sommerfeld condition de-
scribing the behaviour of the velocity potential at infinity (x — oc). For a general
case of transient fluid motion one has also to specify the initial conditions de-
scribing the velocity potential and its time derivative within the fluid domain at
t = 0. With respect to the boundary conditions at the free surface, its elevation is
described by the formula (Stoker 1957)

;(x,t):—ld:' : 3)
8 lz=d

In analysis of random generation of water waves we deal with sample functions of
a stochastic process describing the wavemaker motion. Analytical solutions for this
case may be obtained by means of an impulse response function of the generator-
fluid system. In deriving the latter function we need a complex frequency response
function for the velocity potential. Thus, let us now consider the case of steady
harmonic motion of the wavemaker

X (t) = Bexp(iot), (4)
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where B is a constant, i is the imaginary unit, o is the angular frequency and 7 is
the time.
For this case the solution of the Laplace equation assumes the form

ol e ekl
o= _ko 2fo + sinh 2 cosh (koz) expi (ot —kox)+
Z b —————exp (—kjx)cos (kjz) exp (io?) )
ki 2B; + sin2p; j G :

The eigenvalues in the equation satisfy the following dispersion relations
o2

gd_ﬁotanhﬁg —pjtanB;, Bo =kod, B =kid,j = 1,2, ... (6)

The first term in the solution (5) describes the surface wave propagating in the
layer and the second the standing wave which dies out when going to infinity
(x — oo). With respect to the solution obtained, the complex frequency response
function for the velocity potential is expressed in the form

4o sinh By e
H(a’x'z)__g__Zﬁo—i—si hZﬁOCOShkozcxP( ikox )+ o
sin B;
—IE % Zﬁ,-l-sJZﬂ coskjz exp ( — kjx).

For greater values of x, say x > 2d, the second term of the equation may be
ignored and the function may be assumed as

. sinh By  coshkyz
2By +sinh 2By ko

Knowing the complex frequency response function we can calculate the impulse

response function by means of the Fourier transform (Crandall and Mark 1973)

H(o,x,z) = —4

exp ( — ikox). &)

+00
h(t,x,2) = %r_f H (o)expiotdo. (9)

With the help of the impulse response function, a solution of the problem for
arbitrary function describing the wavemaker motion can be obtained by means of
convolution of the relevant functions over the time interval (—oco, +00).

In a similar way one can obtain the impulse response function Ag (t) = h (¢, x)
for the free surface elevation. For waves generated by the piston type wavemaker,
the function can be expressed as follows (Szmidt 1995)

fo o] o o]
1 [ tanhsd 1 [ tanh
(t,x) = ;f ans a cos (sx —rt)ds + ;f ans 5 cos (sx +rt)ds, (10)
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where
r? =gstanhsd. (11)

For a sufficiently large value of x (say x > 2d) and ¢ > 1s, the second integral
in Eq. (10) may be neglected and the impulse response function assumed in the
form

oo

ht,x)= i—f tan;ud cos (sx —rt)ds. (12)
0

Knowing the generator velocity v, (t) = Jé(t), where X (t) is the generator displace-
ment, we can calculate the free surface elevation at x = const. by means of the
following convolution integral

t
E(x = const,, t) = fvg(t — t)h(t,x = const.)dr. (13)
0

3. Random Generation of Water Waves in a Hydraulic Flume

In order to verify results of discrete models describing the random generation of
water waves in fluid of constant depth, experimental investigations in a hydraulic
flume were performed. In experiments, the waves were generated by a program-
mable piston type wavemaker. The experimental set-up is shown in Fig. 2. The
motion of the generator was assumed in the form of sample functions of stochastic
processes of known characteristics. With respect to the equation (4), where B is a
constant amplitude of the generator motion, let us consider the following process
describing the generator motion

X (t) = An(t) cosort + Dy (1) sinoyt, (14)

where o7 is the dominant frequency, 4, (t) and D, () two independent station-
ary normal processes without dominant frequencies and » indicates the degree of
differentiability of the processes. The functions A4, (t) and D, (¢) are statistically
independent, and assumed to have zero means and the same correlation func-
tions (Wilde and Kozakiewicz 1993). For the discussed problem of water motion
starting from rest, the generator motion is assumed to be described by a three
times differentiable stochastic process. In order to create such a process of known
characteristics we here attached some important results given in Wilde and Koza-
kiewicz (1993). The starting point is the set of stochastic differential equations of
processes without dominant frequencies
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Fig. 2. Experimental set-up

dAy@) +nAo(t)dt = adB(2),

d A,

=1+ nA;, = nAy,

dt""nl nAp

dA; (15)
=2 Ay = 1A,

dt**‘nz nA;

dAs

—— Az = nAs.

dt+n3 nA;

where A4,(¢) is an r-times differentiable stochastic process (r =0, 1, 2, 3), B(?) is
the Brownian motion process of unit variance, » is a memory parameter and o —
another parameter of the set.

For our purposes it is convenient to introduce the discrete time steps with
constant Af. The solution of the first equation in (15) may be written in the
following form

Ao(0) = VPU(0),
Ao(r +1) = exp (— nA1)Ao(r) + / P[1 —exp (= 2nAD)U(r + 1).

where t, =rAt, P =a? /2)7 and U(r) is an independent random variable with
normal distribution N(0, 1).

In calculating sample functions of the process at the point ¢, = (r + 1)At,
Ap(r) in the second equation of (16) is a known number as the sample value
of the process at the previous instant of time. The solutions to the remainder
equations of (15) are described by the formula

(16)

(r+1)At
Ar(r +1) = exp (— nAt)Ax(r) + f nexp [—n(t — )] Ax_1(v)d. (17)

rAt
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Knowing the distribution of the random variables A4(0) (k =0, 1,2, 3) at the
starting point we may calculate the sequence of numbers representing a sample
function of the process Ak(¢) in the considered range of time. In laboratory exper-
iments, we frequently deal with the problem of the generator-fluid motion starting
from rest. In order to ensure a smooth beginning of the generator motion, it is
reasonable to assume that both velocity and acceleration of the generator are
equal to zero at the starting point. In such a case the initial conditions for the
process Az(t) reads

A3(0) = 0, A3(0) = 0, A3(0) = 0. (18)
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Fig. 3. Sample function of the generator motion process

Similar conditions are valid for the process Ds(t). With respect to the assumed
initial conditions of the generation, the Gaussian process of the generator motion
is not a stationary process, but it is an asymptotically stationary Gaussian process
(for details sece Wilde and Kozakiewicz 1993). A sample function of the process
(14) describing the generator motion is shown in Fig. 3. From the plot it can be
seen that within the first range of time (a small elapse of time from the starting
point), the amplitude of the generator motion grows very slowly, and thus, a
relatively long time is needed to reach an assumed, mean level of the generation
amplitude. Therefore, in preparing the input data for the wavemaker steering
system, it has been decided to shorten the first range of the motion by means
of a deterministic description of the motion within this range of time. A random
generation is switched on at a chosen moment of time when the amplitude is
close to its mean value. Such a sample function describing the wavemaker motion
may be obtained by means of the computer program ‘FALORORB’ available in our
institute. The input data for this program consists of the sampling frequency, the
assumed length of water wave corresponding to the dominant frequency of the
wave spectrum, and defines the length of time record divided into three stages.
Within the first stage of the generator motion the amplitude of the motion grows
in time up to a certain value. Then, we have a basic range of time during which
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the amplitude changes slowly. The third, and last stage describes the diminution
of the generation. A sample function obtained with the help of the computer
program is expressed in the form of sequence of numbers corresponding to the
assumed sampling frequency. Having the sample function, in the second step, the
discrete record is multiplied by an amplification factor, and then it is used as the
input data for the generator steering system. In experiments, both the generator
motion and the surface waves were measured by means of the displacement and
the wave gauges, respectively. Some of the results obtained in experiments are
shown in Fig. 4 where sample functions of the generator motion and associated
clevation of the free surface measured at the distance x; from the generator are
depicted. One can show that for the discussed case of narrow-band process of the
generator motion the surface elevation may be expressed in the form of a linear
combination of the generator motion process and its time derivative both shifted
in the time scale.

4. Discrete Formulation and Radiation Conditions

With respect to the discussion and results given in the preceding sections, let
us consider now the finite difference solution of the aforementioned problem of
random generation of water waves in a semi-infinite layer of fiuid. The assumed
finite difference mesh is shown in Fig. 5. The artificial boundary for the discrete
description is assumed at the distance x, from the vertical rigid plate of the
wavemaker (from wall OA in the figure). Let a and b be the spacing of vertical
and horizontal lines of the assumed net, respectively. In the discrete formulation
by means of the finite difference method (FDM) the representation of the Laplace
equation assumes the form of a system of algebraic equations written for all nodal
points of an assumed net including the boundary points. Each of the equations
includes unknown values of the potential at five nodal points. For a typical point
(i, j) within the fluid, where i denotes the horizontal coordinate and j denotes
the vertical coordinate, the finite difference equation for the Laplace equation
assumes the form '

—e® 1 — Pijo1 +2(1+8) Dij — Pij41 —ePiy1j =0, (19)

where & = (b/a)?.

In order to write the equations at boundary points (x =0, x =Xp, z = 0 and
z =d) we have to extend the finite difference net in such a way that together
with each of the boundary points, a neighbouring nodal point is placed at the
outward normal to the boundary at the considered point. The unknown values
of the potential function at these external points are expressed by means of the
boundary conditions, in terms of the values of the function at points belonging
to the fluid area. In this way, the resultant system of the difference equations
corresponds to the nodal points of the fluid domain.
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Fig. 4. Sample function of the generator motion and free surface elevation
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Fig. 5. Finite difference spacing of nodal points

Let e, b, and i denote the subscripts of the external, boundary and internal
points, respectively. According to the boundary condition at the wave maker, the
following relation holds

®, = &; — 2av,, (20)

where v, is the velocity of the wall OA (Fig. 1).
The boundary condition at the bottom of the layer leads to the result

b, = P;. (21)
The linear boundary condition for the surface waves gives

2b ..
o, =; — E‘-’Db. (22)

For the discussed case of water waves with narrow-band spectral density, the
radiation condition at the artificial boundary is assumed in the following form
a0 koo
x oot
where k is the wave number corresponding to the dominant frequency o.
From the last equation if follows that

0, 23)

P, = d; — Td)b' (24)

It is seen that the boundary condition for the artificial boundary and the free
surface contains the derivatives with respect to time of the potential function.
Therefore, in equations for the velocity potential corresponding to a certain in-
stant of time there are also time derivatives of the potential at some boundary
points. In order to transform the equations to standard algebraic equations writ-
ten at a common moment of time we use the Wilson® method well established
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in the dynamics of structures (Bathe 1982). The method is based on the linear
approximation of the acceleration vector at every point of the discrete time. In
our case, in application of the method to solution of the water waves, we have to
calculate not only the potential function but also its first and second time deriv-
ative at each time step. Assuming that we know the solution of the problem at
time ¢ (b, ® and ®), the standard equations of the method read (Bathe 1982)

. 6 B . . 6
® =— o, — D, — 29, + :
t+OAL ©A1)? t (-)At t £ (@At )2 QoA 55
; 3 3
Qrroar = —aq’: -2, — -(®Af)¢r s A ¢1+®At.
where the subscripts denote levels of time and © = 1.47.
From substitution of Eq. (25) into Eq. (22) it follows
12b
b, =0 — —— b+ F, 26
e i g(@AI)Z b, ( )
where - P .
=— &+ ——b +2 ] : 27
=2 oamt et 2| @)
In a similar way, Eq. (24) is reduced to the form
6ak
o, =, — @y, + F3, 28
® ©Ane b+ F2 (28)
where Sk £ )
Fp="—|—& +2b,+ -0Atd, ) . 29
2 - (@A LWy o+ = 3 r)b (29)

Due to the last relations, the finite difference equations of the problem written
for 1 + ®At do not contain time derivatives of the potential function. Having the
solution at f + ®A¢ it is a simple task to calculate the values of &,  and ® at
the time ¢ + At¢. Simple manipulations give

cbl+®AI - &,

o = ——— " Af

L+ At l+ @At

NP W

By il e B o 5 —HHOBET Feyoeand 30

t+At ¢ + @ +2 AL (A1) (30)
: 1. 16’:+9Ar—d’t

Brane = O + DA + =D (AP A - (A1),

(AL ¢ + P +2 e ( )+6 OAL (At)

The method of discrete solution of the problem of initial generation of the
waves presented above has been applied to test problems of assumed generation
of the wave, and to the input data used in laboratory experiments.
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5. Numerical Examples

In order to illustrate the discussion and examine the accuracy of the discrete solu-
tions, we attach here some numerical examples. Results of numerical calculations
are compared with results of analytical solutions in continuum and data obtained
in experiments performed in a hydraulic flume. The analytical solution may be
considered as an exact theoretical solution of the problem mentioned. Numerical
calculations have been performed for sample functions of a stochastic process
describing the generator motion. In order to examine accuracy of the radiation
conditions, in the first step, discrete solutions for the sample function shown in
Fig. 3 and different lengths of the fluid domain (different distances x; of the ar-
tificial boundary from the generator in Fig. 2) have been carried out. The results
obtained in calculations are shown in Fig. 6 where the free surface elevations are
depicted. From comparison of these results it may be seen that the approximate
radiation boundary conditions lead to proper solution of the problem on hand. In
the next step, analytical and discrete solutions for the input data used in laborat-
ory experiments are created. The results obtained in calculations are depicted in
Fig. 7. The upper graph in the figure shows the free surface elevation measured
by the wave gauge S3. Then, in the two subsequent plots, the analytical solu-
tions based on the impulse response functions (10) (solution I) and (12) (solution
IT) are presented, respectively. The next plot in the figure shows the difference
between these two analytical solutions, and the subsequent one represents the
finite difference solution. In order to compare the results obtained in numerical
calculations, in the last graph zoomed sections of the relevant plots are depicted.
From the plots in Fig. 7 it is seen that the radiation conditions developed above
lead to solutions of acceptable accuracy. Obviously, in experiments, we deal with a
physical situation where the fluid viscosity as well as non-linearity of the problem
influences final results. Therefore, with growing amplitude of the generator mo-
tion one may expect greater discrepancy between the theoretical solution, based
on linear approximation, and results of laboratory experiments.

6. Concluding Remarks

Theoretical and experimental analysis of the problem of generating random water
waves described in the preceding sections has revealed some important features
of the phenomenon. The results obtained lead to the following conclusions

e For a moderately small amplitude of the generator motion the local radiation
condition in the FD formulation may be derived with the help of a solution
for a monochromatic wave.

e The Wilson® method has proved to be an efficient tool in performing in-
tegration of the system equations in the time domain.
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e FDM with proper radiation conditions is a convenient tool in analysing
water wave phenomenon in fluid of finite depth.
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Leading wave: A=2d, d=60cm
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Leading wave: L.=2d, d=60cm
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